Lecture notes on MinimL types and the Curng-Howard correspondence.
includes
\rightarrow control operators
\rightarrow continuations
\rightarrow stack-based senartics
\rightarrow classical logic

Reforences:

- Happers _FoPls_
- Griffin, "Formble-ess-Types
[0opL'90]
- Dabiectal, "Typing Lat class conthinations in ML"
[POPL'q1]

$$
\frac{\frac{\text { J.Fix }}{\text { CSCI } 384}}{\frac{P_{0} P L}{\text { Fall } 2021}}
$$

- Felle ise et al "A syytactic they of syuntial contin!" [TCS \& 77

Miniml types
$\tau::=$ int | boot | unit

$$
|\tau+\tau| \tau \times \tau \mid \tau \rightarrow \tau
$$

$e::=3$ |true (c)
| fit e| side $e \mid(e, e)$
| lit e | yt e | case e of If t $x \Rightarrow e$ |rot $x \Rightarrow e$ let val $x=e$ in e end
1 let fun $x x=e$ in e ad
| fo $x \Rightarrow e|e e| x$
$|e+e| e<e \mid e \operatorname{conda}(e n$
Mini ML type rules

$$
\begin{aligned}
& \overline{\Gamma \vdash 3 \text { int }} \overline{\Gamma \vdash \text { true:bool }} \overline{\Gamma \vdash() \text { init }} \\
& \frac{\Gamma \vdash e: \sigma \times \tau}{\Gamma \vdash f \text { file: } \sigma} \quad \frac{\Gamma \vdash e: \sigma \times \tau}{\Gamma \vdash \operatorname{sid} e: \tau} \quad \frac{\Gamma \vdash e_{1}: \sigma \Gamma \vdash e_{2}: \tau}{\Gamma \vdash\left(e_{1}, e_{2}\right): \sigma \times \tau}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\Gamma \vdash d: \sigma \quad \Gamma, x: \sigma \vdash e: \tau}{\Gamma \vdash \text { let val } x=d \text { one end }: \tau} \quad \frac{\Gamma, f: \sigma=\tau, x: \sigma \vdash r: \tau ~ \Gamma, f: \sigma a t \vdash e: p}{\Gamma \vdash \text { let fun } f x=r \text { in e end: } p} \\
& \frac{\Gamma, x: \sigma \vdash e: \tau}{\Gamma \vdash \operatorname{fn} x \rightarrow e: \sigma \rightarrow \tau} \frac{\Gamma \vdash e_{1}: \sigma \rightarrow \tau \Gamma \vdash e_{2}: \sigma}{\Gamma \vdash e_{1} e_{2}: \tau} \frac{}{\Gamma+x: \Gamma(x)}
\end{aligned}
$$

$$
\frac{\Gamma+e_{1}: \operatorname{int} \Gamma+e_{2}: \operatorname{int}}{\Gamma+e_{1}+e_{2}: \operatorname{int}} \frac{\Gamma+e_{1}: \operatorname{nit} \Gamma+e_{2}: \text { int }}{\Gamma+e_{1}<e_{2}: 6001} \frac{\Gamma+e_{1}: \text { bod } \Gamma \vdash e_{2}: b o 0 l}{\Gamma+e_{1} \text { andalsoe } e_{2}: b o 01}
$$

Intritionstic propositional logic (IL)

$$
\begin{aligned}
& \frac{\Delta, A \vdash B}{\Delta, A \vdash A} \frac{\Delta \vdash A \Delta+A \Rightarrow B}{\Delta \vdash A \rightarrow B} \frac{\Delta \vdash B}{\Delta \vdash} \frac{\Delta \vdash A \wedge B}{\Delta \vdash A} \frac{\Delta \vdash A \cap B}{\Delta \vdash B} \frac{\Delta \vdash A \Delta \vdash B}{\Delta \vdash A \cap B} \\
& \frac{\Delta \vdash A}{\Delta \vdash A \vee B} \frac{\Delta \vdash B}{\Delta \vdash A \vee B} \frac{\Delta+A \cup B \Delta, A \vdash C \Delta, B \vdash C}{\Delta \vdash C}
\end{aligned}
$$

some theorems in IL
(*) $(A \wedge B \Rightarrow C) \Rightarrow(A \Rightarrow(B \Rightarrow C))$
($\ddagger) \quad(A \Rightarrow(B \Rightarrow C)) \Rightarrow(A \wedge B \Rightarrow C)$
their prof terms
(*) \vdash fut $\Rightarrow f_{n} x \Rightarrow f_{n} y \Rightarrow f(x, y):((\alpha \times \beta) \rightarrow \gamma) \rightarrow(\alpha \rightarrow(\beta \rightarrow \gamma))$
($\ddagger) \vdash f_{n} f \Rightarrow f_{n} p \Rightarrow\left(f\left(f_{3}+p\right)\right)(\operatorname{snd} p):(\alpha \rightarrow(\beta \rightarrow \gamma)) \rightarrow(\alpha \times \beta \rightarrow \gamma)$
These Mini ML terms' trees that establish their types correspond to analogous profs in IL of their corresponding propositions ((x) and (\ddagger) This showcases the Cury-Howard correspondence
context-based senaties
Let's give a stack-based sencaties for evaluating MiniML terms. We first define values:

$$
v::=\operatorname{num}(n)|\operatorname{cnd}(b)| \operatorname{fn}(x, e)
$$

Then we define evaluation contexts:

$$
\begin{aligned}
C:= & \operatorname{plus}(0, e) \mid \operatorname{plus}(v, 0) \\
& |\operatorname{apply}(0, e)| \operatorname{apply}(v, 0) \\
& |\operatorname{let}(x, 0, e)| \text { if }(0, e, e)
\end{aligned}
$$

Finally, we define stacks:

$$
\Sigma:=0 \quad \sum ; C
$$

with these we define a relation

$$
S_{1} \rightarrow S_{2} \text { whee } S::=\sum \triangleright e \mid \sum \Delta v
$$

by the rules:

$$
\begin{aligned}
& \sum \triangleright p \operatorname{lus}\left(e_{1}, e_{2}\right) \rightarrow \sum ; p^{\operatorname{lus}}\left(0, e_{2}\right) \triangleright e_{1} \\
& \Sigma ; \text { plus }(0, e) \triangleleft v \rightarrow \sum ; \text { plus }(v, 0) \text { ie } \\
& \Sigma \text {; } p^{\prime} \text { us }\left(\text { un }\left(n_{1}\right), 0\right) \Delta \text { mum }\left(n_{2}\right) \rightarrow \sum \Delta \text { nun }\left(n_{1}+n_{2}\right) \\
& \sum \circ \text { if }\left(e, e_{1}, e_{2}\right) \rightarrow \sum_{\text {; if }}\left(0, e_{1}, e_{2}\right) \triangleright e \\
& \sum ; \text { if }\left(0, e_{1}, e_{2}\right) \triangleleft \operatorname{cud}(\text { true }) \rightarrow \sum D e_{1} \\
& \Sigma_{\text {; if }}\left(0, e_{1}, e_{2}\right) ه \text { end }(\text { falls }) \rightarrow \sum \triangleright e_{2} \\
& \sum \triangleright \operatorname{let}(x, d, e) \rightarrow \sum ; \operatorname{let}(x, 0, e)>d \\
& \Sigma ; \operatorname{let}(x, 0, e) \Delta v \rightarrow \Sigma \triangleright[v / x] e \\
& \Sigma \triangleright \operatorname{apply}\left(e_{1}, e_{2}\right) \rightarrow \Sigma_{;} \operatorname{apply}\left(0, e_{2}\right) \diamond e_{1} \\
& \Sigma ; \operatorname{apply}(0, e) \Delta v \rightarrow \sum ; \operatorname{appl} y(v, 0) \triangleright e \\
& \sum ; \operatorname{apply}\left(f_{a}(x, e), 0\right) \Delta v \rightarrow \sum \triangleright[v / x] e \\
& \sum D v \rightarrow \sum_{\Delta v}
\end{aligned}
$$

control operators
Let's introduce a few more constructs to MisiML $e::=$ catch k in $e \mid$ th ow e_{1} at e_{z} | abort e
The "catch" term introduces an "escape hatch" through which evaluation can be stopped within e, "thawing" a value back out to the context whee the catch resides. It is similar to an exception, and is a kind of "jump" for FPLS. The nave k is offer called a continuation. The "throw" tam performs that "escape" by feeding a value to some continuations. "Catch" is "late" in the literature.

Here are the semantics:

- We extend valued with

$$
v::=\operatorname{resure}(\varepsilon)
$$

- We extend contexts with

$$
C:=\text { throw }(0,0) \mid \text { than }(0, v) \mid a b \operatorname{ort}(0)
$$

- We extend the rules for \rightarrow with

$$
\begin{aligned}
& \sum \triangleright \text { catch }(k, e) \rightarrow \sum \triangleright[\text { resume }(\varepsilon) / k] e \\
& \sum \triangleright \text { throw }\left(e, e_{2}\right) \rightarrow \sum ; \text { throw }\left(e_{1}, 0\right) \triangleright e_{2} \\
& \sum ; \text { throw }(e, 0) \Delta v \rightarrow \sum ; \text { throw }(0, v) \triangleright e \\
& \sum ; \text { throw }(0, \text { resume }(\hat{\varepsilon})) \triangleleft v \rightarrow \hat{\sum} \rightarrow v \\
& \sum \Delta \text { abort }(e) \rightarrow \sum ; \operatorname{abort}(0) \triangleright e \\
& \sum_{\text {; abort }}(0) \Delta v \rightarrow \bullet \Delta v
\end{aligned}
$$

We see that "catch" captures the context Σ, and "throw" resumes some context $\hat{\Sigma}$ with the tossed calve.

Example use of control operators
The function below computes the product of a list of integer, but exits out carly cit a O is a lit. fun product Helper $k \ell=$

If null $\begin{aligned} & \text { then } 1 \\ & \text { else }(n d l)=0\end{aligned}$ (then (trow 0 at kkk) else (ndle)*(producttldper K (tel))
fur product $l=$
catch K in (pooductlelper $k \ell$)
Here is a similar function, but it is tail reanrive and also it escapes in all cases, ie. all evaluation "paths".
fun product Helper k \& p
If null e then (throw p at k)
else if (nd l) $=0$ then (throw 0 at k)
else $($ producttlelper $k(t l l)((n d l) * p))$
fur product $l=$
catch k in (producttlelper k \& 1)
A brief note on their addition
These operations, and similar ores, were introduced to quvide features to FPLS that night possibly enable other, for example, things like: molt; hued that
Oxuptins

- call bates

They also proilesis a fort class wa a mechanism that is mimecend by "continumber massey stye" (oc CPS), ore that was bey y adopted by sue FPL primmer of eltheast coding, and fo FPL canpitan: Well consider CPS later, and firs ploy a bit with control.

Another
Example use of control operators
This code outputs a sting that normally gives the division of 100 by some integer input.
But there are two exceptional cases, and reese are harlleal by "throw" operations.

- a division by θ

Let

- entry of a string that is not an integer
fun digit of ere $c=$ if $c<^{\prime} 0^{\prime}$ orle $c \gg^{\prime} q^{\prime}$ then (thou "not a in in" at err)
else ord (c)-ord $\left(0^{\prime}\right)$
fun get Integer ers $m=$
let val $c=\operatorname{get} \operatorname{Char}()$
in if $c=$ 'In' then m
else let val $d=$ digit of err c in (getinteger $\operatorname{err}((\operatorname{rn} * 10)+d))$
enl
fun divide By Input err $n=$
let val $m=$ get Integer err \varnothing
in
if $m=0$ then (throw "division by zero" at err) else int To string (n div m)
in catch err in (print (dived eBy Input err lowe)) end

Example (cont'd)
The stack-bused senenties behaves ditteretty in evaluating the sample expression in three seluarios: (A entering an integer that is not o
(B) entering 0 .
(C) entering a charades that is nat a digit In each scenario, the state looks (ike this just before the top-level call to divideryInput:

- ; prat $(0) \triangleright \operatorname{apply}\left(\operatorname{app} p^{\prime} y(d B I\right.$, resume $(0 ; \operatorname{print}(0)))$,urn $\left.(100)\right)$ Here, $d B I$ is the term for the divideByInput function, Notice that err will be the continuation

$$
\text { resume }(0 ; \operatorname{print}(0))
$$

This is the "captured context" awaiting a string to be thrown to it

- Let's consider each of the scenarios, in turn:
(A) They enter the integer 42 . In that case the variable m will bound to 42 like so

$$
\text { ; print (o); lat }(m, 0, \text { if }(\ldots)) \text { ィ um }(42)^{\prime}
$$

and evaluation continues as

$$
\begin{aligned}
& \text { and evaluation continues as } \\
& \rightarrow \text {; print (0) is (equals (Mum }(42), \text { numb }(x)), \ldots, \ldots) \\
& \ldots \text { (several steps omitted) }
\end{aligned}
$$

... (cereal steps omitted)

$$
\rightarrow 0 \text { (cereal steps omitted) } 0 \text { print }(0) ; \operatorname{apply}(1 T S, 0) \boxtimes \operatorname{div}(\operatorname{aum}(100), \operatorname{anm}(42))
$$

$\rightarrow 0$; pratt (0) $<+x+$ ("1 2^{\prime})
and so we output the result string of the dinsion: "2"
(B) Suppose instal they enter O

Then the stack state is similar

- ; print (0); let $(m, 0,1 f(\ldots))$ a $\operatorname{aum}(0)$

Bat instead the equals test will return and (true) and this will lead to the thew

$$
\begin{aligned}
& \cdots \text {; print }(0) \text {; if }(0, \ldots, \ldots) \text { cns (five) }
\end{aligned}
$$

Now that weile resolved the value to be thrown, we thew out the underlined context and resume exeention with the ceptoried context that's the target of the "throw". This leases to

Which outputs the ever message.
(c) Suppose instead they enter "a" instead of " 42 " or "o" then, within digit of we obtain this state
0 ;prut (0); let $(m, 0, i f(\ldots)) ; \operatorname{let}\left(d, 0, \operatorname{let}\left(m_{1}^{\prime}, \ldots\right)\right)$ b

$$
\text { thew" }(\text { the ("mut an ont"), resume }(\cdot \text { pprit }(0)))
$$

So, just like in the last exiple, the mechanism takes a few steps to figure out that both subberms of throw are already simplified fo values. That leads to the stake
$\xrightarrow{\rightarrow O}$; print (0) Δ tat ("not an int")
This replaces the stacked up context underlined above.
control operator typing rules

- We add a new type to the system

$$
\tau::=\sim \tau
$$

This type is cont (τ). It is the type of a continuation awaiting a value of type τ.

- We add these typing rules

$$
\frac{\Gamma, k: \sim \tau \vdash e: \tau}{\Gamma \vdash \text { catch } k \text { in } e: \tau} \quad \frac{\Gamma \vdash e_{2}: \sim \tau \quad \Gamma+e_{1}: \tau}{\Gamma \vdash \text { throw } e_{1} \text { at } e_{2}: \sigma}
$$

- Note that, since a throw leads to an "escape", it can be placed in any context. It can hare ally type σ. Furthermore, the expectation is that the value thrown has a type that the continuation awaits.
- Note also that the type of the "catch" expression a matches the type ${ }^{\tau}$ expected to be thrown to the continuation K. It turns out that not all "paths" to possible resulting unlues of e have to escape. This is because e can just evaluate normally to a value of type τ.
alternatives
Historically, control was provided by a construct call ce The use caller $\left(f_{n} k \Rightarrow c\right)$ is equinalat to catch k in e Thee is an alternative control ($f_{n} k \Rightarrow c$) in the literature. For it, e never returns. All pathsine throwlescupe see Felleisen et al. [Theoretical CS 87] for some details.

Cusry-Howard w) control

- We introduce another type void, one that has no values:

$$
\tau::=\perp
$$

- We change the type discipline of throw so that it yields type void (i.e. never returns).

$$
\frac{\Gamma \vdash e_{2}: \sim \tau \quad \Gamma \vdash e_{1}: \tau}{\Gamma \vdash \text { throw } e_{1} \text { at } e_{2}: \perp}
$$

- Furthermore, we insist that all evaluation paths within a catch expression lead to ar escape/throur

$$
\frac{\Gamma, k: \sim \tau \vdash e: \perp}{\Gamma \vdash \text { catch } k \text { in } e: \tau}
$$

- And then, for a certain coupletuen, we include

$$
\frac{\Gamma \vdash e: \perp}{\Gamma \vdash \operatorname{abort}(e): \sigma}
$$

Squinting at these rules, we get a correapontace with
Classical Logic (CL)

$$
\frac{\Delta, \neg A+\perp}{\Delta+A} \quad \frac{\Delta \vdash-A \Delta+A}{\Delta+\perp} \frac{\Delta+\perp}{\Delta \vdash A}
$$

These allow additional proofs, include proof by contradiction oud we give meaning to logical negation and absudit

Sore theorems of $C L$

$$
\begin{aligned}
& (A \Rightarrow \perp) \Rightarrow \neg A \\
& \neg A \Rightarrow(A \Rightarrow \perp) \\
& (A \Rightarrow B) \Rightarrow(\neg B \Rightarrow \neg A) \\
& (\neg B \Rightarrow \neg A) \Rightarrow(A \Rightarrow B)
\end{aligned}
$$

$\neg \neg A \Rightarrow A \quad F$ doable negation elimination (DNE)
$A \vee \neg A \quad]$ - law of the excluded middle (LEM)
The proof terms (using MiniML+control):

+ for $k \Rightarrow$ catch ε in $k($ cation k in $($ throw k at $\varepsilon)):(\alpha \rightarrow \perp) \rightarrow \sim \alpha$
$\vdash f_{n} k \Rightarrow f_{n} x \Rightarrow$ throw x at $k: \sim \alpha \rightarrow(\alpha \rightarrow 1)$
- fur $f \Rightarrow f_{n} \rightarrow$ catch ε in (throw f (cabal k in Thaw k at \mathcal{E}) at 1)

$$
\therefore(\alpha \rightarrow \beta) \rightarrow(\sim \beta \rightarrow \sim \alpha)
$$

1 fur $T \Rightarrow$ fun $x \Rightarrow$ coth α in throw x at $T \alpha:(\sim \beta \rightarrow \sim \alpha) \rightarrow(\alpha \rightarrow \beta)$

+ f $\varepsilon \Rightarrow$ catch k of thaw K ot $\varepsilon: \sim \sim \alpha \rightarrow \alpha$
t catch θ in throw $\operatorname{Ift}\left(\right.$ catch k in $\left(t_{\text {throw }}(r g t k)\right.$ at 0$\left.)\right)$ at θ
Here, for example, is the proof tree for the last:

$$
\begin{aligned}
& \begin{aligned}
\frac{\neg(A \vee \neg A), \neg A \vdash \neg(A \vee \neg A)}{} \frac{\neg(A \vee \neg A), \neg A \vdash \neg A}{\neg(A \vee A), \neg A \vdash A \vee \neg A} \\
\frac{\neg(A \vee \neg A), \neg A \vdash \perp}{\neg(A \vee \neg A) \vdash A}
\end{aligned} \\
& \frac{\neg(A \cup \neg A) \vdash \perp}{\vdash A \vee \neg A}
\end{aligned}
$$

