CSCI 384: Type Inference

The following page provides pseudocode for a type inference engine for MiniML, one that provides a type
system with int, bool, function, product, 1ist types, and the "null product” type unit. It also has let-bounded
polymorphism with the addition of type variables in the subterms of a ”forall” type. The code defines a function
INFER(T', ¢) which takes a variable-type context T" and a MiniML expression term e and gives a type term for the
most general type of e within that context. The type returned is built using the case class type constructors
UNIT, INT, BOOL, ARROW, PRODUCT, and LIST, and may also have type variables encoded as VAR
terms to express polymorphic types, bound with FORALL.

INFER(T, e)
1 case e of 39 if c then e; else ey =
2 ()= 40 o = INFER(T', ¢)
3 return UNIT 41 UNIFY (o, BOOL)
4 true = 42 7 := INFER(T', 1)
5 return BOOL 43 9 1= INFER(I, €3)
6 n wherenec Z = 44 UNIFY (7, T2)
7 return INT 45 return 7
8 nil = 46 e = ey =
9 7 := VAR(FRESH-TYPE-VAR()) 47 71 := INFER(', €1)
10 return LIST(7) 48 Ty := INFER(T', e2)
11 e + ey = 49 UNIFY(71, 7o) I>Not quite right! Want equality types.
12 71 := INFER(I', €1) 50 return BOOL
13 75 := INFER(T', e3) 51 fnzx=>d=
14 UNIFY (71, INT) 52 0 := VAR(FRESH-TYPE-VAR())
15 UNIFY (72, INT) 53 7 :=1INFER([z : 0] - T, d)
16 return INT 54 return ARROW (o, 1)
17 e1 < ey = 55 e eg =
18 71 := INFER(T', €1) 56 71 := INFER(T', 1)
19 75 := INFER(T, e3) 57 79 := INFER(L, e2)
20 UNIFY (71, INT) 58 7 := VAR(FRESH-TYPE-VAR())
21 UNIFY (7, INT) 59 UNIFY (71, ARROW (72, 7))
22 return BOOL 60 return 7
23 e; andalso ey = 61 letvalx =dinb end =
24 71 := INFER(T', e1) 62 o := INFER(T, d)
25 9 := INFER(T, e3) 63 o’ := GENERALIZE(0)
26 UNIFY (71, BOOL) 64 T :=INFER([z : ¢/] - T, b)
27 UNIFY (72, BOOL) 65 return 7
28 return BOOL 66 let fun fax =17 inb end =
29 not e = 67 71 := VAR(FRESH-TYPE-VAR())
30 7' .= INFER(T, €) 68 To := VAR(FRESH-TYPE-VAR())
31 UNIFY (7', BOOL) 69 7 := ARROW(71, 72)
32 return BOOL 70 74 = INFER([z : 7y, f : 7] - T',d)
33 print e = 71 UNIFY (T2, 74)
34 7/ := INFER(T, ¢’) 72 7' := GENERALIZE(T)
35 return UNIT 73 o :=INFER([f : 7'] - T, b)
36 e ;e = 74 return o
37 71 := INFER(', €1) 75 x where z € Var =
38 return INFER(T, e5) 76 return INSTANTIATE(I'(x))

The code relies on a few functions beyond just recursive calls to INFER:

e FRESH-TYPE-VAR — provides a new type variable term VAR(«) for some fresh symbol «. That is, it will
produce a type variable term whose name is distinct from any type variable generated so far. Variable type
terms are special in that, though initially free, they might get bound to other type terms by the execution
of...

e UNIFY — takes two type terms, ones that may have type variables, and attempts to make those terms
“look the same,” possibly by binding any type variables in subterms. The right bottom of the next page
gives the pseudocode for UNIFY.

The INFER code is able to reason correctly about polymorphic types using a strategy of generalization and
instantiation that’s prescribed by logicians Hindley and Milner. If you are curious: this code reasons about types

with free variables, giving any let-defined name a forall type. These FORALL type terms serve as a templates
that stamp out instances of their type when a name gets invoked in a let body. This mechanism is supported
by the following two functions, and are used when we check the typing of a let expression:

e CGENERALIZE — takes a (possibly) polymorphic term and wraps it with a FORALLT type constructor, to
distinguish it as a closed type polymorphic in its type variables. For example, when typechecking fn x =>
x we would discover that it is of type o — «, and GENERALIZE would give back the type Va.a — «, that
is, FORALL([o], ARROW (VAR («), VAR())).

e INSTANTIATE — if the given type term is a FORALL type term, this builds an equivalent term with fresh
free variables, in place of the bound ones. For the identity example just above, this would take the type
term Va.ao — a and give back, say, aja3 — a123. By building different type term instances for the identity
function, an expression like

let val id = fn x => x in (id true) andalso ((id 3) > 0) end

can be typed correctly. In the first use of id we stamp out an instance that unifies as bool — bool. In
the second, we stamp out an instance that unifies as int — int.

The pseudocode for INFER above does not handle the typechecking related to list and pair types. The code below

left continues that code to handle those types.

77 e1 ey = UNIFY(Uv T)

78 71 := INFER(T', e1) 1 case 0,7 of

79 7 := INFER(T, €2) 2 VAR(a),VAR(B) =

80 UNIFY(79, LIST(71)) 3 if a=0

81 return 7o 4 return [|

82 nil = 5 else

83 o := VAR(FRESH-TYPE-VAR()) 6 return [3/a]

84 return LIST(«) 7 VAR(a),. =

85 null e = 8 if « € FV(7)

86 T := INFER(e) 9 FAIL

87 a := VAR(FRESH-TYPE-VAR()) 10 else

88 UNIFY(LIST (), 7) 11 return [7/q]

89 return BOOL 12 _,VAR(B) =

90 hde= 13 if 6 FV(o)

91 T := INFER(e) 14 FAIL

92 a := VAR(FRESH-TYPE-VAR()) 15 else

93 UNIFY(LIST (), 7) 16 return [o/f]

94 return « 17 f(o1y...yom),9(11,...,70) =

95 tle= 18 if f#form#/(

96 T := INFER(e) 19 FAIL

97 a := VAR(FRESH-TYPE-VAR()) 20 else

98 UNIFY(LIST (), 7) 21 U:=]]

99 return 7 22 fori:=1tom
100 (61, es) = 23 T:= UNIFY(U i, UTl)
101 71 := INFER(T', €1) 24 U:=ToU
102 79 := INFER(T, e5) 25 return U
103 return PRODUCT (7, 72)

104 fste=

105 a1 := VAR(FRESH-TYPE-VAR())
106 oy := VAR (FRESH-TYPE-VAR())
107 T := INFER(e)

108 UNIFY(PRODUCT (a1, a2), 7)
109 return o

110 snde =

111 a1 := VAR(FRESH-TYPE-VAR())
112 ag := VAR(FRESH-TYPE-VAR())
113 T := INFER(e)

114 UNIFY(PRODUCT (a1,), 7)
115 return as

