
PARALLELISM & CONCURRENCY:
INTRODUCTION

LECTURE 01-1

JIM FIX, REED COLLEGE CSCI 361

LECTURE 01-1: PARALLELISM & CONCURRENCY

TODAY

▸What is parallelism? What is concurrency?

▸Why learn parallel programming and concurrency mechanisms?

➡ Driven by trends in hardware and system design, deployment.

▸Example parallel algorithm: merge sort

➡ design and pseudocode

➡ implementation in the Go language

▸Brief overview of course and covered topics.

➡ course web page: https://jimfix.github.io/csci361/

▸ The two concepts are often confused; equated/conflated

LECTURE 01-1: PARALLELISM & CONCURRENCY

PARALLELISM VERSUS CONCURRENCY

resources

work

resource

requests

parallelism - use several
computational resources to

solve a problem faster

concurrence - manage access
to a shared resource

(correctly and efficiently)

[From D. Grossman (UW)]

HISTORY: MOORE’S LAW AND SINGLE PROCESSOR PERFORMANCE
▸For years, single processor performance improved exponentally.

➡ Moore’s Law: chip features (e.g. wires, transistors) can continually be made smaller

➡ performance doubled (roughly) every 2.5 years.

LECTURE 01-1: PARALLELISM & CONCURRENCY

HISTORY: MOORE’S LAW AND SINGLE PROCESSOR PERFORMANCE
▸For years, single processor performance improved exponentally.

➡ Moore’s Law: chip features (e.g. wires, transistors) can continually be made smaller

➡ performance doubled (roughly) every 2.5 years.

LECTURE 01-1: PARALLELISM & CONCURRENCY

[Source: Wikimedia
“Moore’s Law
Transistor Count
1979-2020”]

HISTORY: MOORE’S LAW AND SINGLE PROCESSOR PERFORMANCE
▸For years, single processor performance improved exponentally.

➡ Moore’s Law: chip features (e.g. wires, transistors) can continually be made smaller

➡ performance doubled (roughly) every 2.5 years.

LECTURE 01-1: PARALLELISM & CONCURRENCY

28 September 2005 QUEUE rants: feedback@acmqueue.com

extremely small, fast, and compiler-managed region of
“memory.”

Within processors, this has resulted in a variety of
modifi cations designed to achieve one of two goals:
increasing the number of instructions from the proces-
sor’s instruction sequence that can be issued on every
cycle, or increasing the clock frequency of the processor
faster than Moore’s law would normally allow. Pipelin-
ing of individual instruction execution into a sequence
of stages has allowed designers to increase clock rates
as instructions have been sliced into larger numbers of
increasingly small steps, which are designed to reduce
the amount of logic that needs to switch during every
clock cycle. Instructions that once took a few cycles to
execute in the 1980s now often take 20 or more in today’s
leading-edge processors, allowing a nearly proportional
increase in the possible clock rate.

Meanwhile, superscalar processors were developed to
execute multiple instructions from a single, conventional
instruction stream on each
cycle. These function by
dynamically examining
sets of instructions from
the instruction stream
to fi nd ones capable of
parallel execution on each
cycle, and then executing
them, often out of order
with respect to the original
program.

Both techniques have
fl ourished because they
allow instructions to
execute more quickly while
maintaining the key illu-
sion for programmers that
all instructions are actually
being executed sequen-
tially and in order, instead
of overlapped and out of

order. Of course, this illusion is not absolute. Performance
can often be improved if programmers or compilers
adjust their instruction scheduling and data layout to
map more effi ciently to the underlying pipelined or paral-
lel architecture and cache memories, but the important
point is that old or untuned code will still execute cor-
rectly on the architecture, albeit at less-than-peak speeds.

Unfortunately, it is becoming increasingly diffi cult for
processor designers to continue using these techniques
to enhance the speed of modern processors. Typical
instruction streams have only a limited amount of usable
parallelism among instructions,3 so superscalar processors
that can issue more than about four instructions per cycle
achieve very little additional benefi t on most applica-
tions. Figure 2 shows how effective real Intel processors
have been at extracting instruction parallelism over time.
There is a fl at region before instruction-level parallelism
was pursued intensely, then a steep rise as parallelism was
utilized usefully, followed by a tapering off in recent years
as the available parallelism has become fully exploited.

Complicating matters further, building superscalar
processor cores that can exploit more than a few instruc-
tions per cycle becomes very expensive, because the
complexity of all the additional logic required to fi nd
parallel instructions dynamically is approximately pro-
portional to the square of the number of instructions that
can be issued simultaneously. Similarly, pipelining past
about 10-20 stages is diffi cult because each pipeline stage
becomes too short to perform even a minimal amount of

Intel Performance Over Time

re
la

ti
ve

 p
er

fo
rm

an
ce

year

0.10

1.00

10.00

100.00

1000.00

10000.00

1985 1987 1989 1991 1993 1995 1997 1999 2001 2003

FIG 1FIG 1

The Future of Microprocessors

MultiprocessorsF
O
C
U
S

[Source: Figure 1 of
“The Future of Multiprocessors”,
K. Olukotun, L. Hammond
ACM Queue, 2005]

HISTORY: MOORE’S LAW AND SINGLE PROCESSOR PERFORMANCE

▸ Because of chip improvements, clock speed could be increased.

▸ And also processor could do more with all the extra transistors:

•memory caches

•pipelining

• superscalar designs

• out-of-order execution

• speculative execution

• vector, VLIW designs

LECTURE 01-1: PARALLELISM & CONCURRENCY

HISTORY: MOORE’S LAW AND SINGLE PROCESSOR PERFORMANCE

▸ Because of chip improvements, clock speed could be increased.

▸ And also processor could do more with all the extra transistors:

•memory caches

•pipelining

• superscalar designs

•out-of-order execution

• speculative execution

•vector, VLIW designs

LECTURE 01-1: PARALLELISM & CONCURRENCY

these are all forms of
parallelism

MIPS R3000A (1988)
LECTURE 01-1: PARALLELISM & CONCURRENCY

PARALLELISM: PIPELINING

MemoryPC

A
dder

Register
File

Sign
Extend

IF / ID

ID
 / EX

Imm

RS1

RS2
Zero?

ALU

M
U

X

EX
 / M

EM

Memory

M
U

X

M
EM

 / W
B

M
U

X

M
U

X

Next SEQ PC Next SEQ PC

WB Data

Branch
taken

IR

Instruction Fetch

Next PC

Instruction Decode
Register Fetch

Execute
Address Calc. Memory Access Write Back

IF ID EX MEM WB

LECTURE 01-1: PARALLELISM & CONCURRENCY

PENTIUM 4 (2003)
LECTURE 01-1: PARALLELISM & CONCURRENCY

HISTORY: MOORE’S LAW AND SINGLE PROCESSOR PERFORMANCE
▸For years, single processor performance improved exponentally.

➡ Moore’s Law: chip features (e.g. wires, transistors) can continually be made smaller

➡ performance doubled (roughly) every 2.5 years.

LECTURE 01-1: PARALLELISM & CONCURRENCY

[Source: Figure 2 of
“A New Golden Age
for Computer Architecture”,
J. Hennesy, D. Patterson
Comm. of the ACM, Feb 2019]

52 COMMUNICATIONS OF THE ACM | FEBRUARY 2019 | VOL. 62 | NO. 2

turing lecture

tion of the RISC microinstructions.
Any ideas RISC designers were using
for performance—separate instruc-
tion and data caches, second-level
caches on chip, deep pipelines, and
fetching and executing several in-
structions simultaneously—could
then be incorporated into the x86.
AMD and Intel shipped roughly 350
million x86 microprocessors annually
at the peak of the PC era in 2011. The
high volumes and low margins of the
PC industry also meant lower prices
than RISC computers.

Given the hundreds of millions
of PCs sold worldwide each year, PC
software became a giant market.
Whereas software providers for the
Unix marketplace would offer differ-
ent software versions for the differ-
ent commercial RISC ISAs—Alpha,
HP-PA, MIPS, Power, and SPARC—the
PC market enjoyed a single ISA, so
software developers shipped “shrink
wrap” software that was binary com-
patible with only the x86 ISA. A much
larger software base, similar perfor-
mance, and lower prices led the x86
to dominate both desktop computers
and small-server markets by 2000.

Apple helped launch the post-PC
era with the iPhone in 2007. Instead of
buying microprocessors, smartphone
companies built their own systems
on a chip (SoC) using designs from
other companies, including RISC
processors from ARM. Mobile-device
designers valued die area and energy
efficiency as much as performance,
disadvantaging CISC ISAs. Moreover,
arrival of the Internet of Things vastly
increased both the number of proces-
sors and the required trade-offs in die
size, power, cost, and performance.
This trend increased the importance
of design time and cost, further dis-
advantaging CISC processors. In to-
day’s post-PC era, x86 shipments have
fallen almost 10% per year since the
peak in 2011, while chips with RISC
processors have skyrocketed to 20 bil-
lion. Today, 99% of 32-bit and 64-bit
processors are RISC.

Concluding this historical review,
we can say the marketplace settled the
RISC-CISC debate; CISC won the later
stages of the PC era, but RISC is win-
ning the post-PC era. There have been
no new CISC ISAs in decades. To our
surprise, the consensus on the best

to write.” Pundits noted delays and
underperformance of Itanium and re-
christened it “Itanic” after the ill-fated
Titantic passenger ship. The market-
place again eventually ran out of pa-
tience, leading to a 64-bit version of
the x86 as the successor to the 32-bit
x86, and not Itanium.

The good news is VLIW still matches
narrower applications with small pro-
grams and simpler branches and omit
caches, including digital-signal processing.

RISC vs. CISC in the
PC and Post-PC Eras
AMD and Intel used 500-person de-
sign teams and superior semicon-
ductor technology to close the per-
formance gap between x86 and RISC.
Again inspired by the performance
advantages of pipelining simple vs.
complex instructions, the instruction
decoder translated the complex x86
instructions into internal RISC-like
microinstructions on the fly. AMD
and Intel then pipelined the execu-

operations—two data transfers, two in-
teger operations, and two floating point
operations—and compiler technology
could efficiently assign operations into
the six instruction slots, the hardware
could be made simpler. Like the RISC
approach, VLIW and EPIC shifted work
from the hardware to the compiler.

Working together, Intel and Hewlett
Packard designed a 64-bit processor based
on EPIC ideas to replace the 32-bit x86.
High expectations were set for the first
EPIC processor, called Itanium by In-
tel and Hewlett Packard, but the real-
ity did not match its developers’ early
claims. Although the EPIC approach
worked well for highly structured
floating-point programs, it struggled
to achieve high performance for in-
teger programs that had less predict-
able cache misses or less-predictable
branches. As Donald Knuth later
noted:21 “The Itanium approach ...
was supposed to be so terrific—un-
til it turned out that the wished-for
compilers were basically impossible

Figure 3. Transistors per chip and power per mm2.

N
an

om
et

er
s

200
180
160
140
120
100

80
60
40
20

0

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

R
el

at
iv

e
P

ow
er

 p
er

 n
m

2

2000 2002 2004 2006 2008 2010 2012 2014 2016

Technology (nm) Power/nm2

2018 2020

Figure 2. Transistors per chip of Intel microprocessors vs. Moore’s Law.

10,000,000

Moore’s Law vs. Intel Microprocessor Density

1,000,000

100,000

10,000

1,000

100

10

1980 1990

Density

2000 2010

Moore’s Law (1975 version)

HISTORY: LIMITS TO SINGLE PROCESSOR PERFORMANCE
▸In 2000s, computer architects hit real limits improving single-threaded

performance .

LECTURE 01-1: PARALLELISM & CONCURRENCY

FEBRUARY 2019 | VOL. 62 | NO. 2 | COMMUNICATIONS OF THE ACM 53

turing lecture

cluding approximately 15 branches,
as they represent approximately 25%
of executed instructions. To keep the
pipeline full, branches are predicted
and code is speculatively placed into
the pipeline for execution. The use
of speculation is both the source of
ILP performance and of inefficiency.
When branch prediction is perfect,
speculation improves performance
yet involves little added energy cost—
it can even save energy—but when it
“mispredicts” branches, the proces-
sor must throw away the incorrectly
speculated instructions, and their
computational work and energy are
wasted. The internal state of the pro-
cessor must also be restored to the
state that existed before the mispre-
dicted branch, expending additional
time and energy.

To see how challenging such a design
is, consider the difficulty of correctly

ISA principles for general-purpose
processors today is still RISC, 35 years
after their introduction.

Current Challenges for
Processor Architecture
“If a problem has no solution, it may
not be a problem, but a fact—not to be
solved, but to be coped with over time.”
 —Shimon Peres

While the previous section focused
on the design of the instruction set
architecture (ISA), most computer
architects do not design new ISAs
but implement existing ISAs in the
prevailing implementation technol-
ogy. Since the late 1970s, the technol-
ogy of choice has been metal oxide
semiconductor (MOS)-based inte-
grated circuits, first n-type metal–ox-
ide semiconductor (nMOS) and then
complementary metal–oxide semi-
conductor (CMOS). The stunning rate
of improvement in MOS technology—
captured in Gordon Moore’s predic-
tions—has been the driving factor
enabling architects to design more-
aggressive methods for achieving
performance for a given ISA. Moore’s
original prediction in 196526 called
for a doubling in transistor density
yearly; in 1975, he revised it, project-
ing a doubling every two years.28 It
eventually became called Moore’s
Law. Because transistor density grows
quadratically while speed grows lin-
early, architects used more transis-
tors to improve performance.

End of Moore’s Law and
Dennard Scaling
Although Moore’s Law held for many
decades (see Figure 2), it began to slow
sometime around 2000 and by 2018
showed a roughly 15-fold gap between
Moore’s prediction and current capa-
bility, an observation Moore made in
2003 that was inevitable.27 The current
expectation is that the gap will con-
tinue to grow as CMOS technology ap-
proaches fundamental limits.

Accompanying Moore’s Law was a
projection made by Robert Dennard
called “Dennard scaling,”5 stating that
as transistor density increased, power
consumption per transistor would
drop, so the power per mm2 of sili-
con would be near constant. Since the
computational capability of a mm2 of
silicon was increasing with each new

generation of technology, computers
would become more energy efficient.
Dennard scaling began to slow sig-
nificantly in 2007 and faded to almost
nothing by 2012 (see Figure 3).

Between 1986 and about 2002, the
exploitation of instruction level paral-
lelism (ILP) was the primary architec-
tural method for gaining performance
and, along with improvements in speed
of transistors, led to an annual perfor-
mance increase of approximately 50%.
The end of Dennard scaling meant ar-
chitects had to find more efficient ways
to exploit parallelism.

To understand why increasing ILP
caused greater inefficiency, consider
a modern processor core like those
from ARM, Intel, and AMD. Assume it
has a 15-stage pipeline and can issue
four instructions every clock cycle. It
thus has up to 60 instructions in the
pipeline at any moment in time, in-

Figure 4. Wasted instructions as a percentage of all instructions completed on an Intel
Core i7 for a variety of SPEC integer benchmarks.

40%
35%
30%
25%
20%
15%
10%

5%
0

PE
R

LB
EN

B
ZI

P2

G
C

C

M
C

F

G
O

B
M

K

H
M

M
ER

SJ
EN

G

LI
B

Q
U

A
N

TU
M

H
26

4R
EF

O
M

N
ET

PP

A
ST

A
R

XA
LA

N
C

B
M

K

11%

24%

15%

39%

32%

6%

25%

1%
5%

22%

38%

7%

Figure 5. Effect of Amdahl’s Law on speedup as a fraction of clock cycle time in serial
mode.

65

60

55

50

45

40

35

30

25

20

15

10

5

0

Processor Count

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

1%

2%

4%
6%
8%
10%

S
pe

ed
up

[Source: Figure 4 of “A New Golden Age for Computer Architecture”,
J. Hennesy, D. Patterson Comm. of the ACM, Feb 2019]

HISTORY: LIMITS TO SINGLE PROCESSOR PERFORMANCE
▸In 2000s, computer architects hit real limits improving single-threaded

performance .

LECTURE 01-1: PARALLELISM & CONCURRENCY

[Source: Figure 2 of
“The Future of Multiprocessors”,
K. Olukotun, L. Hammond
ACM Queue, 2005]

 QUEUE September 2005 29 more queue: www.acmqueue.com

logic, such as adding two integers together, beyond which
the design of the pipeline is signifi cantly more complex.
In addition, the circuitry overhead from adding pipeline
registers and bypass path multiplexers to the existing
logic combines with performance losses from events that
cause pipeline state to be fl ushed, primarily branches.
This overwhelms any potential performance gain from
deeper pipelining after about 30 stages.

Further advances in both superscalar issue and pipelin-
ing are also limited by the fact that they require ever-
larger numbers of transistors to be integrated into the
high-speed central logic within each processor core—so
many, in fact, that few companies can afford to hire
enough engineers to design and verify these processor
cores in reasonable amounts of time. These trends have
slowed the advance in processor performance somewhat
and have forced many smaller vendors to forsake the
high-end processor business, as they could no longer
afford to compete effectively.

Today, however, all progress in conventional processor
core development has essentially stopped because of a
simple physical limit: power. As processors were pipe-
lined and made increasingly superscalar over the course
of the past two decades, typical high-end microprocessor
power went from less than a watt to over 100 watts. Even
though each silicon process generation promised a reduc-
tion in power, as the ever-smaller transistors required
less power to switch, this was true in practice only when
existing designs were simply “shrunk” to use the new

process technology. Processor designers, however, kept
using more transistors in their cores to add pipelining
and superscalar issue, and switching them at higher and
higher frequencies. The overall effect was that expo-
nentially more power was required by each subsequent
processor generation (as illustrated in fi gure 3).

Unfortunately, cooling technology does not scale
exponentially nearly as easily. As a result, processors went
from needing no heat sinks in the 1980s, to moderate-size
heat sinks in the 1990s, to today’s monstrous heat sinks,
often with one or more dedicated fans to increase airfl ow
over the processor. If these trends were to continue, the
next generation of microprocessors would require very
exotic cooling solutions, such as dedicated water cool-
ing, that are economically impractical in all but the most
expensive systems.

The combination of limited instruction parallelism
suitable for superscalar issue, practical limits to pipelin-
ing, and a “power ceiling” limited by practical cooling
limitations has limited future speed increases within
conventional processor cores to the basic Moore’s law
improvement rate of the underlying transistors. This
limitation is already causing major processor manufactur-
ers such as Intel and AMD to adjust their marketing focus
away from simple core clock rate.

Although larger cache memories will continue to
improve performance somewhat, by speeding access to
the single “memory” in the conventional model, the
simple fact is that without more radical changes in pro-

cessor design, microproces-
sor performance increases
will slow dramatically
in the future. Processor
designers must fi nd new
ways to effectively utilize
the increasing transis-
tor budgets in high-end
silicon chips to improve
performance in ways that
minimize both additional
power usage and design
complexity. The market
for microprocessors has
become stratifi ed into areas
with different performance
requirements, so it is useful
to examine the problem
from the point of view
of these different perfor-
mance requirements.

Intel Performance from ILP

re
la

ti
ve

 p
er

fo
rm

an
ce

/c
yc

le

year
1985 1987 1989 1991 1993 1995 1997 1999 2001 20030

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

FIG 2FIG 2

HISTORY: LIMITS TO SINGLE PROCESSOR PERFORMANCE
▸In 2000s, computer architects hit real limits improving single-threaded

performance .

LECTURE 01-1: PARALLELISM & CONCURRENCY

[Source: Figure 3 of
“The Future of Multiprocessors”,
K. Olukotun, L. Hammond
ACM Queue, 2005]

30 September 2005 QUEUE rants: feedback@acmqueue.com

THROUGHPUT PERFORMANCE IMPROVEMENT
With the rise of the Internet, the need for servers capable
of handling a multitude of independent requests arriving
rapidly over the network has increased dramatically. Since
individual network requests are typically completely
independent tasks, whether those requests are for Web
pages, database access, or fi le service, they are typically
spread across many separate computers built using high-
performance conventional microprocessors (fi gure 4a),
a technique that has been used at places like Google for
years to match the overall computation throughput to
the input request rate.4

As the number of requests increased over time, more
servers were added to the collection. It has also been
possible to replace some or all of the separate servers with
multiprocessors. Most existing multiprocessors consist
of two or more separate processors connected using a
common bus, switch hub, or network to shared memory
and I/O devices. The overall system can usually be physi-
cally smaller and use less
power than an equiva-
lent set of uniprocessor
systems because physically
large components such
as memory, hard drives,
and power supplies can be
shared by some or all of
the processors.

Pressure has increased
over time to achieve more
performance per unit
volume of data-center
space and per watt, since
data centers have fi nite
room for servers and their
electric bills can be stagger-
ing. In response, the server
manufacturers have tried
to save space by adopting
denser server packaging

solutions, such as blade servers and switching to mul-
tiprocessors that can share components. Some power
reduction has also occurred through the sharing of more
power-hungry components in these systems. These short-
term solutions are reaching their practical limits, how-
ever, as systems are reaching the maximum component
density that can still be effectively air-cooled. As a result,
the next stage of development for these systems involves
a new step: the CMP (chip multiprocessor).5

The fi rst CMPs targeted toward the server market
implement two or more conventional superscalar proces-
sors together on a single die.6,7,8,9 The primary motivation
for this is reduced volume—multiple processors can now
fi t in the space where formerly only one could, so overall
performance per unit volume can be increased. Some
savings in power also occurs because all of the proces-
sors on a single die can share a single connection to the
rest of the system, reducing the amount of high-speed
communication infrastructure required, in addition to
the sharing possible with a conventional multiprocessor.
Some CMPs, such as the fi rst ones announced from AMD
and Intel, share only the system interface between proces-
sor cores (illustrated in fi gure 4b), but others share one
or more levels of on-chip cache (fi gure 4c), which allows
interprocessor communication between the CMP cores
without off-chip accesses.

Further savings in power can be achieved by taking
advantage of the fact that while server workloads require
high throughput, the latency of each request is generally

Intel Power Over Time

po
w

er
 (

w
at

ts
)

year
1985 1987 1989 1991 1993 1995 1997 1999 2001 20030

10

100

The Future of Microprocessors

FIG 3FIG 3

MultiprocessorsF
O
C
U
S

HISTORY: LIMITS TO SINGLE PROCESSOR PERFORMANCE
▸In 2000s, computer architects hit real limits improving single-threaded

performance .

LECTURE 01-1: PARALLELISM & CONCURRENCY

[Source: Figure 8 of
“A New Golden Age
for Computer Architecture”,
J. Hennesy, D. Patterson
Comm. of the ACM, Feb 2019]

54 COMMUNICATIONS OF THE ACM | FEBRUARY 2019 | VOL. 62 | NO. 2

turing lecture

ent approach to achieve performance
improvements. The multicore era was
thus born.

Multicore shifted responsibility for
identifying parallelism and deciding
how to exploit it to the programmer
and to the language system. Multicore
does not resolve the challenge of ener-
gy-efficient computation that was exac-
erbated by the end of Dennard scaling.
Each active core burns power whether
or not it contributes effectively to the
computation. A primary hurdle is an
old observation, called Amdahl’s Law,
stating that the speedup from a paral-
lel computer is limited by the portion
of a computation that is sequential.
To appreciate the importance of this
observation, consider Figure 5, show-
ing how much faster an application
runs with up to 64 cores compared to

a single core, assuming different por-
tions of serial execution, where only
one processor is active. For example,
when only 1% of the time is serial, the
speedup for a 64-processor configura-
tion is about 35. Unfortunately, the
power needed is proportional to 64
processors, so approximately 45% of
the energy is wasted.

Real programs have more complex
structures of course, with portions
that allow varying numbers of proces-
sors to be used at any given moment
in time. Nonetheless, the need to com-
municate and synchronize periodically
means most applications have some
portions that can effectively use only
a fraction of the processors. Although
Amdahl’s Law is more than 50 years
old, it remains a difficult hurdle.

With the end of Dennard scaling,
increasing the number of cores on a
chip meant power is also increasing
at nearly the same rate. Unfortunately,
the power that goes into a processor
must also be removed as heat. Mul-
ticore processors are thus limited by
the thermal dissipation power (TDP),
or average amount of power the pack-
age and cooling system can remove.
Although some high-end data centers
may use more advanced packages and
cooling technology, no computer us-
ers would want to put a small heat
exchanger on their desks or wear a ra-
diator on their backs to cool their cell-
phones. The limit of TDP led directly
to the era of “dark silicon,” whereby
processors would slow on the clock
rate and turn off idle cores to prevent
overheating. Another way to view this
approach is that some chips can real-
locate their precious power from the
idle cores to the active ones.

An era without Dennard scaling,
along with reduced Moore’s Law and
Amdahl’s Law in full effect means
inefficiency limits improvement in
performance to only a few percent
per year (see Figure 6). Achieving
higher rates of performance improve-
ment—as was seen in the 1980s and
1990s—will require new architec-
tural approaches that use the inte-
grated-circuit capability much more
efficiently. We will return to what ap-
proaches might work after discussing
another major shortcoming of mod-
ern computers—their support, or
lack thereof, for computer security.

predicting the outcome of 15 branches.
If a processor architect wants to limit
wasted work to only 10% of the time,
the processor must predict each branch
correctly 99.3% of the time. Few general-
purpose programs have branches that
can be predicted so accurately.

To appreciate how this wasted work
adds up, consider the data in Figure 4,
showing the fraction of instructions
that are effectively executed but turn
out to be wasted because the proces-
sor speculated incorrectly. On average,
19% of the instructions are wasted for
these benchmarks on an Intel Core i7.
The amount of wasted energy is great-
er, however, since the processor must
use additional energy to restore the
state when it speculates incorrectly.
Measurements like these led many to
conclude architects needed a differ-

Figure 6. Growth of computer performance using integer programs (SPECintCPU).

Figure 7. Potential speedup of matrix multiply in Python for four optimizations.

100,000

10,000

1,000

100

10

1
1

47

366

6,727

62,806

Python

Matrix Multiply Speedup Over Native Python

S
pe

ed
up

C + parallel
loops

+ memory
optimization

+ SIMD
instructions

1980

100,000

CISC 2X/2.5 years
(22%/year)

RISC 2X/1.5 years
(52%/year)

End of Dennard Scaling ⇒ Multicore 2X/3.5 years (23%/year)
Amdahl’s Law ⇒ 2X/6 years (12%/year)

End of the Line ⇒ 2X/20 years (3%/yr)

10,000

1,000

100

10

P
er

fo
rm

an
ce

 v
s.

 V
A

X
11

-7
80

1
1985 1990 1995 2000 2005 2010 2015

HISTORY: LIMITS TO SINGLE PROCESSOR PERFORMANCE
▸In 2000s, computer architects hit real limits improving single-threaded

performance .

LECTURE 01-1: PARALLELISM & CONCURRENCY

[Source:
“The Free Lunch Is Over”
H. Sutter, 2009]

Figure 1: Intel CPU Introductions (graph updated August 2009; article text original from December 2004)

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software http://www.gotw.ca/publications/concurrency-ddj.htm

3 of 8 1/22/21, 4:02 PM

HISTORY: MOORE’S LAW AND SINGLE PROCESSOR PERFORMANCE
▸For years, single processor performance improved exponentally.

➡ Moore’s Law: chip features (e.g. wires, transistors) can continually be made smaller

➡ performance doubled (rougly) every 2.5 years.

LECTURE 01-1: PARALLELISM & CONCURRENCY

Figure 1: Intel CPU Introductions (graph updated August 2009; article text original from December 2004)

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software http://www.gotw.ca/publications/concurrency-ddj.htm

3 of 8 1/22/21, 4:02 PM

[Source:
“The Free Lunch Is Over”
H. Sutter, 2009]

PARALLELISM: MULTICORE

LECTURE 01-1: PARALLELISM & CONCURRENCY

OPPORTUNITIES FOR PERFORMANCE IMPROVEMENT

LECTURE 01-1: PARALLELISM & CONCURRENCY

There's plenty of room at the Top: What will drive computer performance after Moore's law?

Schardl
Charles E. Leiserson, Neil C. Thompson, Joel S. Emer, Bradley C. Kuszmaul, Butler W. Lampson, Daniel Sanchez and Tao B.

DOI: 10.1126/science.aam9744
 (6495), eaam9744.368Science

, this issue p. eaam9744Science
stack, where improvements in software, algorithms, and hardware architecture can bring the much-needed boost.

 review recent examples and argue that the most promising place to look is at the top of the computinget al.Leiserson
cannot get much smaller than they are today, and other approaches should be explored to keep performance growing.
Moore's law, has contributed immensely to improvements in computer performance. However, silicon-based transistors

The doubling of the number of transistors on a chip every 2 years, a seemly inevitable trend that has been called
From bottom to top

ARTICLE TOOLS http://science.sciencemag.org/content/368/6495/eaam9744

REFERENCES
http://science.sciencemag.org/content/368/6495/eaam9744#BIBL
This article cites 25 articles, 0 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the

 is a registered trademark of AAAS.ScienceScience, 1200 New York Avenue NW, Washington, DC 20005. The title
(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience

Science. No claim to original U.S. Government Works
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of

on June 10, 2020

http://science.sciencem
ag.org/

Downloaded from

OPPORTUNITIES FOR PERFORMANCE IMPROVEMENT

LECTURE 01-1: PARALLELISM & CONCURRENCY

[Source: Figure 7 of “A New Golden Age for Computer Architecture”,
J. Hennesy, D. Patterson Comm. of the ACM, Feb 2019]

There's plenty of room at the Top: What will drive computer performance after Moore's law?

Schardl
Charles E. Leiserson, Neil C. Thompson, Joel S. Emer, Bradley C. Kuszmaul, Butler W. Lampson, Daniel Sanchez and Tao B.

DOI: 10.1126/science.aam9744
 (6495), eaam9744.368Science

, this issue p. eaam9744Science
stack, where improvements in software, algorithms, and hardware architecture can bring the much-needed boost.

 review recent examples and argue that the most promising place to look is at the top of the computinget al.Leiserson
cannot get much smaller than they are today, and other approaches should be explored to keep performance growing.
Moore's law, has contributed immensely to improvements in computer performance. However, silicon-based transistors

The doubling of the number of transistors on a chip every 2 years, a seemly inevitable trend that has been called
From bottom to top

ARTICLE TOOLS http://science.sciencemag.org/content/368/6495/eaam9744

REFERENCES
http://science.sciencemag.org/content/368/6495/eaam9744#BIBL
This article cites 25 articles, 0 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the

 is a registered trademark of AAAS.ScienceScience, 1200 New York Avenue NW, Washington, DC 20005. The title
(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience

Science. No claim to original U.S. Government Works
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of

on June 10, 2020

http://science.sciencem
ag.org/

Downloaded from

designed using the serial random-access ma-
chine model (24) originally developed in the
1960s and 1970s, which assumes that a pro-
cessor can do only one operation at a time
and that the cost to access any part of the
memory is the same. Such algorithms often
use modern hardware inefficiently because
they underutilize themachine’smany parallel-
processing cores and vector units, each of
which can performmany operations per clock
cycle, and they fail to exploit caching, which
can speed up data accesses by two orders of
magnitude.
Although algorithms research has devel-

opedmathematical models for salient features
of modern computers, such as parallel and
vector processing (25–32) and cache hierar-
chies (33–35), a substantial gap between al-
gorithm and implementation remains. Part
of the problem is that each model tends to
address just one aspect—such as parallelism,
vector units, or caching—and yet tailoring an
algorithm to a modern computer requires an
understanding of all of them. Moreover, in
an effort to gain every bit of performance, some
hardware features—such as simultaneous mul-
tithreading, dynamic voltage and frequency
scaling, direct-mapped caches, and various
special-purpose instructions—actually make
it more difficult to tailor algorithms to hard-
ware, because they cause variability and un-
predictability that simple theoretical models
cannot easily capture.
One possible solution is autotuning (36, 37),

which searches a parametrized space of pos-
sible implementations to find the fastest
one. With modern machine learning, it may
even be possible to include implementations
that differ by more than the values of a few
parameters. Unfortunately, autotuning and
machine learning tend to be too time con-
suming to ask that every algorithm incur this
large up-front cost. Furthermore, these ap-
proaches actuallymakealgorithmdesignharder,
because the designer cannot easily understand
the ramifications of a design choice. In the post-
Moore era, it will be essential for algorithm
designers and hardware architects to work
together to find simple abstractions that de-
signers can understand and that architects
can implement efficiently.

Hardware architecture

Historically, computer architects used more
and more transistors to make serial computa-
tions run faster, vastly increasing the com-
plexity of processing cores, even though gains
in performance suffered from diminishing
returns over time (38). We argue that in the
post-Moore era, architects will need to adopt
the opposite strategy and focus on hardware
streamlining: implementing hardware func-
tions using fewer transistors and less sili-
con area.

As we shall see, the primary advantage of
hardware streamlining comes from provid-
ing additional chip area for more circuitry
to operate in parallel. Thus, the greatest ben-
efit accrues to applications that have ample
parallelism. Indeed, the performance of hard-
ware for applications without much parallel-
ism has already stagnated. But there is plenty
of parallelism in many emerging application
domains, such as machine learning, graphics,
video and image processing, sensory comput-
ing, and signal processing. Computer architects
should be able to design streamlined archi-
tectures to provide increasing performance for
these and other domains for many years after
Moore’s law ends.
We can use historical data to observe the

trend of architectural reliance on parallel-
ism. Figure 2 plots three sets of benchmark
data for microprocessors: SPECint performance
(black squares and gray diamonds), SPECint-
rate performance (black, orange, blue, and
red squares), and microprocessor clock fre-
quency (green dots). As the green dots in the
figure show, clock speed increased by a fac-
tor of more than 200 from 1985 to 2005, when
it plateaued owing to the end of Dennard
scaling, which we shall discuss shortly. Driven
by increasing clock speed and other architec-

tural changes during the Dennard-scaling era,
microprocessor performance rapidly improved,
as measured by the SPECint and SPECint-
rate benchmarks (black squares), which aim
to model computer performance on typical
user workloads (39). The SPECint benchmark
consists of mostly serial code, whereas the
SPECint-rate benchmark is parallel. The two
benchmarks perform the same on single-
processor computers. But after 2004, as ma-
chines added multiple cores and other forms
of explicit parallelism, the two diverge. In-
deed, the performance of parallel applications
on the best-performing chips in each year
(colored squares) grew by a factor of 30 from
2004 to 2015, improving on average by about
a factor of two every 2 years. By contrast, over
the same time period, the largely serial SPECint
benchmark (gray diamonds) scaled up by only
a factor of three.
Besides parallelism, an application needs

locality to benefit from streamlining. As an ex-
ample, when data are transferred from external
dynamic random access memory (DRAM)
memory chips to a processing chip, it should
be usedmultiple times before being transferred
back. For an application with little locality,
increasing parallelism causes traffic to off-
chip memory to increase proportionally and

Leiserson et al., Science 368, eaam9744 (2020) 5 June 2020 4 of 7

Year

Re
la

tiv
e

pe
rf

or
m

an
ce

 o
r r

el
at

iv
e

cl
oc

k
fr

eq
ue

nc
y

1985 1990 1995 2000 2005 2010 2015

100,000

10,000

1000

100

10

1
Dennard-scaling era Multicore era

Clock frequency

SPECint
2+ cores

SPECint rate
2 to 3 cores

SPECint rate
4 to 7 cores

SPECint rate 8+ cores

SPECint = SPECint rate
1 core

Fig. 2. SPECint (largely serial) performance, SPECint-rate (parallel) performance, and clock-frequency
scaling for microprocessors from 1985 to 2015, normalized to the Intel 80386 DX microprocessor in
1985. Microprocessors and their clock frequencies were obtained from the Stanford CPU database (56).
Microprocessor performance is measured in terms of scaled performance scores on the SPECint and
SPECint-rate performance benchmarks obtained from (39). (See Methods for details.) Black squares identify
single-core processors, for which SPECint and SPECint-rate benchmark performances are the same.
Orange, blue, and red squares plot the SPECint-rate benchmark performance of various multicore processors,
where orange squares identify processors with two to three cores, blue squares identify processors with four
to seven cores, and red squares identify processors with eight or more cores. The gray diamonds plot the
SPECint benchmark performance on multicore processors. The round green dots plot processor clock frequencies
(also normalized to the Intel 80386). The gray background highlights the Dennard-scaling era (nominally up
to 2004), and the white background highlights the multicore era (beyond 2004).

RESEARCH | REVIEW

on June 10, 2020

http://science.sciencem
ag.org/

D
ow

nloaded from

OPPORTUNITIES FOR PERFORMANCE IMPROVEMENT

LECTURE 01-1: PARALLELISM & CONCURRENCY

[Source: Table 1 of “There’s Plenty of Room at the Top:…”,
C. Leiserson et al., Science, Jun 2020]

There's plenty of room at the Top: What will drive computer performance after Moore's law?

Schardl
Charles E. Leiserson, Neil C. Thompson, Joel S. Emer, Bradley C. Kuszmaul, Butler W. Lampson, Daniel Sanchez and Tao B.

DOI: 10.1126/science.aam9744
 (6495), eaam9744.368Science

, this issue p. eaam9744Science
stack, where improvements in software, algorithms, and hardware architecture can bring the much-needed boost.

 review recent examples and argue that the most promising place to look is at the top of the computinget al.Leiserson
cannot get much smaller than they are today, and other approaches should be explored to keep performance growing.
Moore's law, has contributed immensely to improvements in computer performance. However, silicon-based transistors

The doubling of the number of transistors on a chip every 2 years, a seemly inevitable trend that has been called
From bottom to top

ARTICLE TOOLS http://science.sciencemag.org/content/368/6495/eaam9744

REFERENCES
http://science.sciencemag.org/content/368/6495/eaam9744#BIBL
This article cites 25 articles, 0 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the

 is a registered trademark of AAAS.ScienceScience, 1200 New York Avenue NW, Washington, DC 20005. The title
(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience

Science. No claim to original U.S. Government Works
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of

on June 10, 2020

http://science.sciencem
ag.org/

Downloaded from

classes. It turns out, however, that this naïve
code leaves much of the performance available
on modern computers “on the table.” The code
takes about 7 hours on a modern computer to
compute the matrix product, as shown by
the first row (version 1) in Table 1, achieving
only 0.0006% of the peak performance of the
machine. (Incidentally, Python 3 requires about
9 hours for the same computation.)
How can this naïve matrix-multiplication

code be performance engineered? Simply choos-
ing a more efficient programming language
speeds up this calculation dramatically. For
example, coding it in Java (version 2) produces
a speedupof 10.8×, and coding it in C (version 3)
produces an additional speedup of 4.4×, yield-
ing an execution time that is 47 times faster
than the original Python. This performance
improvement comes from reducing thenumber
of operations the program performs. In partic-
ular, Java and C avoid the extraneous work
that Python does under the hood to make
programming easier. The price for this per-
formance gain is programmer productivity:
Coding in C is more onerous than coding in
Python, and Java lies somewhere in between.
Although switching languages gains a speed-

up of almost 50×, tailoring the matrix code to
exploit specific features of the hardware makes
it run an additional 1300 times faster. This gain
comes from parallelizing the code to run on all
18 of the processing cores (version 4), exploiting
the processor’s memory hierarchy (version 5),
vectorizing the code (version 6), and using
Intel’s special Advanced Vector Extensions
(AVX) instructions (version 7). The final op-
timized code performs the task in only 0.41 s—
more than 60,000 times faster than the 7 hours
of the original Python code!
The point of this example is to illustrate the

potential gains available from performance
engineering naïvely coded software. In the par-
ticular case of matrix multiplication, a good
programmer could avoid this programming
effort by using optimized code from existing

software libraries. If she were writing code to
solve a new problem, however, shewould need
to optimize the code herself. And although not
every application can improve by nearly five
orders of magnitude through performance
engineering, most modern software systems
contain ample opportunity for performance
enhancement, especially if the codebase is
large enough.
During the post-Moore era, it will become

ever more important to make code run fast
and, in particular, to tailor it to the hardware
on which it runs. Modern computers provide
architectural features designed to make code
run fast. For example, versions 4 and 6 exploit
parallelism, which is the ability of computers
to perform multiple operations at the same
time. Version 5 exploits locality, which is the
computer’s ability to access data elements ef-
ficiently when they are collocated in memory
(spatial locality) or have been accessed re-
cently (temporal locality). Version 7 exploits
both parallelism and locality through care-
fully coordinated use of Intel’s AVX instructions.
As we shall see in the Hardware architecture
section, architectures are likely to become in-
creasingly heterogeneous, incorporating both
general-purpose and special-purpose circuitry.
To improve performance, programs will need
to expose more parallelism and locality for the
hardware to exploit. In addition, software per-
formance engineers will need to collaborate
with hardware architects so that new pro-
cessors present simple and compelling ab-
stractions that make it as easy as possible to
exploit the hardware.
Beyond the tailoring of software to hard-

ware is the question of bloat: Where does
software bloat come from? Certainly, some
bloat comes from trading off efficiency for
other desirable traits, such as coding ease, as
versions 1 to 3 of the matrix-multiplication
code illustrate. Bloat also comes from a failure
to tailor code to the underlying architecture,
as versions 4 to 7 show. But much software

bloat arises from software-development strat-
egies (13, 14), such as reduction.
The idea of reduction is this. Imagine that

you are a programmer who has been given a
problem A to solve (for example, distinguish-
ing between a yes or no spoken response).
You could write specialized code to solve A
directly, but instead, you might notice that
a related problem B has already been solved
(existing speech-recognition software that
understands many words, including yes and
no). It will take you far less effort to solve A
by converting it into a problem that can be
solved with the existing code for B, that is, by
reducing A to B.
Inefficiencies can arise both from the re-

duction itself (translating A to B) and from
the generality of B (the solution to B is not
tailored specifically to A). But the largest bloat
arises from the compounding of reductions:
reducing A to B, B to C, C to D, and so on.
Even if each reduction achieves an impressive
80% efficiency, a sequence of two independent
reductions achieves just 80% × 80% = 64%.
Compounding 20 more times yields an effi-
ciency of less than 1%, or 100× in bloat.
Because of the accumulated bloat created by

years of reductionist design during the Moore
era, there are great opportunities to make pro-
grams run faster. Unfortunately, directly solving
problem A using specialized software requires
expertise both in the domain of A and in per-
formance engineering, which makes the pro-
cess more costly and risky than simply using
reductions. The resulting specialized software
to solve A is often more complex than the soft-
ware that reduces A to B. For example, the fully
optimized code in Table 1 (version 7) is more
than 20 times longer than the source code for
the original Python version (version 1).
Indeed, simple code tends to be slow, and

fast code tends to be complicated. To create a
world where it is easy to write fast code, appli-
cation programmersmust be equipped with the
knowledge and skills to performance-engineer

Leiserson et al., Science 368, eaam9744 (2020) 5 June 2020 2 of 7

Table 1. Speedups from performance engineering a program that multiplies two 4096-by-4096 matrices. Each version represents a successive
refinement of the original Python code. “Running time” is the running time of the version. “GFLOPS” is the billions of 64-bit floating-point operations per
second that the version executes. “Absolute speedup” is time relative to Python, and “relative speedup,” which we show with an additional digit of precision,
is time relative to the preceding line. “Fraction of peak” is GFLOPS relative to the computer’s peak 835 GFLOPS. See Methods for more details.

Version Implementation Running time (s) GFLOPS Absolute speedup Relative speedup
Fraction

of peak (%)

1 Python 25,552.48 0.005 1 — 0.00
..

2 Java 2,372.68 0.058 11 10.8 0.01
..

3 C 542.67 0.253 47 4.4 0.03
..

4 Parallel loops 69.80 1.969 366 7.8 0.24
..

5 Parallel divide and conquer 3.80 36.180 6,727 18.4 4.33
..

6 plus vectorization 1.10 124.914 23,224 3.5 14.96
..

7 plus AVX intrinsics 0.41 337.812 62,806 2.7 40.45
..

RESEARCH | REVIEW

on June 10, 2020

http://science.sciencem
ag.org/

D
ow

nloaded from

OPPORTUNITIES FOR PERFORMANCE IMPROVEMENT

LECTURE 01-1: PARALLELISM & CONCURRENCY

54 COMMUNICATIONS OF THE ACM | FEBRUARY 2019 | VOL. 62 | NO. 2

turing lecture

ent approach to achieve performance
improvements. The multicore era was
thus born.

Multicore shifted responsibility for
identifying parallelism and deciding
how to exploit it to the programmer
and to the language system. Multicore
does not resolve the challenge of ener-
gy-efficient computation that was exac-
erbated by the end of Dennard scaling.
Each active core burns power whether
or not it contributes effectively to the
computation. A primary hurdle is an
old observation, called Amdahl’s Law,
stating that the speedup from a paral-
lel computer is limited by the portion
of a computation that is sequential.
To appreciate the importance of this
observation, consider Figure 5, show-
ing how much faster an application
runs with up to 64 cores compared to

a single core, assuming different por-
tions of serial execution, where only
one processor is active. For example,
when only 1% of the time is serial, the
speedup for a 64-processor configura-
tion is about 35. Unfortunately, the
power needed is proportional to 64
processors, so approximately 45% of
the energy is wasted.

Real programs have more complex
structures of course, with portions
that allow varying numbers of proces-
sors to be used at any given moment
in time. Nonetheless, the need to com-
municate and synchronize periodically
means most applications have some
portions that can effectively use only
a fraction of the processors. Although
Amdahl’s Law is more than 50 years
old, it remains a difficult hurdle.

With the end of Dennard scaling,
increasing the number of cores on a
chip meant power is also increasing
at nearly the same rate. Unfortunately,
the power that goes into a processor
must also be removed as heat. Mul-
ticore processors are thus limited by
the thermal dissipation power (TDP),
or average amount of power the pack-
age and cooling system can remove.
Although some high-end data centers
may use more advanced packages and
cooling technology, no computer us-
ers would want to put a small heat
exchanger on their desks or wear a ra-
diator on their backs to cool their cell-
phones. The limit of TDP led directly
to the era of “dark silicon,” whereby
processors would slow on the clock
rate and turn off idle cores to prevent
overheating. Another way to view this
approach is that some chips can real-
locate their precious power from the
idle cores to the active ones.

An era without Dennard scaling,
along with reduced Moore’s Law and
Amdahl’s Law in full effect means
inefficiency limits improvement in
performance to only a few percent
per year (see Figure 6). Achieving
higher rates of performance improve-
ment—as was seen in the 1980s and
1990s—will require new architec-
tural approaches that use the inte-
grated-circuit capability much more
efficiently. We will return to what ap-
proaches might work after discussing
another major shortcoming of mod-
ern computers—their support, or
lack thereof, for computer security.

predicting the outcome of 15 branches.
If a processor architect wants to limit
wasted work to only 10% of the time,
the processor must predict each branch
correctly 99.3% of the time. Few general-
purpose programs have branches that
can be predicted so accurately.

To appreciate how this wasted work
adds up, consider the data in Figure 4,
showing the fraction of instructions
that are effectively executed but turn
out to be wasted because the proces-
sor speculated incorrectly. On average,
19% of the instructions are wasted for
these benchmarks on an Intel Core i7.
The amount of wasted energy is great-
er, however, since the processor must
use additional energy to restore the
state when it speculates incorrectly.
Measurements like these led many to
conclude architects needed a differ-

Figure 6. Growth of computer performance using integer programs (SPECintCPU).

Figure 7. Potential speedup of matrix multiply in Python for four optimizations.

100,000

10,000

1,000

100

10

1
1

47

366

6,727

62,806

Python

Matrix Multiply Speedup Over Native Python

S
pe

ed
up

C + parallel
loops

+ memory
optimization

+ SIMD
instructions

1980

100,000

CISC 2X/2.5 years
(22%/year)

RISC 2X/1.5 years
(52%/year)

End of Dennard Scaling ⇒ Multicore 2X/3.5 years (23%/year)
Amdahl’s Law ⇒ 2X/6 years (12%/year)

End of the Line ⇒ 2X/20 years (3%/yr)

10,000

1,000

100

10

P
er

fo
rm

an
ce

 v
s.

 V
A

X
11

-7
80

1
1985 1990 1995 2000 2005 2010 2015

[Source: Figure 7 of “A New Golden Age for Computer Architecture”,
J. Hennesy, D. Patterson Comm. of the ACM, Feb 2019]

classes. It turns out, however, that this naïve
code leaves much of the performance available
on modern computers “on the table.” The code
takes about 7 hours on a modern computer to
compute the matrix product, as shown by
the first row (version 1) in Table 1, achieving
only 0.0006% of the peak performance of the
machine. (Incidentally, Python 3 requires about
9 hours for the same computation.)
How can this naïve matrix-multiplication

code be performance engineered? Simply choos-
ing a more efficient programming language
speeds up this calculation dramatically. For
example, coding it in Java (version 2) produces
a speedupof 10.8×, and coding it in C (version 3)
produces an additional speedup of 4.4×, yield-
ing an execution time that is 47 times faster
than the original Python. This performance
improvement comes from reducing thenumber
of operations the program performs. In partic-
ular, Java and C avoid the extraneous work
that Python does under the hood to make
programming easier. The price for this per-
formance gain is programmer productivity:
Coding in C is more onerous than coding in
Python, and Java lies somewhere in between.
Although switching languages gains a speed-

up of almost 50×, tailoring the matrix code to
exploit specific features of the hardware makes
it run an additional 1300 times faster. This gain
comes from parallelizing the code to run on all
18 of the processing cores (version 4), exploiting
the processor’s memory hierarchy (version 5),
vectorizing the code (version 6), and using
Intel’s special Advanced Vector Extensions
(AVX) instructions (version 7). The final op-
timized code performs the task in only 0.41 s—
more than 60,000 times faster than the 7 hours
of the original Python code!
The point of this example is to illustrate the

potential gains available from performance
engineering naïvely coded software. In the par-
ticular case of matrix multiplication, a good
programmer could avoid this programming
effort by using optimized code from existing

software libraries. If she were writing code to
solve a new problem, however, shewould need
to optimize the code herself. And although not
every application can improve by nearly five
orders of magnitude through performance
engineering, most modern software systems
contain ample opportunity for performance
enhancement, especially if the codebase is
large enough.
During the post-Moore era, it will become

ever more important to make code run fast
and, in particular, to tailor it to the hardware
on which it runs. Modern computers provide
architectural features designed to make code
run fast. For example, versions 4 and 6 exploit
parallelism, which is the ability of computers
to perform multiple operations at the same
time. Version 5 exploits locality, which is the
computer’s ability to access data elements ef-
ficiently when they are collocated in memory
(spatial locality) or have been accessed re-
cently (temporal locality). Version 7 exploits
both parallelism and locality through care-
fully coordinated use of Intel’s AVX instructions.
As we shall see in the Hardware architecture
section, architectures are likely to become in-
creasingly heterogeneous, incorporating both
general-purpose and special-purpose circuitry.
To improve performance, programs will need
to expose more parallelism and locality for the
hardware to exploit. In addition, software per-
formance engineers will need to collaborate
with hardware architects so that new pro-
cessors present simple and compelling ab-
stractions that make it as easy as possible to
exploit the hardware.
Beyond the tailoring of software to hard-

ware is the question of bloat: Where does
software bloat come from? Certainly, some
bloat comes from trading off efficiency for
other desirable traits, such as coding ease, as
versions 1 to 3 of the matrix-multiplication
code illustrate. Bloat also comes from a failure
to tailor code to the underlying architecture,
as versions 4 to 7 show. But much software

bloat arises from software-development strat-
egies (13, 14), such as reduction.
The idea of reduction is this. Imagine that

you are a programmer who has been given a
problem A to solve (for example, distinguish-
ing between a yes or no spoken response).
You could write specialized code to solve A
directly, but instead, you might notice that
a related problem B has already been solved
(existing speech-recognition software that
understands many words, including yes and
no). It will take you far less effort to solve A
by converting it into a problem that can be
solved with the existing code for B, that is, by
reducing A to B.
Inefficiencies can arise both from the re-

duction itself (translating A to B) and from
the generality of B (the solution to B is not
tailored specifically to A). But the largest bloat
arises from the compounding of reductions:
reducing A to B, B to C, C to D, and so on.
Even if each reduction achieves an impressive
80% efficiency, a sequence of two independent
reductions achieves just 80% × 80% = 64%.
Compounding 20 more times yields an effi-
ciency of less than 1%, or 100× in bloat.
Because of the accumulated bloat created by

years of reductionist design during the Moore
era, there are great opportunities to make pro-
grams run faster. Unfortunately, directly solving
problem A using specialized software requires
expertise both in the domain of A and in per-
formance engineering, which makes the pro-
cess more costly and risky than simply using
reductions. The resulting specialized software
to solve A is often more complex than the soft-
ware that reduces A to B. For example, the fully
optimized code in Table 1 (version 7) is more
than 20 times longer than the source code for
the original Python version (version 1).
Indeed, simple code tends to be slow, and

fast code tends to be complicated. To create a
world where it is easy to write fast code, appli-
cation programmersmust be equipped with the
knowledge and skills to performance-engineer

Leiserson et al., Science 368, eaam9744 (2020) 5 June 2020 2 of 7

Table 1. Speedups from performance engineering a program that multiplies two 4096-by-4096 matrices. Each version represents a successive
refinement of the original Python code. “Running time” is the running time of the version. “GFLOPS” is the billions of 64-bit floating-point operations per
second that the version executes. “Absolute speedup” is time relative to Python, and “relative speedup,” which we show with an additional digit of precision,
is time relative to the preceding line. “Fraction of peak” is GFLOPS relative to the computer’s peak 835 GFLOPS. See Methods for more details.

Version Implementation Running time (s) GFLOPS Absolute speedup Relative speedup
Fraction

of peak (%)

1 Python 25,552.48 0.005 1 — 0.00
..

2 Java 2,372.68 0.058 11 10.8 0.01
..

3 C 542.67 0.253 47 4.4 0.03
..

4 Parallel loops 69.80 1.969 366 7.8 0.24
..

5 Parallel divide and conquer 3.80 36.180 6,727 18.4 4.33
..

6 plus vectorization 1.10 124.914 23,224 3.5 14.96
..

7 plus AVX intrinsics 0.41 337.812 62,806 2.7 40.45
..

RESEARCH | REVIEW

on June 10, 2020

http://science.sciencem
ag.org/

D
ow

nloaded from

OPPORTUNITIES FOR PERFORMANCE IMPROVEMENT

LECTURE 01-1: PARALLELISM & CONCURRENCY

54 COMMUNICATIONS OF THE ACM | FEBRUARY 2019 | VOL. 62 | NO. 2

turing lecture

ent approach to achieve performance
improvements. The multicore era was
thus born.

Multicore shifted responsibility for
identifying parallelism and deciding
how to exploit it to the programmer
and to the language system. Multicore
does not resolve the challenge of ener-
gy-efficient computation that was exac-
erbated by the end of Dennard scaling.
Each active core burns power whether
or not it contributes effectively to the
computation. A primary hurdle is an
old observation, called Amdahl’s Law,
stating that the speedup from a paral-
lel computer is limited by the portion
of a computation that is sequential.
To appreciate the importance of this
observation, consider Figure 5, show-
ing how much faster an application
runs with up to 64 cores compared to

a single core, assuming different por-
tions of serial execution, where only
one processor is active. For example,
when only 1% of the time is serial, the
speedup for a 64-processor configura-
tion is about 35. Unfortunately, the
power needed is proportional to 64
processors, so approximately 45% of
the energy is wasted.

Real programs have more complex
structures of course, with portions
that allow varying numbers of proces-
sors to be used at any given moment
in time. Nonetheless, the need to com-
municate and synchronize periodically
means most applications have some
portions that can effectively use only
a fraction of the processors. Although
Amdahl’s Law is more than 50 years
old, it remains a difficult hurdle.

With the end of Dennard scaling,
increasing the number of cores on a
chip meant power is also increasing
at nearly the same rate. Unfortunately,
the power that goes into a processor
must also be removed as heat. Mul-
ticore processors are thus limited by
the thermal dissipation power (TDP),
or average amount of power the pack-
age and cooling system can remove.
Although some high-end data centers
may use more advanced packages and
cooling technology, no computer us-
ers would want to put a small heat
exchanger on their desks or wear a ra-
diator on their backs to cool their cell-
phones. The limit of TDP led directly
to the era of “dark silicon,” whereby
processors would slow on the clock
rate and turn off idle cores to prevent
overheating. Another way to view this
approach is that some chips can real-
locate their precious power from the
idle cores to the active ones.

An era without Dennard scaling,
along with reduced Moore’s Law and
Amdahl’s Law in full effect means
inefficiency limits improvement in
performance to only a few percent
per year (see Figure 6). Achieving
higher rates of performance improve-
ment—as was seen in the 1980s and
1990s—will require new architec-
tural approaches that use the inte-
grated-circuit capability much more
efficiently. We will return to what ap-
proaches might work after discussing
another major shortcoming of mod-
ern computers—their support, or
lack thereof, for computer security.

predicting the outcome of 15 branches.
If a processor architect wants to limit
wasted work to only 10% of the time,
the processor must predict each branch
correctly 99.3% of the time. Few general-
purpose programs have branches that
can be predicted so accurately.

To appreciate how this wasted work
adds up, consider the data in Figure 4,
showing the fraction of instructions
that are effectively executed but turn
out to be wasted because the proces-
sor speculated incorrectly. On average,
19% of the instructions are wasted for
these benchmarks on an Intel Core i7.
The amount of wasted energy is great-
er, however, since the processor must
use additional energy to restore the
state when it speculates incorrectly.
Measurements like these led many to
conclude architects needed a differ-

Figure 6. Growth of computer performance using integer programs (SPECintCPU).

Figure 7. Potential speedup of matrix multiply in Python for four optimizations.

100,000

10,000

1,000

100

10

1
1

47

366

6,727

62,806

Python

Matrix Multiply Speedup Over Native Python

S
pe

ed
up

C + parallel
loops

+ memory
optimization

+ SIMD
instructions

1980

100,000

CISC 2X/2.5 years
(22%/year)

RISC 2X/1.5 years
(52%/year)

End of Dennard Scaling ⇒ Multicore 2X/3.5 years (23%/year)
Amdahl’s Law ⇒ 2X/6 years (12%/year)

End of the Line ⇒ 2X/20 years (3%/yr)

10,000

1,000

100

10

P
er

fo
rm

an
ce

 v
s.

 V
A

X
11

-7
80

1
1985 1990 1995 2000 2005 2010 2015

[Source: Figure 7 of “A New Golden Age for Computer Architecture”,
J. Hennesy, D. Patterson Comm. of the ACM, Feb 2019; quoting C. Leiserson et al.

DOMAIN SPECIFIC PARALLELISM: GRAPHICS PROCESSOR

NVidia GTX 1080 GP104
▸ 2560 "CUDA" cores

LECTURE 01-1: PARALLELISM & CONCURRENCY

DOMAIN-SPECIFIC PARALLELISM: GOOGLE’S TENSOR PROCESSOR

LECTURE 01-1: PARALLELISM & CONCURRENCY

56 COMMUNICATIONS OF THE ACM | FEBRUARY 2019 | VOL. 62 | NO. 2

turing lecture

An interesting research direction
concerns whether some of the perfor-
mance gap can be closed with new com-
piler technology, possibly assisted by
architectural enhancements. Although
the challenges in efficiently translating
and implementing high-level scripting
languages like Python are difficult, the
potential gain is enormous. Achieving
even 25% of the potential gain could
result in Python programs running
tens to hundreds of times faster. This
simple example illustrates how great
the gap is between modern languages
emphasizing programmer productivity
and traditional approaches emphasiz-
ing performance.

Domain-specific architectures. A
more hardware-centric approach is to
design architectures tailored to a spe-
cific problem domain and offer signif-
icant performance (and efficiency)
gains for that domain, hence, the
name “domain-specific architectures”
(DSAs), a class of processors tailored
for a specific domain—programmable
and often Turing-complete but tai-
lored to a specific class of applica-
tions. In this sense, they differ from

application-specific integrated cir-
cuits (ASICs) that are often used for a
single function with code that rarely
changes. DSAs are often called acceler-
ators, since they accelerate some of an
application when compared to execut-
ing the entire application on a general-
purpose CPU. Moreover, DSAs can
achieve better performance because
they are more closely tailored to the
needs of the application; examples of
DSAs include graphics processing
units (GPUs), neural network proces-
sors used for deep learning, and pro-
cessors for software-defined networks
(SDNs). DSAs can achieve higher per-
formance and greater energy efficiency
for four main reasons:

First and most important, DSAs
exploit a more efficient form of par-
allelism for the specific domain. For
example, single-instruction multiple
data parallelism (SIMD), is more ef-
ficient than multiple instruction mul-
tiple data (MIMD) because it needs to
fetch only one instruction stream and
processing units operate in lockstep.9
Although SIMD is less flexible than
MIMD, it is a good match for many

level languages with dynamic typing and
storage management. Unfortunately,
such languages are typically interpreted
and execute very inefficiently. Leiserson
et al.24 used a small example—perform-
ing matrix multiply—to illustrate this
inefficiency. As in Figure 7, simply re-
writing the code in C from Python—a
typical high-level, dynamically typed lan-
guage—increases performance 47-fold.
Using parallel loops running on many
cores yields a factor of approximately
7. Optimizing the memory layout to ex-
ploit caches yields a factor of 20, and a
final factor of 9 comes from using the
hardware extensions for doing single in-
struction multiple data (SIMD) parallel-
ism operations that are able to perform
16 32-bit operations per instruction.
All told, the final, highly optimized ver-
sion runs more than 62,000× faster on
a multicore Intel processor compared
to the original Python version. This is of
course a small example, one might ex-
pect programmers to use an optimized
library for. Although it exaggerates the
usual performance gap, there are likely
many programs for which factors of 100
to 1,000 could be achieved.

Figure 8. Functional organization of Google Tensor Processing Unit (TPU v1).

P
C

Ie
In

te
rf

ac
e

H
os

t
In

te
rf

ac
e

14 GiB/s 30 GiB/s

30 GiB/s

14 GiB/s

Off-Chip I/O
Data Buffer

Control

Not to Scale

Computation

14 GiB/s

10 GiB/s

Control

Control Control

DDR3
Interfaces

Weight FIFO
(Weight Fetcher)

Unified Buffer
(Local

Activation
Storage)

Systolic
Array

Control

Matrix
Multiply Unit

(64K per cycle)

Accumulators D
R
A
M

port
ddr3
3%

D
R
A
M

port
ddr3
3%

Host
Interface

2%

Control 2% Activation Pipeline 6%

Misc. I/O 1%
PCIe

Interface 3%

Activation

Normalize/Pool

Control Control

In
st

r

165
GiB/s

165 GiB/s

Local Unified Buffer
for Activations

(96Kx256x8b = 24 MiB)
29% of chip

Matrix Multiply Unit
(256x256x8b = 64K MAC)

29%

Accumulators
(4Kx256x32b = 4 MiB)

6%

[Source: Figure 8 of “A New Golden Age for Computer Architecture”,
J. Hennesy, D. Patterson Comm. of the ACM, Feb 2019]

PROGRAMMING FOR YOU BEFORE VERSUS NOW
CSCI 121 and CSCI 221 teach “sequential programming”:

▸ Program does one thing at a time, in sequence.

In this course we start with multithreaded programming

▸ Structure computation using several threads of execution; coordinate them.

➡ Seek to gain throughput, have parallel activity offer speedup.

➡ Need to support concurrent access to data.

This creates interesting challenges and opportunities in program design.

LECTURE 01-1: PARALLELISM & CONCURRENCY

EXAMPLE ALGORITHM: MERGE SORT
Let’s “parallelize” a standard sorting algorithm…

[Reading: Chapter 27.3 of CLRS algorithms textbook]

LECTURE 01-1: PARALLELISM & CONCURRENCY

SEMESTER TOPICS
▸parallel merge sort, quick sort, radix sort

▸parallel reduction/scan; map-reduce

▸work-efficient parallel prefix

▸fork-join model

▸work and span analysis

▸parallel RAM (PRAM) model

▸algorithms on 1-D and 2-D arrays

▸oblivious parallel sorting networks

▸parallel graph algorithms

▸parallel sequence analysis

▸parallel task scheduling with work-stealing

▸the Go language; “goroutines”; channels; synchronization

▸pthreads C library; sychronization with mutexes and condition variables

▸GPU programming and CUDA

▸parallel complexity; Nick’s class; P-completeness

LECTURE 01-1: PARALLELISM & CONCURRENCY

▸ (roughly) bi-weekly homework assignment

➡ written and coded

▸ final project and presentation

RESPONSIBILITIES

▸ no text

▸ selected readings

•papers and on-line materials

READING

RESOURCES
▸Can use your own computer to prototype

➡ Go language, pthreads C library available on any system

▸Should hopefully also gain access to patty.reed.edu and polly.reed.edu

➡ Sitting in my office but maintained by Cstar

▸Patty’s specs:

➡ 32 AMD Ryzen “threadripper” cores

➡ NVidia GeForce RTX 2080 GPU

✦3072 small processors organized as 192 stream multiprocessors

LECTURE 01-1: PARALLELISM & CONCURRENCY

