
CSCI 385: Written Part of Walk Thru It
Due: TBD

Several parts of the Flip Book application rely on geometric calculations to perform ray casting and hidden line
removal. Below we ask you to work out those calculations on paper so as to prepare for the coding of them in
walk-thru.js and walk-thru-library.js. In doing so, I strongly encourage you to take a “coordinate-
free” approach. This has you work to calculate with point and vector operations, rather than directly work with
their coordinate data.

This is a “low impact” assignment to get you thinking about the project right away. Make an attempt and hand
in what you figure out. I’ll share solutions of these in lecture.

1. Suppose we are given a center point C for projection, and a direction t into the scene that we are project-
ing. Suppose also we are given an additional direction u that represents a general upward direction for
orienting the projection. You can assume that the two vectors are not parallel.

Give an orthonormal frame centered at C and with basis directions e1, e2, e3. These correspond to the
x, y, z directions for a coordinate system for specifying the projection. It should have the property that
u · e1 = 0. In devising this, tell me whether your frame is left- or right-handed.

Note: The directions e1, e2, e3 correspond to the vectors‘ right, up, and into for the SceneCamera
constructor in walk-thru.js. The point C corresponds to center and the directions t and u correspond
to towards and upward.

2. Now imagine a plane P that contains the point O = C + e3 and has the normal e3. Within that plane,
we have a 2-D orthonormal frame with O as the origin and e1 and e2 as the basis vectors. Let’s consider
projecting elements of a 3-D scene onto that plane using perspective projection.

To do so, consider a scene point Q where (Q − C) · e3 > 0. Compute the coordinates x, y that give the
projection of that point onto the plane P . So let Q be a point in the scene and let its projection onto P be
the point Q′.

This would mean that Q′ = O + xe1 + ye2.

Note: For the project, this is what’s needed by the method SceneCamera.project. We have a plane
sitting one unit away from the camera at center shooting in the direction of into. We are given a scene
point as location, the code’s analogue to P . We find the location of the projection as a Point2d
object, the code’s analogue to P ′ with coordinates x and y. In doing this perspective calculation, you’ll
also compute the depth information, the distance along direction e3 (along into) where P sits in 3-space.

3. Consider two non-parallel line segments P0P1 and Q0Q1 that sit in Euclidean 2-space. Assume they
intesect, and not at their endpoints. Find their intersection point S. In doing so, you can assume for
any vector v that v⊥ is a vector perpendicular to v and whose direction is rotated 90 degrees (counter-
clockwise) from the direction of v.

What are the conditions that these two segments intersect in this way?

For what scalar value s does S = (1− s)P0 + sP1?

Note: For the project this is needed to code up segmentIntesect in walk-thru-library.js. And
the value of s is just the “breakpoint value” that is collected by SceneEdge.breakpoints to break a
projected edge into segments that may or may not be drawn in the PDF.

4. Let ray r emanate from a point R in a direction so that it passes through a point R′ in Euclidean 3-space.
Let Q1, Q2, and Q3 be the vertex locations of a trianglular facet T . Suppose the ray r intersects T . Find
the point of intersection S.

Thinking more generally, what are the conditions for which the ray r intersects T ?

Note: You’ll need to figure out these conditions to write the code for rayFacetIntersect that is used
by the method SceneEdge.isSegmentVisible. You’ll be shooting a ray from the camera’s center of
projection to some point along an edge in the scene. Those will be the code analogues to R and R′. And
then you’ll want to know whether a triangular facet of a scene object, given by its three vertex points, is
hit by the ray at a closer distance than ||R′ −R||. If it is, then that point R′ will be hidden by that facet, at
least from that camera’s perspective.

