
INHERITANCE & TEMPLATES:
TWO KINDS OF GENERALIZATION

LECTURE 12-2

JIM FIX, REED COLLEGE CS2-S20

LECTURE 12-2 INHERITANCE AND TEMPLATES

TODAY'S PLAN

▸FINISH INHERITANCE

•ACCOUNT EXAMPLES

•DYNAMIC DISPATCH WITH virtual

• SHAPE EXAMPLE

▸TEMPLATES

▸A SURVEY OF THE C++ STANDARD TEMPLATE LIBRARY (or C++ STL)

CS FACULTY CANDIDATES THIS/NEXT WEEK...

▸Today/Wednesday @4:30pm over Zoom:

Tanya Amert, University of North Carolina

"Enabling Real-Time Certification of Autonomous-Driving Applications"

▸Next Monday @4:30pm over Zoom:

Sonia Roberts, University of Pennsylvania

(Title forthcoming; will be on her robotics research.)

LECTURE 12-2 INHERITANCE AND TEMPLATES

▸The full class hierarchy we'll flesh out...

•Savings accounts accrue 2% interest. They charge a penalty for withdrawal.
class Savings : public Account { ... }

• .
class Checking : public Account { ... }

• .

class Promotional : public Checking { ... }

CLASS ACCOUNT AND ITS DERIVED CLASSES

CheckingSavings

Account

Promotional

superclass

subclass

"inherits"

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

▸The full class hierarchy we'll flesh out...

•Savings accounts accrue 2% interest. They charge a penalty for withdrawal.
class Savings : public Account { ... }

•Checking accounts accrue 1% interest, but only if balance is above $1000.
class Checking : public Account { ... }

• .

class Promotional : public Checking { ... }

CheckingSavings

Account

Promotional

superclass

subclass

"inherits"

CLASS ACCOUNT AND ITS DERIVED CLASSES

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

▸The full class hierarchy we'll flesh out...

•Savings accounts accrue 2% interest. They charge a penalty for withdrawal.
class Savings : public Account { ... }

•Checking accounts accrue 1% interest, but only if balance is above $1000.
class Checking : public Account { ... }

•Promotional checking accounts accrue 0.7% interest, but give you $100 to
open the account. You must stay above $100 to earn that interest.

class Promotional : public Checking { ... }

CheckingSavings

Account

Promotional

superclass

subclass

"inherits"

CLASS ACCOUNT AND ITS DERIVED CLASSES

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

▸The full class hierarchy we'll flesh out...

•Savings accounts accrue 2% interest. They charge a penalty for withdrawal.
class Savings : public Account { ... }

•Checking accounts accrue 1% interest, but only if balance is above $1000.
class Checking : public Account { ... }

•Promotional checking accounts accrue 0.7% interest, but give you $100 to
open the account. You must stay above $100 to earn that interest.

class Promotional : public Checking { ... }

CheckingSavings

Account

Promotional

superclass

subclass

"inherits"

"base"

"derived"

"...is a..."

CLASS ACCOUNT AND ITS DERIVED CLASSES

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

ACCOUNT CLASS, READIED FOR DERIVING
class Account {
private:
 static long gNextNumber; // used to generate account nos.
protected:
 // instance variables
 std::string name; // description of the account
 long number; // account no.
 double balance; // money held
 double rate; // monthly interest
public:
 ...
};

ACCOUNT CLASS, READIED FOR DERIVING
class Account {
private:
 static long gNextNumber;
protected:
 // instance variables
 std::string name;
 long number;
 double balance;
 double rate;
public:
 // methods
 ...
};

Not publicly accessible, but
accessible to any derived class.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

ACCOUNT CLASS, READIED FOR DERIVING
class Account {
private:
 static long gNextNumber;
protected:
 // instance variables
 ...
public:
 // methods
 Account(std::string name, double amount, double interest);
 virtual double getBalance() const;
 virtual std::string getName() const;
 virtual long getNumber() const;
 virtual double getRate() const;
 virtual void deposit(double amount);
 virtual void gainInterest();
 virtual double withdraw(double amount);
}; Virtual keyword indicates that the code of

overriding methods in subclass will get called.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

ACCOUNT CLASS IMPLEMENTATION (MISSING GETTERS)
Account::Account(std::string name, double amount, double
interest) : name {name},
 balance {amount},
 rate {interest},
 number {Account::gNextNumber++}
{ }

void Account::deposit(double amount) {
 balance += amount;
}
void Account::gainInterest() {
 deposit(rate * balance);
}
double Account::withdraw(double amount) {
 if (amount > balance) {
 amount = balance;
 balance = 0.0;
 } else {
 balance -= amount;
 }
 return amount;
}

SUBCLASSES OF ACCOUNT
▸Example of a subclass Savings deriving from a base Account:

class Savings : public Account { ... }  

▸The keyword public means that...

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

SUBCLASSES OF ACCOUNT
▸Example of a subclass Savings deriving from a base Account:

class Savings : public Account { ... }  

▸The keyword public means that

• all public members are accessible as public in the derived class,

• all protected members are accessible as protected in the derived class,

•private members are only accessible if that subclass is a friend.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

EXTENSIONS AND OVERRIDES
class Savings : public Account {
protected:
 double penalty; // Savings accounts have a withdrawal penalty.
public:
 Savings(std::string name, double amount);
 double withdraw(double amount); // Charges a penalty.
};

class Checking : public Account {
protected:
 double level;
public:
 Checking(std::string name, double amount);
 void gainInterest();
};

class Promotional : public Checking {
public:
 Promotional(std::string name, double amount);
};

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

EXTENSIONS AND OVERRIDES
class Savings : public Account {
protected:
 double penalty; // Savings accounts have a withdrawal penalty.
public:
 Savings(std::string name, double amount);
 double withdraw(double amount); // Charges a penalty.
};

class Checking : public Account {
protected:
 double level;
public:
 Checking(std::string name, double amount);
 void gainInterest();
};

class Promotional : public Checking {
public:
 Promotional(std::string name, double amount);
};

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

EXTENSIONS AND OVERRIDES
class Savings : public Account {
protected:
 double penalty;
public:
 Savings(std::string name, double amount);
 double withdraw(double amount);
};

class Checking : public Account {
protected:
 double level; // Checking accounts gain interest above a level
public:
 Checking(std::string name, double amount);
 void gainInterest(); // Checks that level
};

class Promotional : public Checking {
public:
 Promotional(std::string name, double amount);
};

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

EXTENSIONS AND OVERRIDES
class Savings : public Account {
protected:
 double penalty;
public:
 Savings(std::string name, double amount);
 double withdraw(double amount);
};

class Checking : public Account {
protected:
 double level;
public:
 Checking(std::string name, double amount);
 void gainInterest();
};

class Promotional : public Checking {
public: // Promotional accounts are a special kind of checking
 Promotional(std::string name, double amount); // account
};

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

SAVINGS ACCOUNT
Savings accounts accrue 2% interest. They charge a penalty for withdrawal.

▸We add a penalty instance variable.
class Savings : public Account {
protected:
 double penalty;
public:
 Savings(std::string name, double amount);
 double withdraw(double amount);
};

Savings::Savings(std::string name, double amount) :
 Account {name,amount,0.02}, penalty {50.0}
{ }

double Savings::withdraw(double amount) {
 double howmuch = Account::withdraw(amount);
 Account::withdraw(penalty);
 return howmuch;
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

SAVINGS ACCOUNT
Savings accounts accrue 2% interest. They charge a penalty for withdrawal.

▸We override the withdraw method to charge that penalty.
class Savings : public Account {
protected:
 double penalty;
public:
 Savings(std::string name, double amount);
 double withdraw(double amount);
};

Savings::Savings(std::string name, double amount) :
 Account {name,amount,0.02}, penalty {50.0}
{ }

double Savings::withdraw(double amount) {
 double howmuch = Account::withdraw(amount);
 Account::withdraw(penalty);
 return howmuch;
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

SAVINGS ACCOUNT
Savings accounts accrue 2% interest. They charge a penalty for withdrawal.

▸We rely on Account's implementation in several places.
class Savings : public Account {
protected:
 double penalty;
public:
 Savings(std::string name, double amount);
 double withdraw(double amount);
};

Savings::Savings(std::string name, double amount) :
 Account {name,amount,0.02}, penalty {50.0}
{ }

double Savings::withdraw(double amount) {
 double howmuch = Account::withdraw(amount);
 Account::withdraw(penalty);
 return howmuch;
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

CHECKING ACCOUNT
Checking accounts accrue 1% interest, but only if balance is above $1000.

▸We add a level instance variable.
class Checking : public Account {
protected:
 double level;
public:
 Checking(std::string name, double amount);
 void gainInterest();
};

Checking::Checking(std::string name, double amount) :
 Account {name, amount, 0.01}, level {1000.0}
{ }

void Checking::gainInterest() {
 if (balance >= level) {
 Account::gainInterest();
 }
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

CHECKING ACCOUNT
Checking accounts accrue 1% interest, but only if balance is above $1000.

▸We override the gainInterest method to check that level.
class Checking : public Account {
protected:
 double level;
public:
 Checking(std::string name, double amount);
 void gainInterest();
};

Checking::Checking(std::string name, double amount) :
 Account {name, amount, 0.01}, level {1000.0}
{ }

void Checking::gainInterest() {
 if (balance >= level) {
 Account::gainInterest();
 }
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

CHECKING ACCOUNT
Checking accounts accrue 1% interest, but only if balance is above $1000.

▸We rely on Account's implementation in several places.
class Checking : public Account {
protected:
 double level;
public:
 Checking(std::string name, double amount);
 void gainInterest();
};

Checking::Checking(std::string name, double amount) :
 Account {name, amount, 0.01}, level {1000.0}
{ }

void Checking::gainInterest() {
 if (balance >= level) {
 Account::gainInterest();
 }
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

PROMOTIONAL (CHECKING) ACCOUNT
Promotional accrues less interest, has an opening gift, has lower threshold.

▸It derives from Checking. There are no extensions or overrides.
class Promotional : public Checking {
public:
 Promotional(std::string name, double amount);
};

Promotional::Promotional(std::string name, double amount) :
 Checking {name, amount + 100.0}
{
 rate = 0.07;
 level = 100.0;
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

VIRTUAL METHODS: DISPATCH ACCORDING TO CONTENTS
▸Consider these two class definitions

class A {
 ...
 virtual void m(...); // yes virtual
 ...
}
class B : public A {
 ...
 void m(...);
 ...
}

▸Consider this client code
A *b = new B();
b->m(x);  

▸Since m is marked virtual, the code for B::m runs like we'd normally expect.

•

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

VIRTUAL METHODS: DISPATCH ACCORDING TO CONTENTS
▸Consider these two class definitions

class A {
 ...
 virtual void m(...); // yes virtual
 ...
}
class B : public A {
 ...
 void m(...);
 ...
}

▸Consider this client code
A *b = new B();
b->m(x);  

▸Since m is marked virtual, the code for B::m runs like we'd normally expect.

• This is sometimes called "dynamic dispatch" of the "message" m.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

VIRTUAL METHODS: DISPATCH ACCORDING TO CONTENTS
▸Consider these two class definitions

class A {
 ...
 virtual void m(...); // yes virtual
 ...
}
class B : public A {
 ...
 void m(...);
 ...
}

▸Consider this client code
A *b = new B();
b->m(x);  

▸Since m is marked virtual, the code for B::m runs like we'd normally expect.

•Code run for m is determined by the contents at b, i.e. at run time.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

VIRTUAL METHODS: DISPATCH ACCORDING TO CONTENTS
▸Consider these two class definitions

class A {
 ...
 virtual void m(...); // yes virtual
 ...
}
class B : public A {
 ...
 void m(...);
 ...
}

▸Consider this client code
A *b = new B();
b->m(x);  

▸Since m is marked virtual, the code for B::m runs like we'd normally expect.

•Code run for m is determined by the contents at b, i.e. at run time.

dynamic!!

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

NON-VIRTUAL METHODS: DISPATCH ACCORDING TO TYPE
▸Consider these two class definitions

class A {
 ...
 void m(...); // NOTE: not virtual!!!
 ...
}
class B : public A {
 ...
 void m(...);
 ...
}

▸Consider this client code
A *b = new B();
b->m(x);  

▸Since m is not marked virtual, the code for A::m runs instead.

•

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

NON-VIRTUAL METHODS: DISPATCH ACCORDING TO TYPE
▸Consider these two class definitions

class A {
 ...
 void m(...); // NOTE: not virtual!!!
 ...
}
class B : public A {
 ...
 void m(...);
 ...
}

▸Consider this client code
A *b = new B();
b->m(x); //  

▸Since m is not marked virtual, the code for A::m runs instead!!!!!!!

• This is sometimes called "static dispatch" of the "message" m.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

NON-VIRTUAL METHODS: DISPATCH ACCORDING TO TYPE
▸Consider these two class definitions

class A {
 ...
 void m(...); // NOTE: not virtual!!!
 ...
}
class B : public A {
 ...
 void m(...);
 ...
}

▸Consider this client code
A *a = new B();
a->m(x);  

▸Since m is not marked virtual, the code for A::m runs instead!!!!!!!

•Code run for m is determined by the type of b, i.e. at compile time.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

NON-VIRTUAL METHODS: DISPATCH ACCORDING TO TYPE
▸Consider these two class definitions

class A {
 ...
 void m(...); // NOTE: not virtual!!!
 ...
}
class B : public A {
 ...
 void m(...);
 ...
}

▸Consider this client code
A *a = new B();
a->m(x);  

▸Since m is not marked virtual, the code for A::m runs instead!!!!!!!

•Code run for m is determined by the type of b, i.e. at compile time.

static.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

WHY YOU WANT DYNAMIC DISPATCH
▸Imagine We have the following hierarchy:

class Shape { virtual void draw(); ... };
class Oval : public Shape { void draw(); ... };
class Rectangle : public Shape { void draw(); ... };

▸Consider this client code that has a linked list shapes:
ShapeNode* current = shapes->first;
while (current != nullptr) {
 current->shape->draw();
}

▸

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

WHY YOU WANT DYNAMIC DISPATCH
▸Imagine We have the following hierarchy:

class Shape { virtual void draw(); ... };
class Oval : public Shape { void draw(); ... };
class Rectangle : public Shape { void draw(); ... };

▸Consider this client code that has a linked list of shapes:
ShapeNode* current = shapes->first;
while (current != nullptr) {
 current->shape->draw();
}

▸In the above code, current->shape is of type Shape*.

▸

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

WHY YOU WANT DYNAMIC DISPATCH
▸Imagine We have the following hierarchy:

class Shape { virtual void draw(); ... };
class Oval : public Shape { void draw(); ... };
class Rectangle : public Shape { void draw(); ... };

▸Consider this client code that has a linked list of shapes:
ShapeNode* current = shapes->first;
while (current != nullptr) {
 current->shape->draw();
}

▸In the above code, current->shape is of type Shape*.

▸Because the draw method is virtual, dynamic dispatch is used.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

WHY YOU WANT DYNAMIC DISPATCH
▸Imagine We have the following hierarchy:

class Shape { virtual void draw(); ... };
class Oval : public Shape { void draw(); ... };
class Rectangle : public Shape { void draw(); ... };

▸Consider this client code that has a linked list of shapes:
ShapeNode* current = shapes->first;
while (current != nullptr) {
 current->shape->draw();
}

▸In the above code, current->shape is of type Shape*.

▸Because the draw method is virtual, dynamic dispatch is used.

•When the list node points to an Oval instance, Oval::draw is called.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

WHY YOU WANT DYNAMIC DISPATCH
▸Imagine We have the following hierarchy:

class Shape { virtual void draw(); ... };
class Oval : public Shape { void draw(); ... };
class Rectangle : public Shape { void draw(); ... };

▸Consider this client code that has a linked list of shapes:
ShapeNode* current = shapes->first;
while (current != nullptr) {
 current->shape->draw();
}

▸In the above code, current->shape is of type Shape*.

▸Because the draw method is virtual, dynamic dispatch is used.

•When the list node points to an Oval instance, Oval::draw is called.

•When it points to a Rectangle, Rectangle::draw is called.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

ABSTRACT CLASSES
▸Note that the Account class probably shouldn't have an instance.

•Nonetheless, it does define a few methods useful to subclass instances:

➡The deposit and withdraw methods as defined in Account
provide a default behavior that subclasses may use, or override.

▸Classes not meant to be instantiated are called abstract.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

"PURELY VIRTUAL" METHODS IN AN ABSTRACT BASE
▸Can't always provide a "default" method behavior in an abstract base...

▸In C++ we can designate methods as "purely virtual" with a value of 0:
class A {
 ...
 virtual T m(T1 v1, T2 v2, ...) = 0;
 ...
};

class B : public A {
 ...
 T m(T1 v1, T2 v2, ...) { ... /* actual behavior on B */ }
 ...
};

➡Method m must be defined by classes that derive from abstract A.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

"PURELY VIRTUAL" METHODS IN AN ABSTRACT BASE
▸We can't always provide a "default" behavior in the base abstract class.

▸In C++ we can designate methods as "purely virtual" with a value of 0:
class A {
 ...
 virtual T m(T1 v1, T2 v2, ...) = 0;
 ...
};

class B : public A {
 ...
 T m(T1 v1, T2 v2, ...) { ... /* actual behavior on B */ }
 ...
};

➡Method m must be defined by classes that derive from abstract A.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

"PURELY VIRTUAL" METHODS IN AN ABSTRACT BASE
▸We can't always provide a "default" behavior in the base abstract class.

▸In C++ we can designate methods as "purely virtual" with a value of 0:
class A {
 ...
 virtual T m(T1 v1, T2 v2, ...) = 0;
 ...
};

class B : public A {
 ...
 T m(T1 v1, T2 v2, ...) { ... /* actual behavior on B */ }
 ...
};

➡Method m must be defined by classes that derive from abstract A.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

EXAMPLE: SHAPE HIERARCHY
class Shape {
public:
 virtual double perimeter(void) const = 0;
 virtual double area(void) const = 0;
 virtual void print(void) const = 0;
 virtual double getHeight(void) const = 0;
 virtual double getWidth(void) const = 0;
 Rectangle bounds(void);
};

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

CIRCLE SUBCLASS DERIVED FROM SHAPE
class Circle : public Shape {
private:
 double radius;
public:
 Circle(double r) : radius(r) { }
 double perimeter(void) { return 2.0 * M_PI * radius; }
 double area(void) { return M_PI * radius * radius; }
 void print(void); // This one's many lines long.
 double getHeight(void) { return 2.0 * radius; }
 double getWidth(void) { return 2.0 * radius; }
};

void Circle::print(void) const {
 cout << "A circle with radius " << radius << ":\n" << endl;
 int w = static_cast<int>(ceil(getWidth()));
 if (w == 1) {
 std::cout << "+" << std::endl;
 return;
 }
 ...

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

CIRCLE SUBCLASS DERIVED FROM SHAPE
class Circle : public Shape {
private:
 double radius;
public:
 Circle(double r) : radius(r) { }
 double perimeter(void) { return 2.0 * M_PI * radius; }
 double area(void) { return M_PI * radius * radius; }
 void print(void); // This one's many lines long.
 double getHeight(void) { return 2.0 * radius; }
 double getWidth(void) { return 2.0 * radius; }
};

void Circle::print(void) const {
 cout << "A circle with radius " << radius << ":\n" << endl;
 int w = static_cast<int>(ceil(getWidth()));
 if (w == 1) {
 std::cout << "+" << std::endl;
 return;
 }
 ...

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

CIRCLE SUBCLASS DERIVED FROM SHAPE
class Circle : public Shape {
private:
 double radius;
public:
 Circle(double r) : radius(r) { }
 double perimeter(void) { return 2.0 * M_PI * radius; }
 double area(void) { return M_PI * radius * radius; }
 void print(void); // This one's many lines long.
 double getHeight(void) { return 2.0 * radius; }
 double getWidth(void) { return 2.0 * radius; }
};

void Circle::print(void) const {
 cout << "A circle with radius " << radius << ":\n" << endl;
 int w = static_cast<int>(ceil(getWidth()));
 if (w == 1) {
 std::cout << "+" << std::endl;
 return;
 }
 ...

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

CIRCLE SUBCLASS DERIVED FROM SHAPE
class Circle : public Shape {
private:
 double radius;
public:
 Circle(double r) : radius(r) { }
 double perimeter(void) { return 2.0 * M_PI * radius; }
 double area(void) { return M_PI * radius * radius; }
 void print(void); // This one's many lines long.
 double getHeight(void) { return 2.0 * radius; }
 double getWidth(void) { return 2.0 * radius; }
};

void Circle::print(void) const {
 cout << "A circle with radius " << radius << ":\n" << endl;
 int w = static_cast<int>(ceil(getWidth()));
 if (w == 1) {
 std::cout << "+" << std::endl;
 return;
 }
 ...

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

RECTANGLE SUBCLASS DERIVED FROM SHAPE
class Rectangle : public Shape {
private:
 double width;
 double height;
 void depict(void);
public:
 Rectangle(double w,double h) : width(w), height(h) { }
 double perimeter(void) { return 2.0 * (width + height); }
 double area(void) { return width * height; }
 void print(void);
 double getHeight(void) { return height; }
 double getWidth(void) { return width; }
 friend class Square;
};

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

RECTANGLE SUBCLASS DERIVED FROM SHAPE
class Rectangle : public Shape {
private:
 double width;
 double height;
 void depict(void);
public:
 Rectangle(double w,double h) : width(w), height(h) { }
 double perimeter(void) { return 2.0 * (width + height); }
 double area(void) { return width * height; }
 void print(void);
 double getHeight(void) { return height; }
 double getWidth(void) { return width; }
 friend class Square;
};

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

RECTANGLE SUBCLASS DERIVED FROM SHAPE
class Rectangle : public Shape {
private:
 double width;
 double height;
 void depict(void);
public:
 Rectangle(double w,double h) : width(w), height(h) { }
 double perimeter(void) { return 2.0 * (width + height); }
 double area(void) { return width * height; }
 void print(void);
 double getHeight(void) { return height; }
 double getWidth(void) { return width; }
 friend class Square;
};

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

RECTANGLE SUBCLASS DERIVED FROM SHAPE
class Rectangle : public Shape {
private:
 double width;
 double height;
 void depict(void) const;
public:
 Rectangle(double w,double h) : width(w), height(h) { }
 double perimeter(void) { return 2.0 * (width + height); }
 double area(void) { return width * height; }
 void print(void);
 double getHeight(void) { return height; }
 double getWidth(void) { return width; }
 friend class Square;
};
void Rectangle::print(void) const {
 std::cout << "Here is a " << width << "x" << height;
 std::cout << " rectangle:\n" << std::endl;
 depict();
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

RECTANGLE SUBCLASS DERIVED FROM SHAPE
class Rectangle : public Shape {
private:
 double width;
 double height;
 void depict(void) const;
public:
 Rectangle(double w,double h) : width(w), height(h) { }
 double perimeter(void) { return 2.0 * (width + height); }
 double area(void) { return width * height; }
 void print(void);
 double getHeight(void) { return height; }
 double getWidth(void) { return width; }
 friend class Square;
};
void Rectangle::print(void) const {
 std::cout << "Here is a " << width << "x" << height;
 std::cout << " rectangle:\n" << std::endl;
 depict();
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

SQUARE SUBCLASS DERIVED FROM RECTANGLE
class Rectangle : public Shape {
private:
 void depict(void);
public:
 ...
 friend Square;
}

class Square : public Rectangle {
public:
 Square(double s) : Rectangle {s, s} { }
 void print(void);
};

void Square::print(void) const {
 std::cout << "Here is a " << getWidth() << "x" << getHeight();
 std::cout << " square:\n" << std::endl;
 Rectangle::depict();
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

SQUARE SUBCLASS DERIVED FROM RECTANGLE
class Rectangle : public Shape {
private:
 void depict(void);
public:
 ...
 friend Square;
}

class Square : public Rectangle {
public:
 Square(double s) : Rectangle {s, s} { }
 void print(void);
};

void Square::print(void) const {
 std::cout << "Here is a " << getWidth() << "x" << getHeight();
 std::cout << " square:\n" << std::endl;
 Rectangle::depict();
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

SQUARE SUBCLASS DERIVED FROM RECTANGLE
class Rectangle : public Shape {
private:
 void depict(void);
public:
 ...
 friend Square;
}

class Square : public Rectangle {
public:
 Square(double s) : Rectangle {s, s} { }
 void print(void);
};

void Square::print(void) const {
 std::cout << "Here is a " << getWidth() << "x" << getHeight();
 std::cout << " square:\n" << std::endl;
 Rectangle::depict();
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

SHAPE PROGRAM OUTPUT
Here is a circle with radius 5:

 ++++++
 ++++++++
++++++++++
++++++++++
++++++++++
++++++++++
++++++++++
++++++++++
 ++++++++
 ++++++

Here is a 7x3 rectangle:

+++++++
+++++++
+++++++

Here is a 1x1 square:

+

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

POLYMORPHISM IN PROGRAMMING LANGUAGES
▸Some people say that subclassing provides polymorphism

•We can have a list of shapes, but the shapes can be of different
types.

•poly "multiple/many" + morph "shape/form"

LECTURE 12-2 INHERITANCE AND TEMPLATES

POLYMORPHISM IN PROGRAMMING LANGUAGES
▸Some people say that subclassing provides polymorphism

•We can have a list of shapes, but the shapes can be of different
types.

•poly "multiple/many" + morph "shape/form"

▸In general, a language construct that is "polymorphic" allows you to write
one piece of code that handles many types of data.

•Object-oriented languages typically have subtype polymorphism.

•C (with void*) and Python have ad hoc polymorphism.

LECTURE 12-2 INHERITANCE AND TEMPLATES

POLYMORPHISM IN PROGRAMMING LANGUAGES
▸Some people say that subclassing provides polymorphism

•We can have a list of shapes, but the shapes can be of different
types.

•poly "multiple/many" + morph "shape/form"

▸In general, a language construct that is "polymorphic" allows you to write
one piece of code that handles many types of data.

•Object-oriented languages typically have subtype polymorphism.

•C (with void*) and Python have ad hoc polymorphism.

•Many modern programming languages have parameterized
polymorphism.

LECTURE 12-2 INHERITANCE AND TEMPLATES

CONTAINER POLYMORPHISM?
▸Recall: our container classes have had to fixate their element type:
class IntStck { int* elements; ... };
class StringStck { std::string* elements; ...};
class ShapeStck { Shape** elements; ... };

LECTURE 12-2 INHERITANCE AND TEMPLATES

CONTAINER POLYMORPHISM??
▸Recall: our container classes have had to fixate their element type:
class IntStck { int* elements; ... };
class StringStck { std::string* elements; ...};
class ShapeStck { Shape** elements; ... };

LECTURE 12-2 INHERITANCE AND TEMPLATES

CONTAINER POLYMORPHISM???
▸Recall: our container classes have had to fixate their element type:
class IntStck { int* elements; ... };
class StringStck { std::string* elements; ...};
class ShapeStck { Shape** elements; ... };

▸Wouldn't it be nice if we could define Stck once to take many forms?
class Stck<T> { T* elements; ... };  

LECTURE 12-2 INHERITANCE AND TEMPLATES

CONTAINER POLYMORPHISM????
▸Recall: our container classes have had to fixate their element type:
class IntStck { int* elements; ... };
class StringStck { std::string* elements; ...};
class ShapeStck { Shape** elements; ... };

▸Wouldn't it be nice if we could define Stck once to take many forms?
class Stck<T> { T* elements; ... };  

▸That is: what if this one class definition could describe all these types???
✦ Stck<int> // a stack of integers

✦ Stck<std::string> // a stack of strings

✦ Stck<Shape*> // a stack of shapes

LECTURE 12-2 INHERITANCE AND TEMPLATES

TEMPLATE CLASSES
▸C++ also provides an ability to "abstract away" the defining types of a class:

▸We can define a class A with type parameters T1,T2,... :
class A<T1, T2...> {
 ...
 // T1 and T2 used as type names throughout its definition
 ...
};

▸Then the client code can stamp out different A types, like so:
 A<int,std::string> a1 = ...;
 A<char,bool> a2 = ...;

▸The definition of class A provides a template for different forms of A.

LECTURE 12-2 INHERITANCE AND TEMPLATES

EXAMPLE: TEMPLATE STACK CLASS (SEE STCK_T.HH)
template <class X>
class Stck {

private:
 int capacity;
 int num_elements;
 X *elements;

public:
 Stck(const int size);
 const bool is_empty() const;
 void push(const X value);
 X pop();
 const X top() const;
 const std::string to_string() const;
 ~Stck();
};

LECTURE 12-2 INHERITANCE AND TEMPLATES

EXAMPLE: TEMPLATE STACK CLASS (SEE STCK_T.HH)
template <class X>
class Stck {

private:
 int capacity;
 int num_elements;
 X *elements;

public:
 Stck(const int size);
 const bool is_empty() const;
 void push(const X value);
 X pop();
 const X top() const;
 const std::string to_string() const;
 ~Stck();
};

LECTURE 12-2 INHERITANCE AND TEMPLATES

SOME SAMPLE TEMPLATE METHODS (ALSO IN STCK_T.HH)
template <class X>
Stck<X>::Stck(const int size) :
 capacity {size},
 num_elements{0},
 elements {new X[size]}
{ }

template <class X>
void Stck<X>::push(const X value) {
 elements[num_elements] = value;
 num_elements++;
}

template <class X>
X Stck<X>::pop() {
 num_elements--;
 return elements[num_elements];
}

LECTURE 12-2 INHERITANCE AND TEMPLATES

USE OF TEMPLATE BY CLIENT: A NEW DC.CC
#include <iostream>
#include <string>
#include "Stck_T.hh"

int main() {

 Stck<int> s(100);

 std::string entry;
 do {
 std::cin >> entry;
 if (entry == "+") {
 int v1 = s.pop();
 int v2 = s.pop();
 int v = v1 + v2;
 s.push(v);
 } else if (entry == "-") {
 int v1 = s.pop();
 int v2 = s.pop();
 int v = v1 - v2;
 s.push(v);
 ...

LECTURE 12-2 INHERITANCE AND TEMPLATES

USE OF TEMPLATE BY CLIENT: A DIFFERENT DC.CC
#include <iostream>
#include <string>
#include "Stck_T.hh"

int main() {

 Stck<double> s(100);

 std::string entry;
 do {
 std::cin >> entry;
 if (entry == "+") {
 double v1 = s.pop();
 double v2 = s.pop();
 double v = v1 + v2;
 s.push(v);
 } else if (entry == "-") {
 double v1 = s.pop();
 double v2 = s.pop();
 double v = v1 - v2;
 s.push(v);
 ...

LECTURE 12-2 INHERITANCE AND TEMPLATES

NOTES ON TEMPLATES
▸Templates provide something like "generics" (term used in Java).

▸Comes from the functional programming language community (e.g. CaML):

➡parameterized polymorhism, e.g. τ list

▸Separate compilation in C++ makes templates tricky:

• You must put everything (spec'n and impl'n) into a header file.

•Client code #includes the full definition, class and methods.

•Compiler stamps out different code, code for each type parameterization.

▸The C++ template mechanism is awkward...

...but generics/parametrized types are a very useful and elegant concept.

LECTURE 12-2 INHERITANCE AND TEMPLATES

NOTES ON TEMPLATES
▸Templates provide something like "generics" (term used in Java).

▸Comes from the functional programming language community (e.g. CaML):

➡parameterized polymorhism, e.g. τ list

▸Separate compilation in C++ makes templates tricky:

•You must put everything (spec'n and impl'n) into a header file.

•Client code #includes the full definition, class and methods.

•Compiler stamps out different code, code for each type parameterization.

▸The C++ template mechanism is awkward...

...but generics/parametrized types are a very useful and elegant concept.

LECTURE 12-2 INHERITANCE AND TEMPLATES

NOTES ON TEMPLATES
▸Templates provide something like "generics" (term used in Java).

▸Comes from the functional programming language community (e.g. CaML):

➡parameterized polymorhism, e.g. τ list

▸Separate compilation in C++ makes templates tricky:

•You must put everything (spec'n and impl'n) into a header file.

•Client code #includes the full definition, class and methods.

•Compiler stamps out different code, code for each type parameterization.

▸The C++ template mechanism is awkward...

...but generics/parametrized types are a very useful and elegant concept.

LECTURE 12-2 INHERITANCE AND TEMPLATES

