
COPYING & MOVING

LECTURE 14-1

JIM FIX, REED COLLEGE CS2-F20

LECTURE 14-1 COPYING AND MOVING

LOGISTICS

▸Office hours:

➡THIS WEEK: Tues & Weds 11am-12pm, 3-4:30pm

➡NEXT WEEK: Mon & Tues 11am-12pm, 3-4:30pm

▸Final Exam on circuits, MIPS, & modern C++

➡I've posted a practice exam today.

➡I will post my solutions to the practice exam tomorrow night.

➡Download/upload the exam on Thursday , December 10th, 1-5pm.

▸Homework 12 & 13 on lambdas, std::vector, inheritance

➡Due: Tuesday December 15th, 11:50pm

LECTURE 14-1 COPYING AND MOVING

HEAP OBJECTS AS RESOURCES
▸In the last lecture we looked at C++ STL "smart pointers". Three types:

•unique_ptr: only one copy of the pointer; passed around with moves

•shared_ptr: several copies; references counted with shared copies

•weak_ptr: uncounted; can be copied and moved but may be stale

▸These were developed in C++ 11 to provide the RAII discipline:

•Resource Acquisition Is Initialization

•Careful management of heap memory; object lifetimes.

•A pointer to heap memory is a resource that must be managed.

• Tricky issues: concurrency, robustness in the face of exceptions, etc.

▸Reasoning about the heap is tricky. Need oversight and discipline.

2016 GÖDEL PRIZE: LOGIC OF HEAP MEMORY
▸From the European Association for Theoretical Computer Science

"The... Gödel Prize is awarded to Stephen Brookes and Peter W. O'Hearn for
their invention of Concurrent Separation Logic, as described in the following
two papers:"

➡ S. Brookes, "A Semantics for Concurrent Separation Logic."
Theoretical Computer Science 375(1-3): 227-270 (2007)

➡ P. W. O’Hearn, "Resources, Concurrency, and Local Reasoning."
Theoretical Computer Science 375(1-3): 271-307 (2007)

LECTURE 14-1 COPYING AND MOVING

ON "CONCURRENT SEPARATION LOGIC"
▸"Concurrent Separation Logic (CSL) is a revolutionary advance over previous

proof systems for verifying properties of systems software, which commonly
involve both pointer manipulation and shared-memory concurrency. For the
last thirty years experts have regarded pointer manipulation as an unsolved
challenge for program verification and shared-memory concurrency as an
even greater challenge. Now, thanks to CSL, both of these problems have
been elegantly and efficiently solved; and they have the same solution.
Brookes and O'Hearn's approach builds on the Separation Logic for
sequential programs due to O'Hearn and the late John Reynolds. The
extension to treat concurrently executing programs communicating via
shared state is highly non-trivial and involves a dynamic notion of resource
ownership that supports modular reasoning."

LECTURE 14-1 COPYING AND MOVING

RESOURCE MANAGEMENT VIEWPOINT
▸An object's memory storage is a resource

• It might be shared amongst several parts of the program

➡ If so, treat it specially. Can't delete if shared.

• It might not be shared. Maybe only one part of the program is using it.

➡ When that part of the program is done with it, it should delete it.

▸Some languages and language libraries work to make this explicit

➡ They help your code manage ownership

▸E.g. the Rust programming language

➡ has a notion of borrowing an object; and transfer of single ownership

➡compiler has a borrow checker; based on linear types

LECTURE 14-1 COPYING AND MOVING

TODAY'S PLAN
▸WE BREAK dc WITH ONE SMALL CHANGE...

•WE INVESTIGATE TWO TEST PROGRAMS:

➡A SIMPLE CLASS WITH A VALUE MEMBER

➡A SIMPLE CLASS WITH A HEAP-ALLOCATED MEMBER

•WE DISCUSS:

➡COPY CONSTRUCTORS, COPY ASSIGNMENT

➡MOVE CONSTRUCTORS, MOVE ASSIGNMENT

▸WE EXPLAIN & FIX THE BUG

LECTURE 14-1 COPYING AND MOVING

ONE SMALL CHANGE
▸Let's make a small change to my stack-based calculator dc.c

void output_top(Stck s) {
 if (!s.is_empty()) {
 std::cout << s.top() << std::endl;
 }
}

int main() {
 ...
 Stck s {100};
 std::string entry;
 do {
 output_top(s);
 // parse and handle entry
 ...
 } while (entry != q);

LECTURE 14-1 COPYING AND MOVING

ONE SMALL CHANGE
▸Let's make a small change to my stack-based calculator dc.c

void output_top(Stck s) {
 if (!s.is_empty()) {
 std::cout << s.top() << std::endl;
 }
}

int main() {
 ...
 Stck s {100};
 std::string entry;
 do {
 output_top(s);
 // parse and handle entry
 ...
 } while (entry != q);

LECTURE 14-1 COPYING AND MOVING

ONE SMALL CHANGE
▸Let's make a small change to my stack-based calculator dc.c

void output_top(Stck s) {
 if (!s.is_empty()) {
 std::cout << s.top() << std::endl;
 }
}

int main() {
 ...
 Stck s {100};
 std::string entry;
 do {
 output_top(s);
 // parse and handle entry
 ...
 } while (entry != q);

LECTURE 14-1 COPYING AND MOVING

A MYSTERY
▸Here is what happens when I recompile and run it...

$./dc
You've just run my version of the Unix calculator utility
'dc'.
It uses a stack to track intermediate calculations.
Enter a command just below (h for help):
p
[]
dc(23213,0x7fff7c877000) malloc: *** error for object
0x7fa93ae00000: pointer being freed was not allocated
*** set a breakpoint in malloc_error_break to debug
Abort trap: 6

LECTURE 14-1 COPYING AND MOVING

A MYSTERY
▸Here is what happens when I recompile and run it...

$./dc
You've just run my version of the Unix calculator utility
'dc'.
It uses a stack to track intermediate calculations.
Enter a command just below (h for help):
p
[]
dc(23213,0x7fff7c877000) malloc: *** error for object
0x7fa93ae00000: pointer being freed was not allocated
*** set a breakpoint in malloc_error_break to debug
Abort trap: 6

▸Let's work a bit to explain why...

LECTURE 14-1 COPYING AND MOVING

TWO SAMPLE CLASSES
▸Today we examine some trickier aspects of C++ storage management.

▸We'll reference two simple class definitions.

▸The first class V has a single instance variable of type int
class V {
private:
 int x;
public:
 V(void);
 V(int x0);
 ~V(void);
 friend V operator+(int i, V&& v);
}

LECTURE 14-1 COPYING AND MOVING

TWO SAMPLE CLASSES
▸Today we examine some trickier aspects of C++ storage management.

▸We'll reference two simple class definitions.

▸The second one R has an instance variable of type int*
class R {
private:
 int* a;
public:
 R(void);
 R(int x0);
 ~R(void);
 friend R operator+(int i, R&& r);
}

LECTURE 14-1 COPYING AND MOVING

TWO SAMPLE CLASSES
▸Today we examine some trickier aspects of C++ storage management.

▸We'll reference two simple class definitions.

▸They each can get built two ways:
class V {
private:
 int x;
public:
 V(void) : x {0} { };
 V(int x0) : x {x0} { };
 ~V(void);
 friend V operator+(int i, V&& v);
}

LECTURE 14-1 COPYING AND MOVING

TWO SAMPLE CLASSES
▸Today we examine some trickier aspects of C++ storage management.

▸We'll reference two simple class definitions.

▸They each can get built two ways:
class R {
private:
 int* a;
public:
 R(void) : a {nullptr} { };
 R(int x0) : a {new int[1]} { a[0] = x0};
 ~R(void);
 friend R operator+(int i, R&& r);
}

LECTURE 14-1 COPYING AND MOVING

TWO SAMPLE CLASSES
▸Today we examine some trickier aspects of C++ storage management.

▸We'll reference two simple class definitions.

▸They each can get built two ways:
class R {
private:
 int* a;
public:
 R(void) : a {nullptr} { };
 R(int x0) : a {new int[1]} { a[0] = x0};
 ~R(void);
 friend R operator+(int i, R&& r);
}

▸We'll look at destructors, copying, moving.

LECTURE 14-1 COPYING AND MOVING

FYI: TRACKING CONSTRUCTION
▸In the sample folder, I have a second version of each that also stores an ID.

class V {
private:
 static int next_id;
 int id;
 int x;
 void give_id(void) { id = ++next_id; }
public:
 V(void) : x {0} { give_id(); };
 V(int x0) : x {x0} { give_id(); };
 ~V(void);
 friend V operator+(int i, V&& v);
}

int V::next_id = 0;

▸I did this in my tests there to help track what's going on.

LECTURE 14-1 COPYING AND MOVING

THE COPY CONSTRUCTOR
▸A copy constructor is one that is used to construct an instance from another.

▸Here is an example for the "value class" V:
V(const V& ov) : x {ov.x} { }  

▸Here we are simply copying the contents of another V instance ov

LECTURE 14-1 COPYING AND MOVING

THE COPY CONSTRUCTOR
▸A copy constructor is one that is used to construct an instance from another.

▸Here is an example for the "value class" V:
V(const V& ov) : x {ov.x} { }  

▸Here we are simply copying the contents of another V instance ov

▸The second line below gives its standard use:
V v1 {42}; // This calls the V(int) constructor.
V v2 {v1}; // This calls the copy constructor.

LECTURE 14-1 COPYING AND MOVING

THE COPY CONSTRUCTOR
▸A copy constructor is one that is used to construct an instance from another.

▸Here is an example for the "value class" V:
V(const V& ov) : x {ov.x} { }  

▸Here we are simply copying the contents of another V instance ov

▸The second line below gives its standard use:
V v1 {42}; // This calls the V(int) constructor.
V v2 {v1}; // This calls the copy constructor.

LECTURE 14-1 COPYING AND MOVING

THE COPY CONSTRUCTOR
▸A copy constructor is one that is used to construct an instance from another.

▸Here is an example for the "value class" V:
V(const V& ov) : x {ov.x} { }  

▸Here we are simply copying the contents of another V instance ov

▸Here This second line below gives its standard use:
V v1 {42}; // This calls the V(int) constructor.
V v2 {v1}; // This calls the copy constructor.

NOTE: the copy constructor is one
that matches this exact signature

LECTURE 14-1 COPYING AND MOVING

THE COPY CONSTRUCTOR
▸A copy constructor is one that is used to construct an instance from another.

▸Here is an example for the "value class" V:
V(const V& ov) : x {ov.x} { }  

▸Here we are simply copying the contents of another V instance ov

▸NOTE: the copy construct gets applied in several other situations:

➡When a function is passed a V parameter by value

LECTURE 14-1 COPYING AND MOVING

THE COPY CONSTRUCTOR
▸A copy constructor is one that is used to construct an instance from another.

▸Here is an example for the "value class" V:
V(const V& ov) : x {ov.x} { }  

▸Here we are simply copying the contents of another V instance ov

▸NOTE: the copy construct gets applied in several other situations:

➡When a function is passed a V parameter by value

➡When a function returns a V by value

LECTURE 14-1 COPYING AND MOVING

THE COPY CONSTRUCTOR
▸A copy constructor is one that is used to construct an instance from another.

▸Here is an example for the "value class" V:
V(const V& ov) : x {ov.x} { }  

▸Here we are simply copying the contents of another V instance ov

▸NOTE: the copy construct gets applied in several other situations:

➡When a function is passed a V parameter by value

➡When a function returns a V by value

➡It's also used when there is a trivial initialization assignment:
V v2 = V {v1};  

LECTURE 14-1 COPYING AND MOVING

COPY CONSTRUCTOR APPLICATIONS
▸When a V is constructed using a V:

V v2 {v1};

▸When a function is passed a V parameter by value:
int get_value(V v) { ... }
...
int i = get_value(v1);  

▸When a function returns a V by value:
V get_V(...) {
 V my_v;
 ...
 return my_v;
}
...
V their_v = get_V(...);  

▸When an assignment is actually a V initialization:
V v2 = V {v1};

LECTURE 14-1 COPYING AND MOVING

THE COPY ASSIGNMENT OPERATOR
▸A similarly behaving member is the copy assignment operator

▸Here is an example for the "value class" V:
V& operator=(const V& ov) { x = ov.x; return *this; }  

▸It gets used most times that there is a V assignment:
V v1 {42};
V v2 {87};
...
v2 = v1;  

LECTURE 14-1 COPYING AND MOVING

THE COPY ASSIGNMENT OPERATOR
▸A similarly behaving member is the copy assignment operator

▸Here is an example for the "value class" V:
V& operator=(const V& ov) { x = ov.x; return *this; }  

▸It gets used most times that there is a V assignment:
V v1 {42};
V v2 {87};
...
v2 = v1;  

LECTURE 14-1 COPYING AND MOVING

THE COPY ASSIGNMENT OPERATOR
▸A similarly behaving member is the copy assignment operator

▸Here is an example for the "value class" V:
V& operator=(const V& ov) { x = ov.x; return *this; }  

▸It gets used most times that there is a V assignment:
V v1 {42};
V v2 {87};
V v3 {99};
...
v3 = v2 = v1;

▸It has this weird signature returning the assigned object as a reference
because some C programmers like to chain assignments.

 

LECTURE 14-1 COPYING AND MOVING

THE COPY ASSIGNMENT OPERATOR
▸A similarly behaving member is the copy assignment operator

▸Here is an example for the "value class" V:
V& operator=(const V& ov) { x = ov.x; return *this; }  

▸There are cases where it might not get used...
V v1 {42};
V v2 {87};
V v3 {99};
...
V v4 = V {v3}; // This, we saw, uses the copy constructor.
V v5 = V {101}; // This uses the V(int) constructor.
v3 = V {789}; // And this uses move assignment

 

LECTURE 14-1 COPYING AND MOVING

THE COPY ASSIGNMENT OPERATOR
▸A similarly behaving member is the copy assignment operator

▸Here is an example for the "value class" V:
V& operator=(const V& ov) { x = ov.x; return *this; }  

▸There are cases where it might not get used...
V v1 {42};
V v2 {87};
V v3 {99};
...
V v4 = V {v3}; // This, we saw, uses the copy constructor.
V v5 = V {101}; // This uses the V(int) constructor.
v3 = V {789}; // And this uses move assignment

 

LECTURE 14-1 COPYING AND MOVING

THE COPY ASSIGNMENT OPERATOR
▸A similarly behaving member is the copy assignment operator

▸Here is an example for the "value class" V:
V& operator=(const V& ov) { x = ov.x; return *this; }  

▸There are cases where it might not get used...
V v1 {42};
V v2 {87};
V v3 {99};
...
V v4 = V {v3}; // This, we saw, uses the copy constructor.
V v5 = V {101}; // This uses the V(int) constructor.
v3 = V {789}; // And this uses move assignment  

▸WHY? Because V{789} is immediately discarded.

LECTURE 14-1 COPYING AND MOVING

MOVE ASSIGNMENT
▸Here is an example definition of a move assignment operator

V& operator=(V&& ov) { x = ov.x; return *this; }  

▸Here is that typical situation when it gets used
V v3 {99};
...
v3 = V {789};

▸Since V{789} is a temporary object, it doesn't take up resources (i.e. no slot
in the stack frame).

➡ The object v3 is seen to be "taking over its resources."

➡The temporary V is seen as "moving out", and v3 is seen as "moving in."

LECTURE 14-1 COPYING AND MOVING

MOVE ASSIGNMENT
▸Here is an example definition of a move assignment operator

V& operator=(V&& ov) { x = ov.x; return *this; }  

▸Here again is a typical situation when it gets used
V v3 {99};
...
v3 = V {789};

▸It has a weird annotation of its argument.

▸This is an R-value reference

• L-value expressions are ones that can appear on the LHS of an assignment

•R-value expressions are ones that only appear on the RHS of an
assignment...

LECTURE 14-1 COPYING AND MOVING

MOVE ASSIGNMENT
▸Here is an example definition of a move assignment operator

V& operator=(V&& ov) { x = ov.x; return *this; }  

▸Here again is a typical situation when it gets used
V v3 {99};
...
v3 = V {789};

▸It has a weird annotation of its argument.

▸This is an R-value reference

• L-value expressions are ones that can appear on the LHS of an assignment

•R-value expressions are ones that only appear on the RHS of an
assignment... like V{789}

LECTURE 14-1 COPYING AND MOVING

MOVE CONSTRUCTOR
▸There is also a move constructor

V(V&& ov) : x {ov.x} { }  

▸Here is a typical situation when it gets used:
V make_a_V(int x0) {
 return V {x0};
}

...

v3 = make_a_V(789);

LECTURE 14-1 COPYING AND MOVING

MOVE CONSTRUCTOR
▸There is also a move constructor

V(V&& ov) : x {ov.x} { }  

▸Here is a typical situation when it gets used:
V make_a_V(int x0) {
 return V {x0};
}

...

v3 = make_a_V(789);

▸Note again the use of an R-value reference annotation.

LECTURE 14-1 COPYING AND MOVING

AN EXAMPLE USE OF &&
▸I tried to demonstrate these things in the sample code for this lecture.

➡ So far, in samples/copy_move/cm_value_debug.cc

➡ Run make to build an executable ./cmvd and look at its output.

▸There's an additional definition:
class V {

 ...

 friend int operator+(int i, V&& v);

};

int operator+(int i, V&& v) { return i+v.x; }

LECTURE 14-1 COPYING AND MOVING

AN EXAMPLE USE OF &&
▸I tried to demonstrate these things in the sample code for this lecture.

➡ So far, in samples/copy_move/cm_value_debug.cc

➡ Run make to build an executable ./cmvd and look at its output.

▸There's an additional definition:
class V {

 ...

 friend int operator+(int i, V&& v);

};

int operator+(int i, V&& v) { return i+v.x; }

▸Here is where it is used:
V v4 = V{1 + V {3}};

LECTURE 14-1 COPYING AND MOVING

AN EXAMPLE USE OF &&
▸I tried to demonstrate these things in the sample code for this lecture.

➡ So far, in samples/copy_move/cm_value_debug.cc

➡ Run make to build an executable ./cmvd and look at its output.

▸There's an additional definition:
class V {

 ...

 friend int operator+(int i, V&& v);

};

int operator+(int i, V&& v) { return i+v.x; }

▸Here is where it is used:
V v4 = V{1 + V {3}};

➡Note the use of an R-value reference in its definition.

LECTURE 14-1 COPYING AND MOVING

CONTAINER CLASSES AND COPY/MOVE
▸Recall my array-based class R, a companion to class V

class R {
private:
 int* a;
public:
 R(void) : a {nullptr} { };
 R(int x0) : a {new int[1]} { a[0] = x0};
 ~R(void) { if (a != nullptr) delete [] a; }
}

▸Note that I allocate the array upon construction with a value.

▸Note that I wrote the default constructor to set a null pointer instead.

LECTURE 14-1 COPYING AND MOVING

CONTAINER CLASSES AND COPY/MOVE
▸Recall my array-based class R, a companion to class V

class R {
private:
 int* a;
public:
 R(void) : a {nullptr} { };
 R(int x0) : a {new int[1]} { a[0] = x0};
 ~R(void) { if (a != nullptr) delete [] a; }
}

▸Note that I allocate the array upon construction with a value.

▸Note that I wrote the default constructor to set a null pointer instead.

LECTURE 14-1 COPYING AND MOVING

CONTAINER CLASSES AND COPY/MOVE
▸Recall my array-based class R, a companion to class V

class R {
private:
 int* a;
public:
 R(void) : a {nullptr} { };
 R(int x0) : a {new int[1]} { a[0] = x0};
 ~R(void) { if (a != nullptr) delete [] a; }
}

▸Note that I allocate the array upon construction with a value.

▸Note that I wrote the default constructor to set a null pointer instead.

LECTURE 14-1 COPYING AND MOVING

CONTAINER CLASSES AND COPY/MOVE
▸Recall my array-based class R, a companion to class V

class R {
private:
 int* a;
public:
 R(void) : a {nullptr} { };
 R(int x0) : a {new int[1]} { a[0] = x0};
 ~R(void) { if (a != nullptr) delete [] a; }
}

▸Note that I allocate the array upon construction with a value.

▸Note that I wrote the default constructor to set a null pointer instead...

➡ ... so that I could write move constructors that don't leak memory.

LECTURE 14-1 COPYING AND MOVING

CONTAINER CLASSES AND COPY/MOVE
▸Recall my array-based class R, a companion to class V

class R {
private:
 int* a;
public:
 R(void) : a {nullptr} { };
 R(int x0) : a {new int[1]} { a[0] = x0};
 ~R(void) { if (a != nullptr) delete [] a; }
}

▸Note that I allocate the array upon construction with a value.

▸Note that I wrote the default constructor to set a null pointer instead.

▸Note that I give back the array storage in the destructor, if not null.

LECTURE 14-1 COPYING AND MOVING

CONTAINER CLASSES AND COPY/MOVE
▸Recall my array-based class R, a companion to class V

class R {
private:
 int* a;
public:
 R(void) : a {nullptr} { };
 R(int x0) : a {new int[1]} { a[0] = x0};
 ~R(void) { if (a != nullptr) delete [] a; }
}

▸Note that I allocate the array upon construction with a value.

▸Note that I wrote the default constructor to set a null pointer instead.

▸Note that I give back the array storage in the destructor, if not null.

LECTURE 14-1 COPYING AND MOVING

CONTAINER CLASSES AND COPY/MOVE
▸Recall my array-based class R, a companion to class V

class R {
private:
 int* a;
public:
 R(void) : a {nullptr} { };
 R(int x0) : a {new int[1]} { a[0] = x0};
 ~R(void) { if (a != nullptr) delete [] a; }
}

▸Note that I allocate the array upon construction with a value.

▸Note that I wrote the default constructor to set a null pointer instead.

▸Note that I give back the array storage in the destructor, if not null.

▸What should the copy/move members do?

LECTURE 14-1 COPYING AND MOVING

COPY CONSTRUCTOR AND ASSIGNMENT
▸Here are the copy operations for class R

R::R(const R& r) : a {new int[1]} {
 a[0] = r.a[0];
}

R& R::operator=(const R& r) {
 if (a != nullptr) {
 delete [] a;
 }
 a = new int[1];
 a[0] = r.a[0];
 return *this;
}

▸They each perform a deep copy of the data structure.

LECTURE 14-1 COPYING AND MOVING

COPY CONSTRUCTOR AND ASSIGNMENT
▸Here are the copy operations for class R

R::R(const R& r) : a {new int[1]} {
 a[0] = r.a[0];
}

R& R::operator=(const R& r) {
 if (a != nullptr) {
 delete [] a;
 }
 a = new int[1];
 a[0] = r.a[0];
 return *this;
}

▸They each perform a deep copy of the data structure.

LECTURE 14-1 COPYING AND MOVING

COPY CONSTRUCTOR AND ASSIGNMENT
▸Here are the copy operations for class R

R::R(const R& r) : a {new int[1]} {
 a[0] = r.a[0];
}

R& R::operator=(const R& r) {
 if (a != nullptr) {
 delete [] a;
 }
 a = new int[1];
 a[0] = r.a[0];
 return *this;
}

▸They each perform a deep copy of the data structure.

▸But we also have to deallocate the destination's old storage.

LECTURE 14-1 COPYING AND MOVING

MOVE CONSTRUCTOR AND ASSIGNMENT
▸Here are the move operations for class R

 R::R(R&& r) {
 a = r.a;
 r.a = nullptr;
 }
 R& R::operator=(R&& r) {
 if (a != nullptr) {
 delete [] a;
 }
 a = r.a;
 r.a = nullptr;
 return *this;
 }

▸They can perform a shallow copy of the source object's data.

LECTURE 14-1 COPYING AND MOVING

MOVE CONSTRUCTOR AND ASSIGNMENT
▸Here are the move operations for class R

 R::R(R&& r) {
 a = r.a;
 r.a = nullptr;
 }
 R& R::operator=(R&& r) {
 if (a != nullptr) {
 delete [] a;
 }
 a = r.a;
 r.a = nullptr;
 return *this;
 }

▸They can perform a shallow copy of the source object's data.

LECTURE 14-1 COPYING AND MOVING

MOVE CONSTRUCTOR AND ASSIGNMENT
▸Here are the move operations for class R

 R::R(R&& r) {
 a = r.a;
 r.a = nullptr;
 }
 R& R::operator=(R&& r) {
 if (a != nullptr) {
 delete [] a;
 }
 a = r.a;
 r.a = nullptr;
 return *this;
 }

▸They can perform a shallow copy of the source object's data.

▸We still need to give back the destination's old array upon reassignment.

LECTURE 14-1 COPYING AND MOVING

MOVE CONSTRUCTOR AND ASSIGNMENT
▸Here are the move operations for class R

 R::R(R&& r) {
 a = r.a;
 r.a = nullptr;
 }
 R& R::operator=(R&& r) {
 if (a != nullptr) {
 delete [] a;
 }
 a = r.a;
 r.a = nullptr;
 return *this;
 }

▸They can perform a shallow copy of the source object's data.

▸We still need to give back the destination's old array upon reassignment.

▸And it is standard practice to "clear out" the source of the move.

LECTURE 14-1 COPYING AND MOVING

MOVE CONSTRUCTOR AND ASSIGNMENT
▸Here are the move operations for class R

 R::R(R&& r) {
 a = r.a;
 r.a = nullptr;
 }
 R& R::operator=(R&& r) {
 if (a != nullptr) {
 delete [] a;
 }
 a = r.a;
 r.a = nullptr;
 return *this;
 }

▸They can perform a shallow copy of the source object's data.

▸We still need to give back the destination's old array upon reassignment.

▸We clear out the source of the move in preparation for its destruction.

R::~R(void) {  
 if (a != nullptr) {  
 delete [] a;
 }
}

LECTURE 14-1 COPYING AND MOVING

SHALLOW COPY CONSTRUCTOR AND ASSIGNMENT BUGGY!
▸Here instead are shallow copy operations for class R

R::R(const R& r) : a {r.a} { }

R& R::operator=(const R& r) {
 if (a != nullptr) {
 delete [] a;
 }
 a = r.a;
 return *this;
}

▸With these, we would have instances of R sharing the same array a.

▸The destructor would eventually "double delete" that shared pointer.

▸NOTE that shallow copying is sometimes desirable...

LECTURE 14-1 COPYING AND MOVING

SHALLOW COPY CONSTRUCTOR AND ASSIGNMENT BUGGY!
▸Here instead are shallow copy operations for class R

R::R(const R& r) : a {r.a} { }

R& R::operator=(const R& r) {
 if (a != nullptr) {
 delete [] a;
 }
 a = r.a;
 return *this;
}

▸With these, we would have instances of R sharing the same array a.

▸The destructor would eventually "double delete" that shared pointer.

▸NOTE that shallow copying is sometimes desirable...

...and the STL "smart pointers" will allow us to do sharing, in a smart way.

LECTURE 14-1 COPYING AND MOVING

LET'S REVISIT THE MYSTERY BUG FROM THE START
▸RECALL: my change to dc.c

void output_top(Stck s) {
 if (!s.is_empty()) {
 std::cout << s.top() << std::endl;
 }
}

int main() {
 ...
 Stck s {100};
 std::string entry;
 do {
 output_top(s);
 // parse and handle entry
 ...
 } while (entry != q);

LECTURE 14-1 COPYING AND MOVING

LET'S REVISIT THE MYSTERY BUG FROM THE START
▸RECALL: what happened when I ran it...

$./dc
You've just run my version of the Unix calculator utility 'dc'.
It uses a stack to track intermediate calculations.
Enter a command just below (h for help):
p
[]
dc(23213,0x7fff7c877000) malloc: *** error for object
0x7fa93ae00000: pointer being freed was not allocated
*** set a breakpoint in malloc_error_break to debug
Abort trap: 6

LECTURE 14-1 COPYING AND MOVING

LET'S REVISIT THE MYSTERY BUG FROM THE START
▸RECALL: what happened when I ran it...

$./dc
You've just run my version of the Unix calculator utility 'dc'.
It uses a stack to track intermediate calculations.
Enter a command just below (h for help):
p
[]
dc(23213,0x7fff7c877000) malloc: *** error for object
0x7fa93ae00000: pointer being freed was not allocated
*** set a breakpoint in malloc_error_break to debug
Abort trap: 6

Q: So what went wrong????

LECTURE 14-1 COPYING AND MOVING

LET'S REVISIT THE MYSTERY BUG FROM THE START
▸RECALL: what happened when I ran it...

$./dc
You've just run my version of the Unix calculator utility 'dc'.
It uses a stack to track intermediate calculations.
Enter a command just below (h for help):
p
[]
dc(23213,0x7fff7c877000) malloc: *** error for object
0x7fa93ae00000: pointer being freed was not allocated
*** set a breakpoint in malloc_error_break to debug
Abort trap: 6

Q: So what went wrong????

A: I don't define a copy constructor for Stck. The default one does a shallow copy.
When I pass s by value to output_top it is passed by value. The two stack objects
share a pointer to an array's data. It exits, the destructor gets called. It deletes the
elements pointer.

LECTURE 14-1 COPYING AND MOVING

ONE POSSIBLE FIX
void output_top(Stck s) { // passed by value; copies
 if (!s.is_empty()) {
 std::cout << s.top() << std::endl;
 }
}

int main() {
 ...
 Stck s {100};
 std::string entry;
 do {
 output_top(s);
 // parse and handle entry
 ...
 } while (entry != q);

LECTURE 14-1 COPYING AND MOVING

ONE POSSIBLE FIX
void output_top(Stck &s) { // pass s by ref, no copy made
 if (!s.is_empty()) {
 std::cout << s.top() << std::endl;
 }
}

int main() {
 ...
 Stck s {100};
 std::string entry;
 do {
 output_top(s);
 // parse and handle entry
 ...
 } while (entry != q);

LECTURE 14-1 COPYING AND MOVING

SUMMARY
▸COPY CONSTRUCTORS

▸COPY ASSIGNMENT

▸MOVE CONSTRUCTORS

▸MOVE ASSIGNMENT

▸... are each used by the C++ compiler in various ways.

▸If you are rolling your own data structures, then you need to become an
expert and understand their subtleties.

▸Probably best to learn what's provided by the C++ Standard Template Library

LECTURE 14-1 COPYING AND MOVING

TL;DR SUMMARY
▸EXPLICIT MEMORY MANGEMENT...

➡ ESPECIALLY THE ABILITY TO ALLOCATE ON THE STACK AND IN THE HEAP

▸...MAKES C++ A VERY COMPLEX LANGUAGE TO LEARN.

▸Probably still need to understand quite a bit to understand what's provided by
the C++ Standard Template Library

LECTURE 14-1 COPYING AND MOVING

RECALL: SMART POINTERS IN THE C++ STL
▸The C++ STL provides three template types (#include <memory>)

• std::shared_ptr<T>: used to reference an object shared by several
code components. It maintains a count of these. Copying a shared pointer
increments this count. If a shared_ptr variable loses scope or if an
object with a shared_ptr component is deleted, it is decremented.

• std::weak_ptr<T>: only constructable from a shared_ptr without
incrementing its count. Used many ways, including in cyclic structures.

▸There is a third type. Explaining it is tricky now: copying versus moving

• std::unique_ptr<T>: used to reference an object owned by one
code component (i.e. one variable). It cannot be copied. It can be moved.

LECTURE 13-2 SMART POINTERS

A SHARED_PTR SINGLY LINKED LIST
#include <memory>

class node {
public:
 int data;
 std::shared_ptr<node> next;
 node(int value) : data {value}, next {nullptr} { }
 ~node(void) { }
};

class llist {
private:
 std::shared_ptr<node> first;
 std::shared_ptr<node> last;
public:
 llist(void) : first {nullptr}, last {nullptr} { }
 ~llist(void) { // NOTHING HERE!! }
 void prepend(int value);
 void append(int value);
 void remove(int value);
};

LECTURE 13-2 SMART POINTERS

A SHARED_PTR SINGLY LINKED LIST
#include <memory>

class node {
public:
 int data;
 std::shared_ptr<node> next;
 node(int value) : data {value}, next {nullptr} { }
 ~node(void) { }
};

class llist {
private:
 std::shared_ptr<node> first;
 std::shared_ptr<node> last;
public:
 llist(void) : first {nullptr}, last {nullptr} { }
 ~llist(void) { // NOTHING HERE!! }
 void prepend(int value) { ... // next slides }
 void append(int value) { ... // next slides }
 void remove(int value) { ... // next slides }
};

LECTURE 13-2 SMART POINTERS

LINKED LIST SHARED_PTR NODE ALLOCATION
 void llist::prepend(int value) {
 std::shared_ptr<node> newNode {new node {value}};
 newNode->next = first;
 first = newNode;
 if (last == nullptr) {
 last = first;
 }
 }

 void llist::append(int value) {
 std::shared_ptr<node> newNode {new node {value}};
 if (first == nullptr) {
 first = newNode;
 } else {
 last->next = newNode;
 }
 last = newNode;
 }

These each initialize their shared_ptr count to 1.

LECTURE 13-2 SMART POINTERS

LINKED LIST SHARED_PTR SHARING
 void llist::prepend(int value) {
 std::shared_ptr<node> newNode {new node {value}};
 newNode->next = first;
 first = newNode;
 if (last == nullptr) {
 last = first;
 }
 }

 void llist::append(int value) {
 std::shared_ptr<node> newNode {new node {value}};
 if (first == nullptr) {
 first = newNode;
 } else {
 last->next = newNode;
 }
 last = newNode;
 }

These each initialize their shared_ptr count to 1.

These copy assignments each increment
their shared_ptr count.

LECTURE 13-2 SMART POINTERS

LINKED LIST SHARED_PTR REMOVE METHOD
 void llist::remove(int value) {
 std::shared_ptr<node> follow {nullptr};
 std::shared_ptr<node> current {first};
 while (current != nullptr && current->data != value) {
 follow = current;
 current = current->next;
 }
 if (current != nullptr) {
 if (follow == nullptr) {
 first = current->next;
 if (current->next == nullptr) {
 last = first;
 }
 } else {
 follow->next = current->next;
 if (current->next == nullptr) {
 last = follow;
 }
 }
 }
 }

LECTURE 13-2 SMART POINTERS

LINKED LIST SHARED_PTR REMOVE METHOD
 void llist::remove(int value) {
 std::shared_ptr<node> follow {nullptr};
 std::shared_ptr<node> current {first};
 while (current != nullptr && current->data != value) {
 follow = current;
 current = current->next;
 }
 if (current != nullptr) {
 if (follow == nullptr) {
 first = current->next;
 if (current->next == nullptr) {
 last = first;
 }
 } else {
 follow->next = current->next;
 if (current->next == nullptr) {
 last = follow;
 }
 }
 }
 }

LECTURE 13-2 SMART POINTERS

Unlinking current
decreases its shared_ptr
reference count.

LINKED LIST SHARED_PTR REMOVE METHOD
 void llist::remove(int value) {
 std::shared_ptr<node> follow {nullptr};
 std::shared_ptr<node> current {first};
 while (current != nullptr && current->data != value) {
 follow = current;
 current = current->next;
 }
 if (current != nullptr) {
 if (follow == nullptr) {
 first = current->next;
 if (current->next == nullptr) {
 last = first;
 }
 } else {
 follow->next = current->next;
 if (current->next == nullptr) {
 last = follow;
 }
 }
 }
 } E.g. This copy assignment takes current's

shared_ptr out of follow->next.

LECTURE 13-2 SMART POINTERS

Unlinking current
decreases its shared_ptr
reference count.

 void llist::remove(int value) {
 std::shared_ptr<node> follow {nullptr};
 std::shared_ptr<node> current {first};
 while (current != nullptr && current->data != value) {
 follow = current;
 current = current->next;
 }
 if (current != nullptr) {
 if (follow == nullptr) {
 first = current->next;
 if (current->next == nullptr) {
 last = first;
 }
 } else {
 follow->next = current->next;
 if (current->next == nullptr) {
 last = follow;
 }
 }
 }
 }

LINKED LIST SHARED_PTR REMOVE METHOD

Here current loses scope; removed node's
reference count goes to 0 and is reclaimed.

LECTURE 13-2 SMART POINTERS

NO DESTRUCTOR CODE NEEDED
class node {
 int data;
 std::shared_ptr<node> next;
 node(int value) : data {value}, next {nullptr} { }
 ~node(void) { }
};
class llist {
 std::shared_ptr<node> first;
 std::shared_ptr<node> last;
 llist(void) : first {nullptr}, last {nullptr} { }
 ~llist(void) { // NOTHING HERE!! }
 void prepend(int value);
 void append(int value);
 void remove(int value);
};  

▸When an llist's storage is reclaimed, first and last are decremented.

➡ This leads to a cascading series of automatic reclamations of nodes.

LECTURE 13-2 SMART POINTERS

WHY IT WORKS: SINGLY LINKED LIST

 data

HEAP MEMORY

STACK FRAME

3

•

1
count

 next

 data 5

• next

 data 7

• next

• last • first

1
count

2
count

LECTURE 13-2 SMART POINTERS

WHY IT WORKS: SINGLY LINKED LIST

 data

HEAP MEMORY

STACK FRAME

3

•

0
count

 next

 data 5

• next

 data 7

• next

• last • first

1
count

1
count

LECTURE 13-2 SMART POINTERS

WHY IT WORKS: SINGLY LINKED LIST

 data

HEAP MEMORY

STACK FRAME

3

• next

 data 5

• next

 data 7

• next

• last • first

1
count

1
count

0
count

LECTURE 13-2 SMART POINTERS

WHY IT WORKS: SINGLY LINKED LIST

 data

HEAP MEMORY

STACK FRAME

3

• next

 data 5

• next

 data 7

• next

• last • first

1
count
1

count
0

count

LECTURE 13-2 SMART POINTERS

WHY IT WORKS: SINGLY LINKED LIST

 data

HEAP MEMORY

STACK FRAME

3

• next

 data 5

• next

 data 7

• next

• last • first

LECTURE 13-2 SMART POINTERS

A SHARED_PTR SINGLY LINKED LIST SUMMARY
▸By using shared_ptr, every reference to a node is counted.

▸When a new node is made, a shared_ptr is invented with a count of 1.

• It has an underlying raw pointer obtained from new.

▸When a relink happens:

➡ A non-null reference's count decrements.

➡ Another reference's count increments.

▸When a reference count goes to 0:

➡ The underlying raw pointer is deleted.

➡ If non-null, its next reference's count is decremented.

▸The code never explictly calls delete.

LECTURE 13-2 SMART POINTERS

A SHARED_PTR DOUBLY LINKED LIST
#include <memory>

class dnode {
public:
 int data;
 std::shared_ptr<dnode> next;
 std::shared_ptr<dnode> prev;
 dnode(int value) : data {value}, next {nullptr}, prev {nullptr} { }
};

class dbllist {
private:
 std::shared_ptr<dnode> first;
 std::shared_ptr<dnode> last;
public:
 dbllist(void) : first {nullptr}, last {nullptr} { }
 void append(int value) {// similar code as before ;
 void prepend(int value);
 void remove(int value);
}

BUG: linked list nodes aren't reclaimed

LECTURE 13-2 SMART POINTERS

WHY IT FAILS: DOUBLY LINKED LIST

 data

HEAP MEMORY

STACK FRAME

3

•

 prev •

2
count

 next

 data 5

•

 prev •

 next

 data 7

•

 prev •

 next

• last • first

2
count

2
count

LECTURE 13-2 SMART POINTERS

WHY IT FAILS: DOUBLY LINKED LIST

 data

HEAP MEMORY

STACK FRAME

3

•

 prev •

1
count

 next

 data 5

•

 prev •

 next

 data 7

•

 prev •

 next

• last • first

2
count

1
count

LECTURE 13-2 SMART POINTERS

FIX #1: A DESTRUCTOR THAT UNLINKS PREV POINTERS
class dbllist {
private:
 std::shared_ptr<dnode> first;
 std::shared_ptr<dnode> last;
public:
 dbllist(void) : first {nullptr}, last {nullptr} { }
 ~dbllist(void); // next slide
 void append(int value) {// similar code as before ;
 void prepend(int value);
 void remove(int value);
}

LECTURE 13-2 SMART POINTERS

FIX #1: A DESTRUCTOR THAT UNLINKS EACH PREV
dbllist::~dbllist(void) {
 for (std::shared_ptr<dnode> current = first;
 current != nullptr;
 current = current->next) {
 current->prev = nullptr;
 }
}

 data 3

•

 prev •

2
count

 next

 data 5

•

 prev •

 next

 data 7

•

 prev •

 next

• last • first

2
count

2
count

LECTURE 13-2 SMART POINTERS

FIX #1: A DESTRUCTOR THAT UNLINKS EACH PREV
dbllist::~dbllist(void) {
 for (std::shared_ptr<dnode> current = first;
 current != nullptr;
 current = current->next) {
 current->prev = nullptr;
 }
}

 data 3

•

 prev •

1
count

 next

 data 5

•

 prev •

 next

 data 7

•

 prev •

 next

• last • first

2
count

2
count

LECTURE 13-2 SMART POINTERS

FIX #1: A DESTRUCTOR THAT UNLINKS EACH PREV
dbllist::~dbllist(void) {
 for (std::shared_ptr<dnode> current = first;
 current != nullptr;
 current = current->next) {
 current->prev = nullptr;
 }
}

 data 3

•

 prev •

1
count

 next

 data 5

•

 prev •

 next

 data 7

•

 prev •

 next

• last • first

1
count

2
count

LECTURE 13-2 SMART POINTERS

FIX #1: A DESTRUCTOR THAT UNLINKS EACH PREV
dbllist::~dbllist(void) {
 for (std::shared_ptr<dnode> current = first;
 current != nullptr;
 current = current->next) {
 current->prev = nullptr;
 }
}

 data 3

•

 prev •

0
count

 next

 data 5

•

 prev •

 next

 data 7

•

 prev •

 next

• last • first

1
count

1
count

LECTURE 13-2 SMART POINTERS

FIX #1: A DESTRUCTOR THAT UNLINKS EACH PREV
dbllist::~dbllist(void) {
 for (std::shared_ptr<dnode> current = first;
 current != nullptr;
 current = current->next) {
 current->prev = nullptr;
 }
}

 data 3

•

 prev •

0
count

 next

 data 5

•

 prev •

 next

 data 7

•

 prev •

 next

• last • first

1
count

LECTURE 13-2 SMART POINTERS

FIX #1: A DESTRUCTOR THAT UNLINKS EACH PREV
dbllist::~dbllist(void) {
 for (std::shared_ptr<dnode> current = first;
 current != nullptr;
 current = current->next) {
 current->prev = nullptr;
 }
}

 data 3

•

 prev •

0
count

 next

 data 5

•

 prev •

 next

 data 7

•

 prev •

 next

• last • first

LECTURE 13-2 SMART POINTERS

FIX #1: A DESTRUCTOR THAT UNLINKS EACH PREV
dbllist::~dbllist(void) {
 for (std::shared_ptr<dnode> current = first;
 current != nullptr;
 current = current->next) {
 current->prev = nullptr;
 }
}

 data 3

•

 prev •

 next

 data 5

•

 prev •

 next

 data 7

•

 prev •

 next

• last • first

LECTURE 13-2 SMART POINTERS

FIX #2: PREV POINTERS THAT DON'T COUNT
class dnode {
public:
 int data;
 std::shared_ptr<dnode> next;
 std::weak_ptr<dnode> prev;
 dnode(int value) : data {value}, next {nullptr}, prev {} { }
};

 data 3

•

 prev •

1
count

 next

 data 5

•

 prev •

 next

 data 7

•

 prev •

 next

• last • first

1
count

2
count

LECTURE 13-2 SMART POINTERS

FIX #2: PREV POINTERS THAT DON'T COUNT
class dnode {
public:
 int data;
 std::shared_ptr<dnode> next;
 std::weak_ptr<dnode> prev;
 dnode(int value) : data {value}, next {nullptr}, prev {} { }
};

 data 3

•

 prev •

1
count

 next

 data 5

•

 prev •

 next

 data 7

•

 prev •

 next

• last • first

1
count

2
count

0
count

LECTURE 13-2 SMART POINTERS

FIX #2: PREV POINTERS THAT DON'T COUNT
class dnode {
public:
 int data;
 std::shared_ptr<dnode> next;
 std::weak_ptr<dnode> prev;
 dnode(int value) : data {value}, next {nullptr}, prev {} { }
};

 data 3

•

 prev •

 next

 data 5

•

 prev •

 next

 data 7

•

 prev •

 next

• last • first

1
count

2
count

0
count

LECTURE 13-2 SMART POINTERS

FIX #2: PREV POINTERS THAT DON'T COUNT
class dnode {
public:
 int data;
 std::shared_ptr<dnode> next;
 std::weak_ptr<dnode> prev;
 dnode(int value) : data {value}, next {nullptr}, prev {} { }
};

 data 3

•

 prev •

 next

 data 5

•

 prev •

 next

 data 7

•

 prev •

 next

• last • first

2
count
0

count

LECTURE 13-2 SMART POINTERS

FIX #2: PREV POINTERS THAT DON'T COUNT
class dnode {
public:
 int data;
 std::shared_ptr<dnode> next;
 std::weak_ptr<dnode> prev;
 dnode(int value) : data {value}, next {nullptr}, prev {} { }
};

 data 3

•

 prev •

 next

 data 5

•

 prev •

 next

 data 7

•

 prev •

 next

• last • first

LECTURE 13-2 SMART POINTERS

WORKING WITH WEAK_PTR IN REMOVE CODE
 void remove(int value) {
 std::shared_ptr<dnode> current {first};
 while (current != nullptr && current->data != value) {
 current = current->next;
 }
 if (current != nullptr) {
 if (current == first) {
 first = current->next;
 } else {
 std::shared_ptr<dnode> prev {current->prev};
 prev->next = current->next;
 }
 if (current == last) {
 last = std::shared_ptr<dnode>{current->prev};
 } else {
 std::shared_ptr<dnode> next {current->next};
 next->prev = current->prev;
 }
 }
 }

LECTURE 13-2 SMART POINTERS

CHECK OUT MY SAMPLE CODE UNDER LECTURE 13-2
▸I have four versions of linked lists that use shared_ptr:

• llist.cc: what I just showed you with test code

•dbllist_*.cc: three doubly-linked lists, each with test code

➡ _bad.cc: because of circular paths in the data structure, memory leak

➡_better.cc: detaches prev links in ~dbllist() to break cycles

➡_best.cc: uses weak_ptr for prev to break shared_ptr cycles

LECTURE 13-2 SMART POINTERS

