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TODAY

»What is parallelism? What is concurrency?

»Why learn parallel programming and concurrency mechanisms?
= Driven by trends in hardware and system design, deployment.

» Example parallel algorithm: merge sort

= design and pseudocode
= implementation in the Go language
»Brief overview of course and covered topics.
= course web page: https://jimfix.github.10/csc1i361/
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VERSUS CONCURRENCY

» The two concepts are often confused; equated/conflated

requests

\l/

resource

concurrence - manage access
to a shared resource
(correctly and efficiently)

[From D. Grossman (UW)]
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HISTORY: MOORE'S LAW AND SINGLE PROCESSOR PERFORMANCE

»For years, single processor performance improved exponentally.
= Moore's Law: chip features (e.g. wires, transistors) can continually be made smaller

= performance doubled (roughly) every 2.5 years.



Moore’s Law: The number of transistors on microchips doubles every two years

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
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For years, single processor performance improved exponentally.

Moore's Law: chip features (e.g. wires, transistors) can continually be made smaller

performance doubled (roughly) every 2.5 years.

Intel Performance Over Time
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[Source: Figure 1 of

“The Future of Multiprocessors”,
K. Olukotun, L. Hammond

ACM Queue, 2005]
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HISTORY: MOORE'S LAW AND SINGLE PROCESSOR PERFORMANCE

» Because of chip improvements, clock speed could be increased.
» And also processor could do more with all the extra transistors:
e memory caches
e pipelining
e superscalar designs
e out-of-order execution
e speculative execution

e vector, VLIW designs
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HISTORY: MOORE'S LAW AND SINGLE PROCESSOR PERFORMANCE

» Because of chip improvements, clock speed could be increased.
» And also processor could do more with all the extra transistors:

e memory caches
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MIPS R3000A (1988)
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PENTIUM 4 (2003)
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HISTORY: MOORE'S LAW AND SINGLE PROCESSOR PERFORMANCE

For years, single processor performance improved exponentally.
Moore's Law: chip features (e.g. wires, transistors) can continually be made smaller

performance doubled (roughly) every 2.5 years.

Figure 2. Transistors per chip of Intel microprocessors vs. Moore’s Law.

Moore’s Law vs. Intel Microprocessor Density
@ Moore's Law (1975 version) @ Density

10,000,000
1,000,000
100,000
10,000
1,000

100
[Source: Figure 2 of

10 "ANew Golden Age

for Computer Architecture”,
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HISTORY: LIMITS TO SINGLE PROCESSOR PERFORMANCE

n 2000s, computer architects hit real limits improving single-threaded
nerformance .

Figure 4. Wasted instructions as a percentage of all instructions completed on an Intel
Core i7 for a variety of SPEC integer benchmarks.
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[Source: Figure 4 of "A New Golden Age for Computer Architecture”,
J. Hennesy, D. Patterson Comm. of the ACM, Feb 2019]



n 2000s, computer architects hit real limits improving single-threaded
nerformance .

Intel Performance from ILP
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n 2000s, computer architects hit real limits improving single-threaded

nerformance .

Intel Power Over Time

100

m
)
)
©
£
|
v
3
o
o

[Source: Figure 3 of
“The Future of Multiprocessors”,

S N NN N N S R N N R
0 1995 1997 1999 2001 2003 K. Olukotun, L. Hammond

1985 1987 1989 1991 1993
ACM Queue, 2005]




HISTORY: LIMITS TO SINGLE PROCESSOR PERFORMANCE

n 2000s, computer architects hit real limits improving single-threaded
nerformance .

Figure 6. Growth of computer performance using integer programs (SPECintCPU).
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Dual-Core Itanium 2

Intel CPU Trends

(sources: Intel, Wikipedia, K. Olukotun)
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Figure 1: Intel CPU Introductions (graph updated August 2009; article text original from December 2004)




Dual-Core Itanium 2

Intel CPU Trends

(sources: Intel, Wikipedia, K. Olukotun)
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PARALLELISM: MULTICORE
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Science

There's plenty of room at the Top: What will drive computer performance after Moore's law?

Charles E. Leiserson, Neil C. Thompson, Joel S. Emer, Bradley C. Kuszmaul, Butler W. Lampson, Daniel Sanchez and Tao B.
Schardl

Science 368 (6495), eaam9744.
DOI: 10.1126/science.aam9744

From bottom to top
The doubling of the number of transistors on a chip every 2 years, a seemly inevitable trend that has been called
Moore's law, has contributed immensely to improvements in computer performance. However, silicon-based transistors
cannot get much smaller than they are today, and other approaches should be explored to keep performance growing.
Leiserson et al. review recent examples and argue that the most promising place to look is at the top of the computing
stack, where improvements in software, algorithms, and hardware architecture can bring the much-needed boost.
Science, this issue p. eaam9744
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Fig. 2. SPECint (largely serial) performance, SPECint-rate (parallel) performance, and clock-frequency

scaling for microprocessors from 1985 to 2015, normalized to the Intel 80386 DX microprocessor in
1985 Micronrocessors and their clock freauencies were obtained from the Stanford CPl) database (56)




Science

There's plenty of room at the Top: What will drive computer performance after Moore's law?

Charles E. Leiserson, Neil C. Thompson, Joel S. Emer, Bradley C. Kuszmaul, Butler W. Lampson, Daniel Sanchez and Tao B.
Schard|

Table 1. Speedups from performance engineering a program that multiplies two 4096-by-4096 matrices. Each version represents a successive
refinement of the original Python code. “Running time” is the running time of the version. “GFLOPS"” is the billions of 64-bit floating-point operations per
second that the version executes. “Absolute speedup” is time relative to Python, and “relative speedup,” which we show with an additional digit of precision,
is time relative to the preceding line. “Fraction of peak” is GFLOPS relative to the computer’'s peak 835 GFLOPS. See Methods for more details.

Implementation Running time (s) GFLOPS Absolute speedup Relative speedup o fF;::(;:/o)

25,552.48

plus AVX intrinsics : 337.812

[Source: Table 1 of “There’s Plenty of Room at the Top:...
C. Leiserson et al., Science, Jun 2020]




OPPORTUNITIES FOR PERFORMANCE IMPROVEMENT

Table 1. Speedups from performance engineering a program that multiplies two 4096-by-4096 matrices. Each version represents a successive ON fo r fo u r o pti m izatio n s .
refinement of the original Python code. “Running time” is the running time of the version. “GFLOPS" is the billions of 64-bit floating-point operations per

second that the version executes. “Absolute speedup” is time relative to Python, and “relative speedup,” which we show with an additional digit of precision,

is time relative to the preceding line. “Fraction of peak” is GFLOPS relative to the computer's peak 835 GFLOPS. See Methods for more details.

Version Implementation Running time (s) GFLOPS Absolute speedup Relative speedup ofF;:(a::t::’IA: )

Python 25,552.48 0.005 1 = 0.00

Java 2,372.68 0.058 11 10.8 0.01

C 542.67 0.253 47 4.4 0.03

Parallel loops 69.80 1.969 7.8 0.24
Parallel divide and conquer 3.80 36.180 184 433
plus vectorization 110 124914 35 14.96
plus AVX intrinsics 0.41 337.812 2.7 40.45

10,000

1,000

100

+ parallel + memory + SIMD
loops optimization instructions

[Source: Figure 7 of "A New Golden Age for Computer Architecture”,
J. Hennesy, D. Patterson Comm. of the ACM, Feb 2019]




OPPORTUNITIES FOR PERFORMANCE IMPROVEMENT

Figure 7. Potential speedup of matrix multiply in Python for four optimizations.

Matrix Multiply Speedup Over Native Python
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[Source: Figure 7 of "A New Golden Age for Computer Architecture”,
J. Hennesy, D. Patterson Comm. of the ACM, Feb 2019; quoting C. Leiserson et al.
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DOMAIN SPECIFIC PARALLELISM: GRAPHICS PROCESSOR
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DOMAIN- SPECIFIC PARALLELISM GOOGLE'S TENSOR PROCESSOR

ing Unit (TPU v1).

LA GlEs DDR3 30 GiB/s Weight FIFO
E Interfaces :D (Weight Fetcher)
|:> m ﬂ 30 GiB/s

10 GiB/s |Unified Buffer Systolic GiB/s Matrix

(Local Array Multiply Unit

Activation
Storage) Control (64K per cycle)

Figure 8. Functional organization of Google Ten

Normalize/Pool

[Source: Figure 8 of "A New Golden Age for Computer Architecture”,
J. Hennesy, D. Patterson Comm. of the ACM, Feb 2019]
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PROGRAMMING FOR YOU BEFORE VERSUS NOW
CSCI 121 and CSCI 221 teach "sequential programming":

» Program does one thing at a time, in sequence.

In this course we start with multithreaded programming
» Structure computation using several threads of execution; coordinate them.
= Seek to gain throughput, have parallel activity offer speedup.

= Need to support concurrent access to data.

This creates interesting challenges and opportunities in program design.
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EXAMPLE ALGORITHM: MERGE SORT

Let's “parallelize” a standard sorting algorithm...

[Reading: Chapter 27.3 of CLRS algorithms textbook]
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SEMESTER TOPICS RESPONSIBILITIES

»parallel merge sort, quick sort, radix sort )

» parallel reduction/scan; map-reduce

»work-efficient parallel prefix

>fork-join model )

»work and span analysis

»parallel RAM (PRAM) model READING
»algorithms on 1-D and 2-D arrays » no text

» oblivious parallel sorting networks

»parallel graph algorithms » selected readlngs

/[petellil Seg Ui Elme s * papers and on-line materials
»parallel task scheduling with work-stealing

»the Go language; "goroutines”; channels; synchronization

»pthreads C library; sychronization with mutexes and condition variables

» GPU programming and CUDA

»parallel complexity; Nick's class; P-completeness
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RESOURCES

» Can use your own computer to prototype
= Go language, pthreads C library available on any system
»Should hopefully also gain access to patty.reed.edu and polly.reed.edu
= Sitting in my office but maintained by Cstar
» Patty’s specs:
= 32 AMD Ryzen “threadripper” cores
= NVidia GeForce RTX 2080 GPU

+3072 small processors organized as 192 stream multiprocessors



