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TODAY

▸What is parallelism? What is concurrency? 

▸Why learn parallel programming and concurrency mechanisms? 

➡ Driven by trends in hardware and system design, deployment. 

▸Example parallel algorithm: merge sort 

➡ design and pseudocode 

➡ implementation in the Go language 

▸Brief overview of course and covered topics. 

➡ course web page: https://jimfix.github.io/csci361/



▸  The two concepts are often confused; equated/conflated

LECTURE 01-1: PARALLELISM & CONCURRENCY

PARALLELISM VERSUS CONCURRENCY

resources

work

resource

requests

parallelism - use several 
computational resources to 

solve a problem faster

concurrence - manage access 
to a shared resource  

(correctly and efficiently)

[From D. Grossman (UW)]



HISTORY: MOORE’S LAW AND SINGLE PROCESSOR PERFORMANCE
▸For years, single processor performance improved exponentally. 

➡ Moore’s Law: chip features (e.g. wires, transistors) can continually be made smaller 

➡ performance doubled (roughly) every 2.5 years. 

  

LECTURE 01-1: PARALLELISM & CONCURRENCY



HISTORY: MOORE’S LAW AND SINGLE PROCESSOR PERFORMANCE
▸For years, single processor performance improved exponentally. 

➡ Moore’s Law: chip features (e.g. wires, transistors) can continually be made smaller 

➡ performance doubled (roughly) every 2.5 years. 

  

LECTURE 01-1: PARALLELISM & CONCURRENCY

[Source: Wikimedia  
“Moore’s Law  
Transistor Count  
1979-2020”]
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extremely small, fast, and compiler-managed region of 
“memory.” 

Within processors, this has resulted in a variety of 
modifi cations designed to achieve one of two goals: 
increasing the number of instructions from the proces-
sor’s instruction sequence that can be issued on every 
cycle, or increasing the clock frequency of the processor 
faster than Moore’s law would normally allow. Pipelin-
ing of individual instruction execution into a sequence 
of stages has allowed designers to increase clock rates 
as instructions have been sliced into larger numbers of 
increasingly small steps, which are designed to reduce 
the amount of logic that needs to switch during every 
clock cycle. Instructions that once took a few cycles to 
execute in the 1980s now often take 20 or more in today’s 
leading-edge processors, allowing a nearly proportional 
increase in the possible clock rate. 

Meanwhile, superscalar processors were developed to 
execute multiple instructions from a single, conventional 
instruction stream on each 
cycle. These function by 
dynamically examining 
sets of instructions from 
the instruction stream 
to fi nd ones capable of 
parallel execution on each 
cycle, and then executing 
them, often out of order 
with respect to the original 
program. 

Both techniques have 
fl ourished because they 
allow instructions to 
execute more quickly while 
maintaining the key illu-
sion for programmers that 
all instructions are actually 
being executed sequen-
tially and in order, instead 
of overlapped and out of 

order. Of course, this illusion is not absolute. Performance 
can often be improved if programmers or compilers 
adjust their instruction scheduling and data layout to 
map more effi ciently to the underlying pipelined or paral-
lel architecture and cache memories, but the important 
point is that old or untuned code will still execute cor-
rectly on the architecture, albeit at less-than-peak speeds.

Unfortunately, it is becoming increasingly diffi cult for 
processor designers to continue using these techniques 
to enhance the speed of modern processors. Typical 
instruction streams have only a limited amount of usable 
parallelism among instructions,3 so superscalar processors 
that can issue more than about four instructions per cycle 
achieve very little additional benefi t on most applica-
tions. Figure 2 shows how effective real Intel processors 
have been at extracting instruction parallelism over time. 
There is a fl at region before instruction-level parallelism 
was pursued intensely, then a steep rise as parallelism was 
utilized usefully, followed by a tapering off in recent years 
as the available parallelism has become fully exploited. 

Complicating matters further, building superscalar 
processor cores that can exploit more than a few instruc-
tions per cycle becomes very expensive, because the 
complexity of all the additional logic required to fi nd 
parallel instructions dynamically is approximately pro-
portional to the square of the number of instructions that 
can be issued simultaneously. Similarly, pipelining past 
about 10-20 stages is diffi cult because each pipeline stage 
becomes too short to perform even a minimal amount of 
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HISTORY: MOORE’S LAW AND SINGLE PROCESSOR PERFORMANCE

▸  Because of chip improvements, clock speed could be increased. 

▸  And also processor could do more with all the extra transistors: 

•memory caches 

•pipelining 

• superscalar designs 

• out-of-order execution 

• speculative execution 

• vector, VLIW designs 
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these are all forms of 
parallelism



MIPS R3000A (1988)
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PARALLELISM: PIPELINING
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[Source: Figure 2 of 
“A New Golden Age 
for Computer Architecture”, 
J. Hennesy, D. Patterson  
Comm. of the ACM, Feb 2019]
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tion of the RISC microinstructions. 
Any ideas RISC designers were using 
for performance—separate instruc-
tion and data caches, second-level 
caches on chip, deep pipelines, and 
fetching and executing several in-
structions simultaneously—could 
then be incorporated into the x86. 
AMD and Intel shipped roughly 350 
million x86 microprocessors annually 
at the peak of the PC era in 2011. The 
high volumes and low margins of the 
PC industry also meant lower prices 
than RISC computers. 

Given the hundreds of millions 
of PCs sold worldwide each year, PC 
software became a giant market. 
Whereas software providers for the 
Unix marketplace would offer differ-
ent software versions for the differ-
ent commercial RISC ISAs—Alpha, 
HP-PA, MIPS, Power, and SPARC—the 
PC market enjoyed a single ISA, so 
software developers shipped “shrink 
wrap” software that was binary com-
patible with only the x86 ISA. A much 
larger software base, similar perfor-
mance, and lower prices led the x86 
to dominate both desktop computers 
and small-server markets by 2000. 

Apple helped launch the post-PC 
era with the iPhone in 2007. Instead of 
buying microprocessors, smartphone 
companies built their own systems 
on a chip (SoC) using designs from 
other companies, including RISC 
processors from ARM. Mobile-device 
designers valued die area and energy 
efficiency as much as performance, 
disadvantaging CISC ISAs. Moreover, 
arrival of the Internet of Things vastly 
increased both the number of proces-
sors and the required trade-offs in die 
size, power, cost, and performance. 
This trend increased the importance 
of design time and cost, further dis-
advantaging CISC processors. In to-
day’s post-PC era, x86 shipments have 
fallen almost 10% per year since the 
peak in 2011, while chips with RISC 
processors have skyrocketed to 20 bil-
lion. Today, 99% of 32-bit and 64-bit 
processors are RISC. 

Concluding this historical review, 
we can say the marketplace settled the 
RISC-CISC debate; CISC won the later 
stages of the PC era, but RISC is win-
ning the post-PC era. There have been 
no new CISC ISAs in decades. To our 
surprise, the consensus on the best 

to write.” Pundits noted delays and 
underperformance of Itanium and re-
christened it “Itanic” after the ill-fated 
Titantic passenger ship. The market-
place again eventually ran out of pa-
tience, leading to a 64-bit version of 
the x86 as the successor to the 32-bit 
x86, and not Itanium. 

The good news is VLIW still matches 
narrower applications with small pro-
grams and simpler branches and omit 
caches, including digital-signal processing. 

RISC vs. CISC in the   
PC and Post-PC Eras 
AMD and Intel used 500-person de-
sign teams and superior semicon-
ductor technology to close the per-
formance gap between x86 and RISC. 
Again inspired by the performance 
advantages of pipelining simple vs. 
complex instructions, the instruction 
decoder translated the complex x86 
instructions into internal RISC-like 
microinstructions on the fly. AMD 
and Intel then pipelined the execu-

operations—two data transfers, two in-
teger operations, and two floating point 
operations—and compiler technology 
could efficiently assign operations into 
the six instruction slots, the hardware 
could be made simpler. Like the RISC 
approach, VLIW and EPIC shifted work 
from the hardware to the compiler. 

Working together, Intel and Hewlett 
Packard designed a 64-bit processor based 
on EPIC ideas to replace the 32-bit x86. 
High expectations were set for the first 
EPIC processor, called Itanium by In-
tel and Hewlett Packard, but the real-
ity did not match its developers’ early 
claims. Although the EPIC approach 
worked well for highly structured 
floating-point programs, it struggled 
to achieve high performance for in-
teger programs that had less predict-
able cache misses or less-predictable 
branches. As Donald Knuth later 
noted:21 “The Itanium approach ... 
was supposed to be so terrific—un-
til it turned out that the wished-for 
compilers were basically impossible 

Figure 3. Transistors per chip and power per mm2. 
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Figure 2. Transistors per chip of Intel microprocessors vs. Moore’s Law. 
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cluding approximately 15 branches, 
as they represent approximately 25% 
of executed instructions. To keep the 
pipeline full, branches are predicted 
and code is speculatively placed into 
the pipeline for execution. The use 
of speculation is both the source of 
ILP performance and of inefficiency. 
When branch prediction is perfect, 
speculation improves performance 
yet involves little added energy cost—
it can even save energy—but when it 
“mispredicts” branches, the proces-
sor must throw away the incorrectly 
speculated instructions, and their 
computational work and energy are 
wasted. The internal state of the pro-
cessor must also be restored to the 
state that existed before the mispre-
dicted branch, expending additional 
time and energy. 

To see how challenging such a design 
is, consider the difficulty of correctly 

ISA principles for general-purpose 
processors today is still RISC, 35 years 
after their introduction.

Current Challenges for  
Processor Architecture 
“If a problem has no solution, it may 
not be a problem, but a fact—not to be 
solved, but to be coped with over time.” 
 —Shimon Peres 

While the previous section focused 
on the design of the instruction set 
architecture (ISA), most computer 
architects do not design new ISAs 
but implement existing ISAs in the 
prevailing implementation technol-
ogy. Since the late 1970s, the technol-
ogy of choice has been metal oxide 
semiconductor (MOS)-based inte-
grated circuits, first n-type metal–ox-
ide semiconductor (nMOS) and then 
complementary metal–oxide semi-
conductor (CMOS). The stunning rate 
of improvement in MOS technology—
captured in Gordon Moore’s predic-
tions—has been the driving factor 
enabling architects to design more-
aggressive methods for achieving 
performance for a given ISA. Moore’s 
original prediction in 196526 called 
for a doubling in transistor density 
yearly; in 1975, he revised it, project-
ing a doubling every two years.28 It 
eventually became called Moore’s 
Law. Because transistor density grows 
quadratically while speed grows lin-
early, architects used more transis-
tors to improve performance.

End of Moore’s Law and  
Dennard Scaling 
Although Moore’s Law held for many 
decades (see Figure 2), it began to slow 
sometime around 2000 and by 2018 
showed a roughly 15-fold gap between 
Moore’s prediction and current capa-
bility, an observation Moore made in 
2003 that was inevitable.27 The current 
expectation is that the gap will con-
tinue to grow as CMOS technology ap-
proaches fundamental limits. 

Accompanying Moore’s Law was a 
projection made by Robert Dennard 
called “Dennard scaling,”5 stating that 
as transistor density increased, power 
consumption per transistor would 
drop, so the power per mm2 of sili-
con would be near constant. Since the 
computational capability of a mm2 of 
silicon was increasing with each new 

generation of technology, computers 
would become more energy efficient. 
Dennard scaling began to slow sig-
nificantly in 2007 and faded to almost 
nothing by 2012 (see Figure 3). 

Between 1986 and about 2002, the 
exploitation of instruction level paral-
lelism (ILP) was the primary architec-
tural method for gaining performance 
and, along with improvements in speed 
of transistors, led to an annual perfor-
mance increase of approximately 50%. 
The end of Dennard scaling meant ar-
chitects had to find more efficient ways 
to exploit parallelism. 

To understand why increasing ILP 
caused greater inefficiency, consider 
a modern processor core like those 
from ARM, Intel, and AMD. Assume it 
has a 15-stage pipeline and can issue 
four instructions every clock cycle. It 
thus has up to 60 instructions in the 
pipeline at any moment in time, in-

Figure 4. Wasted instructions as a percentage of all instructions completed on an Intel 
Core i7 for a variety of SPEC integer benchmarks. 
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logic, such as adding two integers together, beyond which 
the design of the pipeline is signifi cantly more complex. 
In addition, the circuitry overhead from adding pipeline 
registers and bypass path multiplexers to the existing 
logic combines with performance losses from events that 
cause pipeline state to be fl ushed, primarily branches. 
This overwhelms any potential performance gain from 
deeper pipelining after about 30 stages. 

Further advances in both superscalar issue and pipelin-
ing are also limited by the fact that they require ever-
larger numbers of transistors to be integrated into the 
high-speed central logic within each processor core—so 
many, in fact, that few companies can afford to hire 
enough engineers to design and verify these processor 
cores in reasonable amounts of time. These trends have 
slowed the advance in processor performance somewhat 
and have forced many smaller vendors to forsake the 
high-end processor business, as they could no longer 
afford to compete effectively.

Today, however, all progress in conventional processor 
core development has essentially stopped because of a 
simple physical limit: power. As processors were pipe-
lined and made increasingly superscalar over the course 
of the past two decades, typical high-end microprocessor 
power went from less than a watt to over 100 watts. Even 
though each silicon process generation promised a reduc-
tion in power, as the ever-smaller transistors required 
less power to switch, this was true in practice only when 
existing designs were simply “shrunk” to use the new 

process technology. Processor designers, however, kept 
using more transistors in their cores to add pipelining 
and superscalar issue, and switching them at higher and 
higher frequencies. The overall effect was that expo-
nentially more power was required by each subsequent 
processor generation (as illustrated in fi gure 3). 

Unfortunately, cooling technology does not scale 
exponentially nearly as easily. As a result, processors went 
from needing no heat sinks in the 1980s, to moderate-size 
heat sinks in the 1990s, to today’s monstrous heat sinks, 
often with one or more dedicated fans to increase airfl ow 
over the processor. If these trends were to continue, the 
next generation of microprocessors would require very 
exotic cooling solutions, such as dedicated water cool-
ing, that are economically impractical in all but the most 
expensive systems.

The combination of limited instruction parallelism 
suitable for superscalar issue, practical limits to pipelin-
ing, and a “power ceiling” limited by practical cooling 
limitations has limited future speed increases within 
conventional processor cores to the basic Moore’s law 
improvement rate of the underlying transistors. This 
limitation is already causing major processor manufactur-
ers such as Intel and AMD to adjust their marketing focus 
away from simple core clock rate. 

Although larger cache memories will continue to 
improve performance somewhat, by speeding access to 
the single “memory” in the conventional model, the 
simple fact is that without more radical changes in pro-

cessor design, microproces-
sor performance increases 
will slow dramatically 
in the future. Processor 
designers must fi nd new 
ways to effectively utilize 
the increasing transis-
tor budgets in high-end 
silicon chips to improve 
performance in ways that 
minimize both additional 
power usage and design 
complexity. The market 
for microprocessors has 
become stratifi ed into areas 
with different performance 
requirements, so it is useful 
to examine the problem 
from the point of view 
of these different perfor-
mance requirements.
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THROUGHPUT PERFORMANCE IMPROVEMENT
With the rise of the Internet, the need for servers capable 
of handling a multitude of independent requests arriving 
rapidly over the network has increased dramatically. Since 
individual network requests are typically completely 
independent tasks, whether those requests are for Web 
pages, database access, or fi le service, they are typically 
spread across many separate computers built using high-
performance conventional microprocessors (fi gure 4a), 
a technique that has been used at places like Google for 
years to match the overall computation throughput to 
the input request rate.4 

As the number of requests increased over time, more 
servers were added to the collection. It has also been 
possible to replace some or all of the separate servers with 
multiprocessors. Most existing multiprocessors consist 
of two or more separate processors connected using a 
common bus, switch hub, or network to shared memory 
and I/O devices. The overall system can usually be physi-
cally smaller and use less 
power than an equiva-
lent set of uniprocessor 
systems because physically 
large components such 
as memory, hard drives, 
and power supplies can be 
shared by some or all of 
the processors.

Pressure has increased 
over time to achieve more 
performance per unit 
volume of data-center 
space and per watt, since 
data centers have fi nite 
room for servers and their 
electric bills can be stagger-
ing. In response, the server 
manufacturers have tried 
to save space by adopting 
denser server packaging 

solutions, such as blade servers and switching to mul-
tiprocessors that can share components. Some power 
reduction has also occurred through the sharing of more 
power-hungry components in these systems. These short-
term solutions are reaching their practical limits, how-
ever, as systems are reaching the maximum component 
density that can still be effectively air-cooled. As a result, 
the next stage of development for these systems involves 
a new step: the CMP (chip multiprocessor).5

The fi rst CMPs targeted toward the server market 
implement two or more conventional superscalar proces-
sors together on a single die.6,7,8,9 The primary motivation 
for this is reduced volume—multiple processors can now 
fi t in the space where formerly only one could, so overall 
performance per unit volume can be increased. Some 
savings in power also occurs because all of the proces-
sors on a single die can share a single connection to the 
rest of the system, reducing the amount of high-speed 
communication infrastructure required, in addition to 
the sharing possible with a conventional multiprocessor. 
Some CMPs, such as the fi rst ones announced from AMD 
and Intel, share only the system interface between proces-
sor cores (illustrated in fi gure 4b), but others share one 
or more levels of on-chip cache (fi gure 4c), which allows 
interprocessor communication between the CMP cores 
without off-chip accesses.

Further savings in power can be achieved by taking 
advantage of the fact that while server workloads require 
high throughput, the latency of each request is generally 
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ent approach to achieve performance 
improvements. The multicore era was 
thus born. 

Multicore shifted responsibility for 
identifying parallelism and deciding 
how to exploit it to the programmer 
and to the language system. Multicore 
does not resolve the challenge of ener-
gy-efficient computation that was exac-
erbated by the end of Dennard scaling. 
Each active core burns power whether 
or not it contributes effectively to the 
computation. A primary hurdle is an 
old observation, called Amdahl’s Law, 
stating that the speedup from a paral-
lel computer is limited by the portion 
of a computation that is sequential. 
To appreciate the importance of this 
observation, consider Figure 5, show-
ing how much faster an application 
runs with up to 64 cores compared to 

a single core, assuming different por-
tions of serial execution, where only 
one processor is active. For example, 
when only 1% of the time is serial, the 
speedup for a 64-processor configura-
tion is about 35. Unfortunately, the 
power needed is proportional to 64 
processors, so approximately 45% of 
the energy is wasted. 

Real programs have more complex 
structures of course, with portions 
that allow varying numbers of proces-
sors to be used at any given moment 
in time. Nonetheless, the need to com-
municate and synchronize periodically 
means most applications have some 
portions that can effectively use only 
a fraction of the processors. Although 
Amdahl’s Law is more than 50 years 
old, it remains a difficult hurdle. 

With the end of Dennard scaling, 
increasing the number of cores on a 
chip meant power is also increasing 
at nearly the same rate. Unfortunately, 
the power that goes into a processor 
must also be removed as heat. Mul-
ticore processors are thus limited by 
the thermal dissipation power (TDP), 
or average amount of power the pack-
age and cooling system can remove. 
Although some high-end data centers 
may use more advanced packages and 
cooling technology, no computer us-
ers would want to put a small heat 
exchanger on their desks or wear a ra-
diator on their backs to cool their cell-
phones. The limit of TDP led directly 
to the era of “dark silicon,” whereby 
processors would slow on the clock 
rate and turn off idle cores to prevent 
overheating. Another way to view this 
approach is that some chips can real-
locate their precious power from the 
idle cores to the active ones. 

An era without Dennard scaling, 
along with reduced Moore’s Law and 
Amdahl’s Law in full effect means 
inefficiency limits improvement in 
performance to only a few percent 
per year (see Figure 6). Achieving 
higher rates of performance improve-
ment—as was seen in the 1980s and 
1990s—will require new architec-
tural approaches that use the inte-
grated-circuit capability much more 
efficiently. We will return to what ap-
proaches might work after discussing 
another major shortcoming of mod-
ern computers—their support, or 
lack thereof, for computer security. 

predicting the outcome of 15 branches. 
If a processor architect wants to limit 
wasted work to only 10% of the time, 
the processor must predict each branch 
correctly 99.3% of the time. Few general-
purpose programs have branches that 
can be predicted so accurately. 

To appreciate how this wasted work 
adds up, consider the data in Figure 4, 
showing the fraction of instructions 
that are effectively executed but turn 
out to be wasted because the proces-
sor speculated incorrectly. On average, 
19% of the instructions are wasted for 
these benchmarks on an Intel Core i7. 
The amount of wasted energy is great-
er, however, since the processor must 
use additional energy to restore the 
state when it speculates incorrectly. 
Measurements like these led many to 
conclude architects needed a differ-

Figure 6. Growth of computer performance using integer programs (SPECintCPU). 

Figure 7. Potential speedup of matrix multiply in Python for four optimizations. 
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HISTORY: LIMITS TO SINGLE PROCESSOR PERFORMANCE
▸In 2000s, computer architects hit real limits improving single-threaded 
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HISTORY: MOORE’S LAW AND SINGLE PROCESSOR PERFORMANCE
▸For years, single processor performance improved exponentally. 

➡ Moore’s Law: chip features (e.g. wires, transistors) can continually be made smaller 

➡ performance doubled (rougly) every 2.5 years. 
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designed using the serial random-access ma-
chine model (24) originally developed in the
1960s and 1970s, which assumes that a pro-
cessor can do only one operation at a time
and that the cost to access any part of the
memory is the same. Such algorithms often
use modern hardware inefficiently because
they underutilize themachine’smany parallel-
processing cores and vector units, each of
which can performmany operations per clock
cycle, and they fail to exploit caching, which
can speed up data accesses by two orders of
magnitude.
Although algorithms research has devel-

opedmathematical models for salient features
of modern computers, such as parallel and
vector processing (25–32) and cache hierar-
chies (33–35), a substantial gap between al-
gorithm and implementation remains. Part
of the problem is that each model tends to
address just one aspect—such as parallelism,
vector units, or caching—and yet tailoring an
algorithm to a modern computer requires an
understanding of all of them. Moreover, in
an effort to gain every bit of performance, some
hardware features—such as simultaneous mul-
tithreading, dynamic voltage and frequency
scaling, direct-mapped caches, and various
special-purpose instructions—actually make
it more difficult to tailor algorithms to hard-
ware, because they cause variability and un-
predictability that simple theoretical models
cannot easily capture.
One possible solution is autotuning (36, 37),

which searches a parametrized space of pos-
sible implementations to find the fastest
one. With modern machine learning, it may
even be possible to include implementations
that differ by more than the values of a few
parameters. Unfortunately, autotuning and
machine learning tend to be too time con-
suming to ask that every algorithm incur this
large up-front cost. Furthermore, these ap-
proaches actuallymakealgorithmdesignharder,
because the designer cannot easily understand
the ramifications of a design choice. In the post-
Moore era, it will be essential for algorithm
designers and hardware architects to work
together to find simple abstractions that de-
signers can understand and that architects
can implement efficiently.

Hardware architecture

Historically, computer architects used more
and more transistors to make serial computa-
tions run faster, vastly increasing the com-
plexity of processing cores, even though gains
in performance suffered from diminishing
returns over time (38). We argue that in the
post-Moore era, architects will need to adopt
the opposite strategy and focus on hardware
streamlining: implementing hardware func-
tions using fewer transistors and less sili-
con area.

As we shall see, the primary advantage of
hardware streamlining comes from provid-
ing additional chip area for more circuitry
to operate in parallel. Thus, the greatest ben-
efit accrues to applications that have ample
parallelism. Indeed, the performance of hard-
ware for applications without much parallel-
ism has already stagnated. But there is plenty
of parallelism in many emerging application
domains, such as machine learning, graphics,
video and image processing, sensory comput-
ing, and signal processing. Computer architects
should be able to design streamlined archi-
tectures to provide increasing performance for
these and other domains for many years after
Moore’s law ends.
We can use historical data to observe the

trend of architectural reliance on parallel-
ism. Figure 2 plots three sets of benchmark
data for microprocessors: SPECint performance
(black squares and gray diamonds), SPECint-
rate performance (black, orange, blue, and
red squares), and microprocessor clock fre-
quency (green dots). As the green dots in the
figure show, clock speed increased by a fac-
tor of more than 200 from 1985 to 2005, when
it plateaued owing to the end of Dennard
scaling, which we shall discuss shortly. Driven
by increasing clock speed and other architec-

tural changes during the Dennard-scaling era,
microprocessor performance rapidly improved,
as measured by the SPECint and SPECint-
rate benchmarks (black squares), which aim
to model computer performance on typical
user workloads (39). The SPECint benchmark
consists of mostly serial code, whereas the
SPECint-rate benchmark is parallel. The two
benchmarks perform the same on single-
processor computers. But after 2004, as ma-
chines added multiple cores and other forms
of explicit parallelism, the two diverge. In-
deed, the performance of parallel applications
on the best-performing chips in each year
(colored squares) grew by a factor of 30 from
2004 to 2015, improving on average by about
a factor of two every 2 years. By contrast, over
the same time period, the largely serial SPECint
benchmark (gray diamonds) scaled up by only
a factor of three.
Besides parallelism, an application needs

locality to benefit from streamlining. As an ex-
ample, when data are transferred from external
dynamic random access memory (DRAM)
memory chips to a processing chip, it should
be usedmultiple times before being transferred
back. For an application with little locality,
increasing parallelism causes traffic to off-
chip memory to increase proportionally and
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Fig. 2. SPECint (largely serial) performance, SPECint-rate (parallel) performance, and clock-frequency
scaling for microprocessors from 1985 to 2015, normalized to the Intel 80386 DX microprocessor in
1985. Microprocessors and their clock frequencies were obtained from the Stanford CPU database (56).
Microprocessor performance is measured in terms of scaled performance scores on the SPECint and
SPECint-rate performance benchmarks obtained from (39). (See Methods for details.) Black squares identify
single-core processors, for which SPECint and SPECint-rate benchmark performances are the same.
Orange, blue, and red squares plot the SPECint-rate benchmark performance of various multicore processors,
where orange squares identify processors with two to three cores, blue squares identify processors with four
to seven cores, and red squares identify processors with eight or more cores. The gray diamonds plot the
SPECint benchmark performance on multicore processors. The round green dots plot processor clock frequencies
(also normalized to the Intel 80386). The gray background highlights the Dennard-scaling era (nominally up
to 2004), and the white background highlights the multicore era (beyond 2004).
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classes. It turns out, however, that this naïve
code leaves much of the performance available
on modern computers “on the table.” The code
takes about 7 hours on a modern computer to
compute the matrix product, as shown by
the first row (version 1) in Table 1, achieving
only 0.0006% of the peak performance of the
machine. (Incidentally, Python 3 requires about
9 hours for the same computation.)
How can this naïve matrix-multiplication

code be performance engineered? Simply choos-
ing a more efficient programming language
speeds up this calculation dramatically. For
example, coding it in Java (version 2) produces
a speedupof 10.8×, and coding it in C (version 3)
produces an additional speedup of 4.4×, yield-
ing an execution time that is 47 times faster
than the original Python. This performance
improvement comes from reducing thenumber
of operations the program performs. In partic-
ular, Java and C avoid the extraneous work
that Python does under the hood to make
programming easier. The price for this per-
formance gain is programmer productivity:
Coding in C is more onerous than coding in
Python, and Java lies somewhere in between.
Although switching languages gains a speed-

up of almost 50×, tailoring the matrix code to
exploit specific features of the hardware makes
it run an additional 1300 times faster. This gain
comes from parallelizing the code to run on all
18 of the processing cores (version 4), exploiting
the processor’s memory hierarchy (version 5),
vectorizing the code (version 6), and using
Intel’s special Advanced Vector Extensions
(AVX) instructions (version 7). The final op-
timized code performs the task in only 0.41 s—
more than 60,000 times faster than the 7 hours
of the original Python code!
The point of this example is to illustrate the

potential gains available from performance
engineering naïvely coded software. In the par-
ticular case of matrix multiplication, a good
programmer could avoid this programming
effort by using optimized code from existing

software libraries. If she were writing code to
solve a new problem, however, shewould need
to optimize the code herself. And although not
every application can improve by nearly five
orders of magnitude through performance
engineering, most modern software systems
contain ample opportunity for performance
enhancement, especially if the codebase is
large enough.
During the post-Moore era, it will become

ever more important to make code run fast
and, in particular, to tailor it to the hardware
on which it runs. Modern computers provide
architectural features designed to make code
run fast. For example, versions 4 and 6 exploit
parallelism, which is the ability of computers
to perform multiple operations at the same
time. Version 5 exploits locality, which is the
computer’s ability to access data elements ef-
ficiently when they are collocated in memory
(spatial locality) or have been accessed re-
cently (temporal locality). Version 7 exploits
both parallelism and locality through care-
fully coordinated use of Intel’s AVX instructions.
As we shall see in the Hardware architecture
section, architectures are likely to become in-
creasingly heterogeneous, incorporating both
general-purpose and special-purpose circuitry.
To improve performance, programs will need
to expose more parallelism and locality for the
hardware to exploit. In addition, software per-
formance engineers will need to collaborate
with hardware architects so that new pro-
cessors present simple and compelling ab-
stractions that make it as easy as possible to
exploit the hardware.
Beyond the tailoring of software to hard-

ware is the question of bloat: Where does
software bloat come from? Certainly, some
bloat comes from trading off efficiency for
other desirable traits, such as coding ease, as
versions 1 to 3 of the matrix-multiplication
code illustrate. Bloat also comes from a failure
to tailor code to the underlying architecture,
as versions 4 to 7 show. But much software

bloat arises from software-development strat-
egies (13, 14), such as reduction.
The idea of reduction is this. Imagine that

you are a programmer who has been given a
problem A to solve (for example, distinguish-
ing between a yes or no spoken response).
You could write specialized code to solve A
directly, but instead, you might notice that
a related problem B has already been solved
(existing speech-recognition software that
understands many words, including yes and
no). It will take you far less effort to solve A
by converting it into a problem that can be
solved with the existing code for B, that is, by
reducing A to B.
Inefficiencies can arise both from the re-

duction itself (translating A to B) and from
the generality of B (the solution to B is not
tailored specifically to A). But the largest bloat
arises from the compounding of reductions:
reducing A to B, B to C, C to D, and so on.
Even if each reduction achieves an impressive
80% efficiency, a sequence of two independent
reductions achieves just 80% × 80% = 64%.
Compounding 20 more times yields an effi-
ciency of less than 1%, or 100× in bloat.
Because of the accumulated bloat created by

years of reductionist design during the Moore
era, there are great opportunities to make pro-
grams run faster. Unfortunately, directly solving
problem A using specialized software requires
expertise both in the domain of A and in per-
formance engineering, which makes the pro-
cess more costly and risky than simply using
reductions. The resulting specialized software
to solve A is often more complex than the soft-
ware that reduces A to B. For example, the fully
optimized code in Table 1 (version 7) is more
than 20 times longer than the source code for
the original Python version (version 1).
Indeed, simple code tends to be slow, and

fast code tends to be complicated. To create a
world where it is easy to write fast code, appli-
cation programmersmust be equipped with the
knowledge and skills to performance-engineer
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Table 1. Speedups from performance engineering a program that multiplies two 4096-by-4096 matrices. Each version represents a successive
refinement of the original Python code. “Running time” is the running time of the version. “GFLOPS” is the billions of 64-bit floating-point operations per
second that the version executes. “Absolute speedup” is time relative to Python, and “relative speedup,” which we show with an additional digit of precision,
is time relative to the preceding line. “Fraction of peak” is GFLOPS relative to the computer’s peak 835 GFLOPS. See Methods for more details.

Version Implementation Running time (s) GFLOPS Absolute speedup Relative speedup
Fraction

of peak (%)

1 Python 25,552.48 0.005 1 — 0.00
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

2 Java 2,372.68 0.058 11 10.8 0.01
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

3 C 542.67 0.253 47 4.4 0.03
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

4 Parallel loops 69.80 1.969 366 7.8 0.24
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

5 Parallel divide and conquer 3.80 36.180 6,727 18.4 4.33
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

6 plus vectorization 1.10 124.914 23,224 3.5 14.96
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

7 plus AVX intrinsics 0.41 337.812 62,806 2.7 40.45
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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ent approach to achieve performance 
improvements. The multicore era was 
thus born. 

Multicore shifted responsibility for 
identifying parallelism and deciding 
how to exploit it to the programmer 
and to the language system. Multicore 
does not resolve the challenge of ener-
gy-efficient computation that was exac-
erbated by the end of Dennard scaling. 
Each active core burns power whether 
or not it contributes effectively to the 
computation. A primary hurdle is an 
old observation, called Amdahl’s Law, 
stating that the speedup from a paral-
lel computer is limited by the portion 
of a computation that is sequential. 
To appreciate the importance of this 
observation, consider Figure 5, show-
ing how much faster an application 
runs with up to 64 cores compared to 

a single core, assuming different por-
tions of serial execution, where only 
one processor is active. For example, 
when only 1% of the time is serial, the 
speedup for a 64-processor configura-
tion is about 35. Unfortunately, the 
power needed is proportional to 64 
processors, so approximately 45% of 
the energy is wasted. 

Real programs have more complex 
structures of course, with portions 
that allow varying numbers of proces-
sors to be used at any given moment 
in time. Nonetheless, the need to com-
municate and synchronize periodically 
means most applications have some 
portions that can effectively use only 
a fraction of the processors. Although 
Amdahl’s Law is more than 50 years 
old, it remains a difficult hurdle. 

With the end of Dennard scaling, 
increasing the number of cores on a 
chip meant power is also increasing 
at nearly the same rate. Unfortunately, 
the power that goes into a processor 
must also be removed as heat. Mul-
ticore processors are thus limited by 
the thermal dissipation power (TDP), 
or average amount of power the pack-
age and cooling system can remove. 
Although some high-end data centers 
may use more advanced packages and 
cooling technology, no computer us-
ers would want to put a small heat 
exchanger on their desks or wear a ra-
diator on their backs to cool their cell-
phones. The limit of TDP led directly 
to the era of “dark silicon,” whereby 
processors would slow on the clock 
rate and turn off idle cores to prevent 
overheating. Another way to view this 
approach is that some chips can real-
locate their precious power from the 
idle cores to the active ones. 

An era without Dennard scaling, 
along with reduced Moore’s Law and 
Amdahl’s Law in full effect means 
inefficiency limits improvement in 
performance to only a few percent 
per year (see Figure 6). Achieving 
higher rates of performance improve-
ment—as was seen in the 1980s and 
1990s—will require new architec-
tural approaches that use the inte-
grated-circuit capability much more 
efficiently. We will return to what ap-
proaches might work after discussing 
another major shortcoming of mod-
ern computers—their support, or 
lack thereof, for computer security. 

predicting the outcome of 15 branches. 
If a processor architect wants to limit 
wasted work to only 10% of the time, 
the processor must predict each branch 
correctly 99.3% of the time. Few general-
purpose programs have branches that 
can be predicted so accurately. 

To appreciate how this wasted work 
adds up, consider the data in Figure 4, 
showing the fraction of instructions 
that are effectively executed but turn 
out to be wasted because the proces-
sor speculated incorrectly. On average, 
19% of the instructions are wasted for 
these benchmarks on an Intel Core i7. 
The amount of wasted energy is great-
er, however, since the processor must 
use additional energy to restore the 
state when it speculates incorrectly. 
Measurements like these led many to 
conclude architects needed a differ-

Figure 6. Growth of computer performance using integer programs (SPECintCPU). 

Figure 7. Potential speedup of matrix multiply in Python for four optimizations. 
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[Source: Figure 7 of “A New Golden Age for Computer Architecture”, 
J. Hennesy, D. Patterson Comm. of the ACM, Feb 2019]

classes. It turns out, however, that this naïve
code leaves much of the performance available
on modern computers “on the table.” The code
takes about 7 hours on a modern computer to
compute the matrix product, as shown by
the first row (version 1) in Table 1, achieving
only 0.0006% of the peak performance of the
machine. (Incidentally, Python 3 requires about
9 hours for the same computation.)
How can this naïve matrix-multiplication

code be performance engineered? Simply choos-
ing a more efficient programming language
speeds up this calculation dramatically. For
example, coding it in Java (version 2) produces
a speedupof 10.8×, and coding it in C (version 3)
produces an additional speedup of 4.4×, yield-
ing an execution time that is 47 times faster
than the original Python. This performance
improvement comes from reducing thenumber
of operations the program performs. In partic-
ular, Java and C avoid the extraneous work
that Python does under the hood to make
programming easier. The price for this per-
formance gain is programmer productivity:
Coding in C is more onerous than coding in
Python, and Java lies somewhere in between.
Although switching languages gains a speed-

up of almost 50×, tailoring the matrix code to
exploit specific features of the hardware makes
it run an additional 1300 times faster. This gain
comes from parallelizing the code to run on all
18 of the processing cores (version 4), exploiting
the processor’s memory hierarchy (version 5),
vectorizing the code (version 6), and using
Intel’s special Advanced Vector Extensions
(AVX) instructions (version 7). The final op-
timized code performs the task in only 0.41 s—
more than 60,000 times faster than the 7 hours
of the original Python code!
The point of this example is to illustrate the

potential gains available from performance
engineering naïvely coded software. In the par-
ticular case of matrix multiplication, a good
programmer could avoid this programming
effort by using optimized code from existing

software libraries. If she were writing code to
solve a new problem, however, shewould need
to optimize the code herself. And although not
every application can improve by nearly five
orders of magnitude through performance
engineering, most modern software systems
contain ample opportunity for performance
enhancement, especially if the codebase is
large enough.
During the post-Moore era, it will become

ever more important to make code run fast
and, in particular, to tailor it to the hardware
on which it runs. Modern computers provide
architectural features designed to make code
run fast. For example, versions 4 and 6 exploit
parallelism, which is the ability of computers
to perform multiple operations at the same
time. Version 5 exploits locality, which is the
computer’s ability to access data elements ef-
ficiently when they are collocated in memory
(spatial locality) or have been accessed re-
cently (temporal locality). Version 7 exploits
both parallelism and locality through care-
fully coordinated use of Intel’s AVX instructions.
As we shall see in the Hardware architecture
section, architectures are likely to become in-
creasingly heterogeneous, incorporating both
general-purpose and special-purpose circuitry.
To improve performance, programs will need
to expose more parallelism and locality for the
hardware to exploit. In addition, software per-
formance engineers will need to collaborate
with hardware architects so that new pro-
cessors present simple and compelling ab-
stractions that make it as easy as possible to
exploit the hardware.
Beyond the tailoring of software to hard-

ware is the question of bloat: Where does
software bloat come from? Certainly, some
bloat comes from trading off efficiency for
other desirable traits, such as coding ease, as
versions 1 to 3 of the matrix-multiplication
code illustrate. Bloat also comes from a failure
to tailor code to the underlying architecture,
as versions 4 to 7 show. But much software

bloat arises from software-development strat-
egies (13, 14), such as reduction.
The idea of reduction is this. Imagine that

you are a programmer who has been given a
problem A to solve (for example, distinguish-
ing between a yes or no spoken response).
You could write specialized code to solve A
directly, but instead, you might notice that
a related problem B has already been solved
(existing speech-recognition software that
understands many words, including yes and
no). It will take you far less effort to solve A
by converting it into a problem that can be
solved with the existing code for B, that is, by
reducing A to B.
Inefficiencies can arise both from the re-

duction itself (translating A to B) and from
the generality of B (the solution to B is not
tailored specifically to A). But the largest bloat
arises from the compounding of reductions:
reducing A to B, B to C, C to D, and so on.
Even if each reduction achieves an impressive
80% efficiency, a sequence of two independent
reductions achieves just 80% × 80% = 64%.
Compounding 20 more times yields an effi-
ciency of less than 1%, or 100× in bloat.
Because of the accumulated bloat created by

years of reductionist design during the Moore
era, there are great opportunities to make pro-
grams run faster. Unfortunately, directly solving
problem A using specialized software requires
expertise both in the domain of A and in per-
formance engineering, which makes the pro-
cess more costly and risky than simply using
reductions. The resulting specialized software
to solve A is often more complex than the soft-
ware that reduces A to B. For example, the fully
optimized code in Table 1 (version 7) is more
than 20 times longer than the source code for
the original Python version (version 1).
Indeed, simple code tends to be slow, and

fast code tends to be complicated. To create a
world where it is easy to write fast code, appli-
cation programmersmust be equipped with the
knowledge and skills to performance-engineer
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Table 1. Speedups from performance engineering a program that multiplies two 4096-by-4096 matrices. Each version represents a successive
refinement of the original Python code. “Running time” is the running time of the version. “GFLOPS” is the billions of 64-bit floating-point operations per
second that the version executes. “Absolute speedup” is time relative to Python, and “relative speedup,” which we show with an additional digit of precision,
is time relative to the preceding line. “Fraction of peak” is GFLOPS relative to the computer’s peak 835 GFLOPS. See Methods for more details.

Version Implementation Running time (s) GFLOPS Absolute speedup Relative speedup
Fraction

of peak (%)

1 Python 25,552.48 0.005 1 — 0.00
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

2 Java 2,372.68 0.058 11 10.8 0.01
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

3 C 542.67 0.253 47 4.4 0.03
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

4 Parallel loops 69.80 1.969 366 7.8 0.24
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

5 Parallel divide and conquer 3.80 36.180 6,727 18.4 4.33
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

6 plus vectorization 1.10 124.914 23,224 3.5 14.96
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

7 plus AVX intrinsics 0.41 337.812 62,806 2.7 40.45
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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ent approach to achieve performance 
improvements. The multicore era was 
thus born. 

Multicore shifted responsibility for 
identifying parallelism and deciding 
how to exploit it to the programmer 
and to the language system. Multicore 
does not resolve the challenge of ener-
gy-efficient computation that was exac-
erbated by the end of Dennard scaling. 
Each active core burns power whether 
or not it contributes effectively to the 
computation. A primary hurdle is an 
old observation, called Amdahl’s Law, 
stating that the speedup from a paral-
lel computer is limited by the portion 
of a computation that is sequential. 
To appreciate the importance of this 
observation, consider Figure 5, show-
ing how much faster an application 
runs with up to 64 cores compared to 

a single core, assuming different por-
tions of serial execution, where only 
one processor is active. For example, 
when only 1% of the time is serial, the 
speedup for a 64-processor configura-
tion is about 35. Unfortunately, the 
power needed is proportional to 64 
processors, so approximately 45% of 
the energy is wasted. 

Real programs have more complex 
structures of course, with portions 
that allow varying numbers of proces-
sors to be used at any given moment 
in time. Nonetheless, the need to com-
municate and synchronize periodically 
means most applications have some 
portions that can effectively use only 
a fraction of the processors. Although 
Amdahl’s Law is more than 50 years 
old, it remains a difficult hurdle. 

With the end of Dennard scaling, 
increasing the number of cores on a 
chip meant power is also increasing 
at nearly the same rate. Unfortunately, 
the power that goes into a processor 
must also be removed as heat. Mul-
ticore processors are thus limited by 
the thermal dissipation power (TDP), 
or average amount of power the pack-
age and cooling system can remove. 
Although some high-end data centers 
may use more advanced packages and 
cooling technology, no computer us-
ers would want to put a small heat 
exchanger on their desks or wear a ra-
diator on their backs to cool their cell-
phones. The limit of TDP led directly 
to the era of “dark silicon,” whereby 
processors would slow on the clock 
rate and turn off idle cores to prevent 
overheating. Another way to view this 
approach is that some chips can real-
locate their precious power from the 
idle cores to the active ones. 

An era without Dennard scaling, 
along with reduced Moore’s Law and 
Amdahl’s Law in full effect means 
inefficiency limits improvement in 
performance to only a few percent 
per year (see Figure 6). Achieving 
higher rates of performance improve-
ment—as was seen in the 1980s and 
1990s—will require new architec-
tural approaches that use the inte-
grated-circuit capability much more 
efficiently. We will return to what ap-
proaches might work after discussing 
another major shortcoming of mod-
ern computers—their support, or 
lack thereof, for computer security. 

predicting the outcome of 15 branches. 
If a processor architect wants to limit 
wasted work to only 10% of the time, 
the processor must predict each branch 
correctly 99.3% of the time. Few general-
purpose programs have branches that 
can be predicted so accurately. 

To appreciate how this wasted work 
adds up, consider the data in Figure 4, 
showing the fraction of instructions 
that are effectively executed but turn 
out to be wasted because the proces-
sor speculated incorrectly. On average, 
19% of the instructions are wasted for 
these benchmarks on an Intel Core i7. 
The amount of wasted energy is great-
er, however, since the processor must 
use additional energy to restore the 
state when it speculates incorrectly. 
Measurements like these led many to 
conclude architects needed a differ-

Figure 6. Growth of computer performance using integer programs (SPECintCPU). 

Figure 7. Potential speedup of matrix multiply in Python for four optimizations. 
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[Source: Figure 7 of “A New Golden Age for Computer Architecture”, 
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DOMAIN SPECIFIC PARALLELISM: GRAPHICS PROCESSOR

NVidia GTX 1080 GP104 
▸ 2560 "CUDA" cores
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An interesting research direction 
concerns whether some of the perfor-
mance gap can be closed with new com-
piler technology, possibly assisted by 
architectural enhancements. Although 
the challenges in efficiently translating 
and implementing high-level scripting 
languages like Python are difficult, the 
potential gain is enormous. Achieving 
even 25% of the potential gain could 
result in Python programs running 
tens to hundreds of times faster. This 
simple example illustrates how great 
the gap is between modern languages 
emphasizing programmer productivity 
and traditional approaches emphasiz-
ing performance.

Domain-specific architectures. A 
more hardware-centric approach is to 
design architectures tailored to a spe-
cific problem domain and offer signif-
icant performance (and efficiency) 
gains for that domain, hence, the 
name “domain-specific architectures” 
(DSAs), a class of processors tailored 
for a specific domain—programmable 
and often Turing-complete but tai-
lored to a specific class of applica-
tions. In this sense, they differ from 

application-specific integrated cir-
cuits (ASICs) that are often used for a 
single function with code that rarely 
changes. DSAs are often called acceler-
ators, since they accelerate some of an 
application when compared to execut-
ing the entire application on a general-
purpose CPU. Moreover, DSAs can 
achieve better performance because 
they are more closely tailored to the 
needs of the application; examples of 
DSAs include graphics processing 
units (GPUs), neural network proces-
sors used for deep learning, and pro-
cessors for software-defined networks 
(SDNs). DSAs can achieve higher per-
formance and greater energy efficiency 
for four main reasons: 

First and most important, DSAs 
exploit a more efficient form of par-
allelism for the specific domain. For 
example, single-instruction multiple 
data parallelism (SIMD), is more ef-
ficient than multiple instruction mul-
tiple data (MIMD) because it needs to 
fetch only one instruction stream and 
processing units operate in lockstep.9 
Although SIMD is less flexible than 
MIMD, it is a good match for many 

level languages with dynamic typing and 
storage management. Unfortunately, 
such languages are typically interpreted 
and execute very inefficiently. Leiserson 
et al.24 used a small example—perform-
ing matrix multiply—to illustrate this 
inefficiency. As in Figure 7, simply re-
writing the code in C from Python—a 
typical high-level, dynamically typed lan-
guage—increases performance 47-fold. 
Using parallel loops running on many 
cores yields a factor of approximately 
7. Optimizing the memory layout to ex-
ploit caches yields a factor of 20, and a 
final factor of 9 comes from using the 
hardware extensions for doing single in-
struction multiple data (SIMD) parallel-
ism operations that are able to perform 
16 32-bit operations per instruction. 
All told, the final, highly optimized ver-
sion runs more than 62,000× faster on 
a multicore Intel processor compared 
to the original Python version. This is of 
course a small example, one might ex-
pect programmers to use an optimized 
library for. Although it exaggerates the 
usual performance gap, there are likely 
many programs for which factors of 100 
to 1,000 could be achieved. 

Figure 8. Functional organization of Google Tensor Processing Unit (TPU v1). 
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PROGRAMMING FOR YOU BEFORE VERSUS NOW
CSCI 121 and CSCI 221 teach “sequential programming”: 

▸  Program does one thing at a time, in sequence. 

In this course we start with multithreaded programming 

▸  Structure computation using several threads of execution; coordinate them. 

➡ Seek to gain throughput, have parallel activity offer speedup. 

➡ Need to support concurrent access to data. 

This creates interesting challenges and opportunities in program design. 
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EXAMPLE ALGORITHM: MERGE SORT
Let’s “parallelize” a standard sorting algorithm… 

 
 
 
 
 
 
 

[Reading: Chapter 27.3 of CLRS algorithms textbook] 
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SEMESTER TOPICS
▸parallel merge sort, quick sort, radix sort 

▸parallel reduction/scan; map-reduce 

▸work-efficient parallel prefix 

▸fork-join model 

▸work and span analysis 

▸parallel RAM (PRAM) model 

▸algorithms on 1-D and 2-D arrays 

▸oblivious parallel sorting networks 

▸parallel graph algorithms 

▸parallel sequence analysis 

▸parallel task scheduling with work-stealing 

▸the Go language; “goroutines”; channels; synchronization 

▸pthreads C library; sychronization with mutexes and condition variables 

▸GPU programming and CUDA 

▸parallel complexity; Nick’s class; P-completeness

LECTURE 01-1: PARALLELISM & CONCURRENCY

▸  (roughly) bi-weekly homework assignment 

➡ written and coded 

▸  final project and presentation

RESPONSIBILITIES

▸  no text 

▸  selected readings 

•papers and on-line materials

READING



RESOURCES
▸Can use your own computer to prototype 

➡ Go language, pthreads C library available on any system 

▸Should hopefully also gain access to patty.reed.edu and polly.reed.edu 

➡ Sitting in my office but maintained by Cstar 

▸Patty’s specs: 

➡ 32 AMD Ryzen “threadripper” cores 

➡ NVidia GeForce RTX 2080 GPU 

✦3072 small processors organized as 192 stream multiprocessors
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