PARALLELISM & CONCURRENCY:
INTRODUCTION

LECTURE 01-1

JIM FIX, REED COLLEGE CSCI 361

LECTURE 01-1: PARALLELISM & CONCURRENCY

TODAY

»What is parallelism? What is concurrency?

»Why learn parallel programming and concurrency mechanisms?
= Driven by trends in hardware and system design, deployment.

» Example parallel algorithm: merge sort

= design and pseudocode
= implementation in the Go language
»Brief overview of course and covered topics.
= course web page: https://jimfix.github.10/csc1i361/

LECTURE 01-1: PARALLELISM & CONCURRENCY

VERSUS CONCURRENCY

» The two concepts are often confused; equated/conflated

requests

\l/

resource

concurrence - manage access
to a shared resource
(correctly and efficiently)

[From D. Grossman (UW)]

LECTURE 01-1: PARALLELISM & CONCURRENCY

HISTORY: MOORE'S LAW AND SINGLE PROCESSOR PERFORMANCE

»For years, single processor performance improved exponentally.
= Moore's Law: chip features (e.g. wires, transistors) can continually be made smaller

= performance doubled (roughly) every 2.5 years.

Moore’s Law: The number of transistors on microchips doubles every two years

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

Transistor count
50,000,000,000

10,000,000,000
5,000,000,000

1,000,000,000
500,000,000

Allend

100,000,000 e & 4 Cedar M
50,000,000

Pentium 4 ette
Penti H‘\‘ ”H of’r"mhum [l Tualatin
entium Il Mobile

8 @ Pentium Il Coppermine ©

6-1l

Pentium 11l Katmai
Q‘f‘gl itm I Deschutes
n

10,000,000

AMD K6
5,000,000 8

’entium Pmo i !
1,000,000
500,000

100,000
50,000

10,000 -
5,000

Intel 8

Intel 4004

1,000

QO AL b \x
RIS RN

AC A% P
N EEERIENEEN

Data source: Wikipedia (wikipedia.org/wiki/Transistor_count)
OurWorldinData.org - Research and data to make progress against the world'’s largest problems.

Q N X o
O OV L O
N NN SR SIS S S
Year in which the microchip was first introduced

o
8
N

S O Voo o ®
RGN R

Our World

Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

For years, single processor performance improved exponentally.

Moore's Law: chip features (e.g. wires, transistors) can continually be made smaller

performance doubled (roughly) every 2.5 years.

Intel Performance Over Time

10000.00

100000 —038 M se®*
. .
o

(U]
(®)
(=
(]
=
| &
(o]
Y
| .
()]
o
(V]
2
)
L
()
|

o10—b— v 1 11 1 1

1985 1987 1989 1991 1993 1995 1997 1999 2001 2003
year

[Source: Figure 1 of

“The Future of Multiprocessors”,
K. Olukotun, L. Hammond

ACM Queue, 2005]

LECTURE 01-1: PARALLELISM & CONCURRENCY

HISTORY: MOORE'S LAW AND SINGLE PROCESSOR PERFORMANCE

» Because of chip improvements, clock speed could be increased.
» And also processor could do more with all the extra transistors:
e memory caches
e pipelining
e superscalar designs
e out-of-order execution
e speculative execution

e vector, VLIW designs

LECTURE 01-1: PARALLELISM & CONCURRENCY

HISTORY: MOORE'S LAW AND SINGLE PROCESSOR PERFORMANCE

» Because of chip improvements, clock speed could be increased.
» And also processor could do more with all the extra transistors:

e memory caches

PARALLELISM & CONCURRENCY

MIPS R3000A (1988)

LECTURE 01-1

¥ BRRRM1

Lebta

, ooy

HIF

m
i

§§$§§§gﬁggg

EERE

3

L

i w

.

i

;.'ll'i

ﬁﬁyqﬂﬁng

‘. F

e A {.ff}‘ﬂ’&l S ...I....'.nnl.q.v

AT

e

- \ I = L *

a

e . et e e e e O B

Instruction Fetch

IF

Instruction Decode
Register Fetch

ID

Execute
Address Calc.

EX

Memory Access Write Back

MEM WB

Next SEQ PC

RS1

>

RS2

Register
File

Sign | Imm

L@

Next PC

Next SEQ PC

Branch

Yoo

Extend

\xan/ \xan/

WA / X

aMm / WHIN

LECTURE 01-1: PARALLELISM & CONCURRENCY

PENTIUM 4 (2003)
Intel Pentium 4 Northwood

Buffer Allocation & Execution Pipeline Start Instruction Trace Cache Trace Cache Access,
Regl ster Rename Register Alias History Tables (2x126) Micro code Sequencer Trace Cache Distributed Tag comparators next Address Predict

Register Alias Tables uOp Queue Micro code ROM & Flash Fill Buffers 24 bit virtual Tags

2 A

. o N

N |

Instruction Queue (for less
critical fields of the uOps)

Trace Cache Branch Prediction
Table (BTB), 512 entries.

Return Stacks (2x16 entries)

General Instruction Address Quet
Memory Instruction Address Queue -
(queues register entries and latency i
fields of the uOps for scheduling) -

Trace Cache next IP's (2x)

VVi el ieli i
== .

Floating Point, MMX, 551 8 -
Renamed Register File

= Miscellaneous Tag Data
128 entries of 128 bit. e ¥ e

Instruction Decoder
uOp Schedulers

i " g P 'Q}meummmﬁﬁm. ; |5 1O Up to 4 decoded uOps/cycle ¢
FP Move Scheduler:] I . e Bp | e ||M|]"JL|”U (from max. one x86 instr/cycle)

Instructions with more than four
are handled by Micro Sequencer

Trace Cache LRU bits

Raw Instruction Bytes in

Data TLB, 64 entry fully
associative, between threads
dual ported (for loads and stores)

(8x8 dependency matrix) i ; ! RN =] |
. i | . = 3 ? __*I:ntegcr - —— .

bl
<

Parallel (Matrix) Scheduler
for the two double pumped ALU's

General Floating Point i
Slow Integer Scheduler:
(8x8 dependency matrix)

Load / Store uOp Scheduler:
(8x8 dependency matrix)

Instruction Fetch
from L2 cache and
Branch Prediction

Load / Store Linear Address
Collision History Table

. _| i . Front End Branch Predictic
Integer Execution Core * §f Tables (BTB), shared, 4096
Al entries in total
(1) uOp Dispatch unit & Replay Bufici / ; el
Dispatches up to 6 uOps / cycle j : Instruction TLB's 2x64 enry
5% Thitowor Resamed Restator Kil] : bl il 3 fully associative for 4k and 4M
(2) Integer R CEISICT LLG ‘ 3 W E d ot ik - pages. In: Virtual address [31:12]
128 entries of 32 bit + 6 status flags i - | ‘ : ; LB Out: Physical address [35:12] +
12 read ports and six write ports Tl A—_— i T * e ¥ ¥ 5 ‘: 2 pz;ge livel bits .
(3) Databus switch & Bypasses (o and : ! Y- k}% PO . S
from the Integer Register File. N p te- 4z it | [& i A 5 : : ' BE -
(4) Flags, Write Back e | L2‘1Ca he g mgp T 1 L2tCai he ‘ ; ; |
(5) Double Pumped ALU 0 Bl : s) Bl L it F . -
(6) Double Pumped ALU |) e 1‘ | ; ' i ‘ [: L Front Side Bus Inter-
(7) Load Address Generator Unit b S e c : = S LL b J = faCC, 400 . 800 MHZ
(8) Store Address Generator Unit e - P O ————— e e = :
(9) Load Buffer (48 entries) (11) ROB Reorder Buffer 3x42 entri (13) Summed Address Index decode and Way Prec
(12) 8 kByte Level 1 Data cache (14) Cache Line Read / Write Transferbuffers and

(10) Store Buffer (24 entries) four way set associative. 1R/1W 256 bit wide bus to and from L2 cache Aprll 1 9, 2003 WWW.Chip-arChiteCt,C()ln

HISTORY: MOORE'S LAW AND SINGLE PROCESSOR PERFORMANCE

For years, single processor performance improved exponentally.
Moore's Law: chip features (e.g. wires, transistors) can continually be made smaller

performance doubled (roughly) every 2.5 years.

Figure 2. Transistors per chip of Intel microprocessors vs. Moore’s Law.

Moore’s Law vs. Intel Microprocessor Density
@ Moore's Law (1975 version) @ Density

10,000,000
1,000,000
100,000
10,000
1,000

100
[Source: Figure 2 of

10 "ANew Golden Age

for Computer Architecture”,

J. Hennesy, D. Patterson
Comm. of the ACM, Feb 2019]

HISTORY: LIMITS TO SINGLE PROCESSOR PERFORMANCE

n 2000s, computer architects hit real limits improving single-threaded
nerformance .

Figure 4. Wasted instructions as a percentage of all instructions completed on an Intel
Core i7 for a variety of SPEC integer benchmarks.

P
Ll
M
—
o
Ll
o

LIBQUANTUM
H264REF
OMNETPP

XALANCBMK

[Source: Figure 4 of "A New Golden Age for Computer Architecture”,
J. Hennesy, D. Patterson Comm. of the ACM, Feb 2019]

n 2000s, computer architects hit real limits improving single-threaded
nerformance .

Intel Performance from ILP

Q
()
>
(8}

~
()
(&)
c
(o]
=
| .
(@]

Y
| .
()
(ol
(U]

2
)

S
()
-

= [Source: Figure 2 of

Y T O R Y HA R S “The Future of Multiprocessors",
1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 K. Olukotun. L. Hammond

year ACM Queue, 2005]

n 2000s, computer architects hit real limits improving single-threaded

nerformance .

Intel Power Over Time

100

m
)
)
©
£
|
v
3
o
o

[Source: Figure 3 of
“The Future of Multiprocessors”,

S N NN N N S R N N R
0 1995 1997 1999 2001 2003 K. Olukotun, L. Hammond

1985 1987 1989 1991 1993
ACM Queue, 2005]

HISTORY: LIMITS TO SINGLE PROCESSOR PERFORMANCE

n 2000s, computer architects hit real limits improving single-threaded
nerformance .

Figure 6. Growth of computer performance using integer programs (SPECintCPU).

End of the Line = 2X/20 years (3%/yr)

Amdahl’s Law = 2X/6 years (12%/year)
End of Dennard Scaling = Multicore 2X/3.5 years (23%/year)

CISC 2X/2.5 years RISC 2X/1.5 years
(22%/year) (52%/year)

100,000
10,000

1,000

100
[Source: Figure 8 of

10 "ANew Golden Age

for Computer Architecture”,

J. Hennesy, D. Patterson
Comm. of the ACM, Feb 2019]

=)
®
hl
L |
=
2.
>
0
>
@
o
c
®
=
S
o
L
1
)
o

1980 1985 1990 8es 2000 2005 2010 2015

Dual-Core Itanium 2

Intel CPU Trends

(sources: Intel, Wikipedia, K. Olukotun)

1,000,000

® Transistors (000)

® Clock Speed (MHz)
A Power (W)

@ Perf/Clock (ILP)

0
1970 1975 1980 1985 1990 1995 2000 2005 2010

Figure 1: Intel CPU Introductions (graph updated August 2009; article text original from December 2004)

Dual-Core Itanium 2

Intel CPU Trends

(sources: Intel, Wikipedia, K. Olukotun)

1,000,000

® Transistors (000)

® Clock Speed (MHz)
A Power (W)

@ Perf/Clock (ILP)

0
1970 1975 1980 1985 1990 1995 2000 2005 2010

Figure 1: Intel CPU Introductions (graph updated August 2009; article text original from December 2004)

LECTURE 01-1: PARALLELISM & CONCURRENCY

PARALLELISM: MULTICORE

s M J’;“ | &

.
. <
e ‘?J“ 'y“\ oad
l’ 14
L . A
J - ‘A..)' -
) .

- .
WY Sy T bl WP

=t O »n — <X B

=

“m'

=R

.-

E
- - -

g]
aamas ww-
- - - - J-

.....3

L 3
- B B
AEERR .. W
-
-
A

i3
N
()
2
-
HH
ol
~
H
i
™
i
e

S ome

Science

There's plenty of room at the Top: What will drive computer performance after Moore's law?

Charles E. Leiserson, Neil C. Thompson, Joel S. Emer, Bradley C. Kuszmaul, Butler W. Lampson, Daniel Sanchez and Tao B.
Schardl

Science 368 (6495), eaam9744.
DOI: 10.1126/science.aam9744

From bottom to top
The doubling of the number of transistors on a chip every 2 years, a seemly inevitable trend that has been called
Moore's law, has contributed immensely to improvements in computer performance. However, silicon-based transistors
cannot get much smaller than they are today, and other approaches should be explored to keep performance growing.
Leiserson et al. review recent examples and argue that the most promising place to look is at the top of the computing
stack, where improvements in software, algorithms, and hardware architecture can bring the much-needed boost.
Science, this issue p. eaam9744

100,000
SPECint rate 8+ cores I

SPECint rate
4to 7/ cores

SPECint rate
2 to 3 cores

PR 4

SPECint = SPECint rate — ; N SPECint(]
1core 2+ cores

Clock frequency

| —
)

>
o
=
@
S
=3
@
S
L
<
O
o
o
o
=
)
5
o
%
S
o
@
©
=
S
=
S
o
L=
S
@
o
)
IE
ahd
©
Q
(a4

Dennard-scaling era Multicore era

1
1985 1990 1995 2000 2005 2010 2015

Year

Fig. 2. SPECint (largely serial) performance, SPECint-rate (parallel) performance, and clock-frequency

scaling for microprocessors from 1985 to 2015, normalized to the Intel 80386 DX microprocessor in
1985 Micronrocessors and their clock freauencies were obtained from the Stanford CPl) database (56)

Science

There's plenty of room at the Top: What will drive computer performance after Moore's law?

Charles E. Leiserson, Neil C. Thompson, Joel S. Emer, Bradley C. Kuszmaul, Butler W. Lampson, Daniel Sanchez and Tao B.
Schard|

Table 1. Speedups from performance engineering a program that multiplies two 4096-by-4096 matrices. Each version represents a successive
refinement of the original Python code. “Running time” is the running time of the version. “GFLOPS"” is the billions of 64-bit floating-point operations per
second that the version executes. “Absolute speedup” is time relative to Python, and “relative speedup,” which we show with an additional digit of precision,
is time relative to the preceding line. “Fraction of peak” is GFLOPS relative to the computer’'s peak 835 GFLOPS. See Methods for more details.

Implementation Running time (s) GFLOPS Absolute speedup Relative speedup o fF;::(;:/o)

25,552.48

plus AVX intrinsics : 337.812

[Source: Table 1 of “There’s Plenty of Room at the Top:...
C. Leiserson et al., Science, Jun 2020]

OPPORTUNITIES FOR PERFORMANCE IMPROVEMENT

Table 1. Speedups from performance engineering a program that multiplies two 4096-by-4096 matrices. Each version represents a successive ON fo r fo u r o pti m izatio n s .
refinement of the original Python code. “Running time” is the running time of the version. “GFLOPS" is the billions of 64-bit floating-point operations per

second that the version executes. “Absolute speedup” is time relative to Python, and “relative speedup,” which we show with an additional digit of precision,

is time relative to the preceding line. “Fraction of peak” is GFLOPS relative to the computer's peak 835 GFLOPS. See Methods for more details.

Version Implementation Running time (s) GFLOPS Absolute speedup Relative speedup ofF;:(a::t::’IA:)

Python 25,552.48 0.005 1 = 0.00

Java 2,372.68 0.058 11 10.8 0.01

C 542.67 0.253 47 4.4 0.03

Parallel loops 69.80 1.969 7.8 0.24
Parallel divide and conquer 3.80 36.180 184 433
plus vectorization 110 124914 35 14.96
plus AVX intrinsics 0.41 337.812 2.7 40.45

10,000

1,000

100

+ parallel + memory + SIMD
loops optimization instructions

[Source: Figure 7 of "A New Golden Age for Computer Architecture”,
J. Hennesy, D. Patterson Comm. of the ACM, Feb 2019]

OPPORTUNITIES FOR PERFORMANCE IMPROVEMENT

Figure 7. Potential speedup of matrix multiply in Python for four optimizations.

Matrix Multiply Speedup Over Native Python

2,
100,000 2t

10,000
. /

1,000 /
100

10

1

+ parallel + memory + SIMD
loops optimization instructions

[Source: Figure 7 of "A New Golden Age for Computer Architecture”,
J. Hennesy, D. Patterson Comm. of the ACM, Feb 2019; quoting C. Leiserson et al.

LECTURE 01-1: PARALLELISM & CONCURRENCY

DOMAIN SPECIFIC PARALLELISM: GRAPHICS PROCESSOR

| PCI Express 3.0 Host Interface

GPC GPC
Raster Engine
- - - - -
5 TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC »

= PolyMorph Engine PolyMorph Engine PolyMorph Engine PolyMorph Engine PolyMorph Engine PolyMorph Engine PolyMorph Engine PolyMorph Engine 4 ‘

—_— —_— e e e I e T e § 3
o — | — — | — — | — — | — — | — — — — | — — o '

> i e — [e r———— pe—=— === [E——— — ° A
g
o . . |
E] = E |

] u S b
) (]] 1
.] Hf
L] L] i

] n 4
0 0 o

i

Memory Controller

T A T N A I,

° °

s
5 NVidia X 1 P104
g L]] " l g

| E— e = | E— || — e] '2
o — | — — [— — | — — | — e ———
o 9 [[
 [==liz = —|==l=—l=—I: 1 cores
i 5

TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC =

= - - - = = = - = -
Raster Engine Raster Engine
GPC GPC

LECTURE 01-1: PARALLELISM & CONCURRENCY

DOMAIN- SPECIFIC PARALLELISM GOOGLE'S TENSOR PROCESSOR

ing Unit (TPU v1).

LA GlEs DDR3 30 GiB/s Weight FIFO
E Interfaces :D (Weight Fetcher)
|:> m ﬂ 30 GiB/s

10 GiB/s |Unified Buffer Systolic GiB/s Matrix

(Local Array Multiply Unit

Activation
Storage) Control (64K per cycle)

Figure 8. Functional organization of Google Ten

Normalize/Pool

[Source: Figure 8 of "A New Golden Age for Computer Architecture”,
J. Hennesy, D. Patterson Comm. of the ACM, Feb 2019]

LECTURE 01-1: PARALLELISM & CONCURRENCY

PROGRAMMING FOR YOU BEFORE VERSUS NOW
CSCI 121 and CSCI 221 teach "sequential programming":

» Program does one thing at a time, in sequence.

In this course we start with multithreaded programming
» Structure computation using several threads of execution; coordinate them.
= Seek to gain throughput, have parallel activity offer speedup.

= Need to support concurrent access to data.

This creates interesting challenges and opportunities in program design.

LECTURE 01-1: PARALLELISM & CONCURRENCY

EXAMPLE ALGORITHM: MERGE SORT

Let's “parallelize” a standard sorting algorithm...

[Reading: Chapter 27.3 of CLRS algorithms textbook]

LECTURE 01-1: PARALLELISM & CONCURRENCY

SEMESTER TOPICS RESPONSIBILITIES

»parallel merge sort, quick sort, radix sort)

» parallel reduction/scan; map-reduce

»work-efficient parallel prefix

>fork-join model)

»work and span analysis

»parallel RAM (PRAM) model READING
»algorithms on 1-D and 2-D arrays » no text

» oblivious parallel sorting networks

»parallel graph algorithms » selected readlngs

/[petellil Seg Ui Elme s * papers and on-line materials
»parallel task scheduling with work-stealing

»the Go language; "goroutines”; channels; synchronization

»pthreads C library; sychronization with mutexes and condition variables

» GPU programming and CUDA

»parallel complexity; Nick's class; P-completeness

LECTURE 01-1: PARALLELISM & CONCURRENCY

RESOURCES

» Can use your own computer to prototype
= Go language, pthreads C library available on any system
»Should hopefully also gain access to patty.reed.edu and polly.reed.edu
= Sitting in my office but maintained by Cstar
» Patty’s specs:
= 32 AMD Ryzen “threadripper” cores
= NVidia GeForce RTX 2080 GPU

+3072 small processors organized as 192 stream multiprocessors

