
IMMUTABILITY, REFERENCE,
AND INHERITANCE

LECTURE 12-1

JIM FIX, REED COLLEGE CS2-S20

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

TODAY'S PLAN

▸FINISH DESTRUCTORS

▸PASSING PARAMETERS BY REFERENCE

▸IMMUTABILITY WITH const

▸INHERITANCE

•ACCOUNT EXAMPLES

•DYNAMIC DISPATCH WITH virtual

THIS WEEK'S PLAN

▸There is no lab tomorrow. Work on Homework 11.

▸Wednesday:

• TEMPLATES

• STANDARD TEMPLATE LIBRARY

• INTRODUCE PROJECT 2

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

CS FACULTY CANDIDATES THIS/NEXT WEEK...

▸Tuesday/Tomorrow @4:30pm over Zoom:

Archita Agarwal, Brown University

"Encrypted Distributed Storage Systems"

▸Wednesday @4:30pm over Zoom:

Tanya Amert, University of North Carolina

"Enabling Real-Time Certification of Autonomous-Driving Applications"

▸Next Monday @4:30pm over Zoom:

Sonia Roberts, University of Pennsylvania

(Title forthcoming; will be on her robotics research.)

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

CONTAINER EXAMPLE: A STACK OBJECT CLASS
1. class Stck {

3. private:
4. int *elements;
5. int num_elements;
6. int capacity;

8. public:
9. Stck(int capacity); // This will heap-allocate the array.
10. bool is_empty();
11. void push(int value);
12. int pop();
13. int top();
14. ~Stck(); // Destructor. This will "delete" the array.
15. };

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

 elements  
 
 size  
 
 capacity

ILLUSTRATION WITH A SIMPLE CLIENT
9. #include "Stck.hh"
10. #include <iostream>
11. int main(void) {
12. Stck s {5};
13. s.push(7);
14. s.push(1);
15. s.push(3);
16. std::cout << s.pop() << std::endl;
17. std::cout << s.pop() << std::endl;
18. s.push(11);
19. std::cout << s.pop() << std::endl;
20. }

7 11 3 ?? ??

2

5

HEAP MEMORY
STACK FRAME

1 3

2 1

3

4

5

CONSOLE

•
s

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

 elements  
 
 size  
 
 capacity

ILLUSTRATION WITH A SIMPLE CLIENT
9. #include "Stck.hh"
10. #include <iostream>
11. int main(void) {
12. Stck s {5};
13. s.push(7);
14. s.push(1);
15. s.push(3);
16. std::cout << s.pop() << std::endl;
17. std::cout << s.pop() << std::endl;
18. s.push(11);
19. std::cout << s.pop() << std::endl;
20. }

7 11 3 ?? ??

1

5

HEAP MEMORY
STACK FRAME

1 3

2 1

3 11

4

5

CONSOLE

•
s

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

 elements  
 
 size  
 
 capacity

ILLUSTRATION WITH A SIMPLE CLIENT
9. #include "Stck.hh"
10. #include <iostream>
11. int main(void) {
12. Stck s {5};
13. s.push(7);
14. s.push(1);
15. s.push(3);
16. std::cout << s.pop() << std::endl;
17. std::cout << s.pop() << std::endl;
18. s.push(11);
19. std::cout << s.pop() << std::endl;
20. }

7 11 3 ?? ??

1

5

HEAP MEMORY
STACK FRAME

1 3

2 1

3 11

4

5

CONSOLE

•
s

Calls the default
destructor.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

 elements  
 
 size  
 
 capacity

ILLUSTRATION WITH A SIMPLE CLIENT
9. #include "Stck.hh"
10. #include <iostream>
11. int main(void) {
12. Stck s {5};
13. s.push(7);
14. s.push(1);
15. s.push(3);
16. std::cout << s.pop() << std::endl;
17. std::cout << s.pop() << std::endl;
18. s.push(11);
19. std::cout << s.pop() << std::endl;
20. }

7 11 3 ?? ??

1

5

HEAP MEMORY
STACK FRAME

1 3

2 1

3 11

4

5

CONSOLE

•
s

Calls the default
destructor.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

ILLUSTRATION WITH A SIMPLE CLIENT
9. #include "Stck.hh"
10. #include <iostream>
11. int main(void) {
12. Stck s {5};
13. s.push(7);
14. s.push(1);
15. s.push(3);
16. std::cout << s.pop() << std::endl;
17. std::cout << s.pop() << std::endl;
18. s.push(11);
19. std::cout << s.pop() << std::endl;
20. }

7 11 3 ?? ??
HEAP MEMORY

STACK FRAME

1 3

2 1

3 11

4

5

CONSOLE

Calls the default
destructor.

s elements  
 
 size  
 
 capacity

1

5

•

And the frame gets
taken down.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

ILLUSTRATION WITH A SIMPLE CLIENT
9. #include "Stck.hh"
10. #include <iostream>
11. int main(void) {
12. Stck s {5};
13. s.push(7);
14. s.push(1);
15. s.push(3);
16. std::cout << s.pop() << std::endl;
17. std::cout << s.pop() << std::endl;
18. s.push(11);
19. std::cout << s.pop() << std::endl;
20. }

7 11 3 ?? ??
HEAP MEMORY

STACK FRAME

1 3

2 1

3 11

4

5

CONSOLE

Calls the default
destructor.

s elements  
 
 size  
 
 capacity

1

5

•

And the frame gets
taken down.

But we have a
memory leak.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

▸Destructor code is executed when a stack-allocated object goes out of scope.

▸Here is code we need for the Stck destructor:
Stck::~Stck() {
 delete [] elements;
}  

▸In this case, we simply delete the pointer to the elements array.

▸If we didn't, we'd have a memory leak.

➡The 5 words would be reserved, but the program has no access to them.

▸This just undoes the work of the constructor; gives back the heap storage.

DESTRUCTOR CODE

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

 elements  
 
 size  
 
 capacity

ILLUSTRATION WITH A SIMPLE CLIENT
9. #include "Stck.hh"
10. #include <iostream>
11. int main(void) {
12. Stck s {5};
13. s.push(7);
14. s.push(1);
15. s.push(3);
16. std::cout << s.pop() << std::endl;
17. std::cout << s.pop() << std::endl;
18. s.push(11);
19. std::cout << s.pop() << std::endl;
20. }

7 11 3 ?? ??

1

5

HEAP MEMORY
STACK FRAME

1 3

2 1

3 11

4

5

CONSOLE

•
s

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

 elements  
 
 size  
 
 capacity

IMPLICIT CALL OF THE DESTRUCTOR
9. #include "Stck.hh"
10. #include <iostream>
11. int main(void) {
12. Stck s {5};
13. s.push(7);
14. s.push(1);
15. s.push(3);
16. std::cout << s.pop() << std::endl;
17. std::cout << s.pop() << std::endl;
18. s.push(11);
19. std::cout << s.pop() << std::endl;
20. }

7 11 3 ?? ??

1

5

HEAP MEMORY
STACK FRAME

1 3

2 1

3 11

4

5

CONSOLE

•
s

Calls the destructor,
which deletes.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

 elements  
 
 size  
 
 capacity

IMPLICIT CALL OF THE DESTRUCTOR
9. #include "Stck.hh"
10. #include <iostream>
11. int main(void) {
12. Stck s {5};
13. s.push(7);
14. s.push(1);
15. s.push(3);
16. std::cout << s.pop() << std::endl;
17. std::cout << s.pop() << std::endl;
18. s.push(11);
19. std::cout << s.pop() << std::endl;
20. }

7 11 3 ?? ??

1

5

HEAP MEMORY
STACK FRAME

1 3

2 1

3 11

4

5

CONSOLE

•
s

Calls the
destructor.

And the frame gets
taken down.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

9. #include "Stck.hh"
10. #include <iostream>
11. int main(void) {
12. Stck s {5};
13. s.push(7);
14. s.push(1);
15. s.push(3);
16. std::cout << s.pop() << std::endl;
17. std::cout << s.pop() << std::endl;
18. s.push(11);
19. std::cout << s.pop() << std::endl;
20. }

s elements  
 
 size  
 
 capacity

IMPLICIT CALL OF THE DESTRUCTOR

7 11 3 ?? ??

1

5

HEAP MEMORY
STACK FRAME

1 3

2 1

3 11

4

5

CONSOLE

•

Calls the
destructor.

And the frame gets
taken down.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

9. #include "Stck.hh"
10. #include <iostream>
11. int main(void) {
12. Stck* s = new Stck {5};
13. s->push(7);
14. s->push(1);
15. s->push(3);
16. std::cout << s->pop() << std::endl;
17. std::cout << s->pop() << std::endl;
18. s->push(11);
19. std::cout << s->pop() << std::endl;
20. delete s;
21. }

HEAP-ALLOCATED STACK

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

9. #include "Stck.hh"
10. #include <iostream>
11. int main(void) {
12. Stck* s = new Stck {5};
13. s->push(7);
14. s->push(1);
15. s->push(3);
16. std::cout << s->pop() << std::endl;
17. std::cout << s->pop() << std::endl;
18. s->push(11);
19. std::cout << s->pop() << std::endl;
20. delete s;
21. }

▸Now s is a pointer to a Stck instance.

HEAP-ALLOCATED STACK

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

9. #include "Stck.hh"
10. #include <iostream>
11. int main(void) {
12. Stck* s = new Stck {5};
13. s->push(7);
14. s->push(1);
15. s->push(3);
16. std::cout << s->pop() << std::endl;
17. std::cout << s->pop() << std::endl;
18. s->push(11);
19. std::cout << s->pop() << std::endl;
20. delete s;
21. }

▸Now s can point to a Stck instance. Its type is Stck*

▸We can construct a new instance that lives on the heap.

HEAP-ALLOCATED STACK

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

9. #include "Stck.hh"
10. #include <iostream>
11. int main(void) {
12. Stck* s = new Stck {5};
13. s->push(7);
14. s->push(1);
15. s->push(3);
16. std::cout << s->pop() << std::endl;
17. std::cout << s->pop() << std::endl;
18. s->push(11);
19. std::cout << s->pop() << std::endl;
20. delete s;
21. }

▸Now s can point to a Stck instance. Its type is Stck*

▸We can construct a new instance that lives on the heap.

▸And we must explicitly delete that pointer.

HEAP-ALLOCATED STACK

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

9. #include "Stck.hh"
10. #include <iostream>
11. int main(void) {
12. Stck* s = new Stck {5};
13. s->push(7);
14. s->push(1);
15. s->push(3);
16. std::cout << s->pop() << std::endl;
17. std::cout << s->pop() << std::endl;
18. s->push(11);
19. std::cout << s->pop() << std::endl;
20. delete s;
21. }

 elements  
 
 size  
 
 capacity

s

HEAP-ALLOCATED STACK ILLUSTRATED

7 1 3 ?? ??

1

5

HEAP MEMORY

STACK FRAME

1

2

3

4

5

CONSOLE

•
•

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

9. #include "Stck.hh"
10. #include <iostream>
11. int main(void) {
12. Stck* s = new Stck {5};
13. s->push(7);
14. s->push(1);
15. s->push(3);
16. std::cout << s->pop() << std::endl;
17. std::cout << s->pop() << std::endl;
18. s->push(11);
19. std::cout << s->pop() << std::endl;
20. delete s;
21. }

 elements  
 
 size  
 
 capacity

s

HEAP-ALLOCATED STACK ILLUSTRATED

7 11 3 ?? ??

1

5

HEAP MEMORY

STACK FRAME

1 3

2 1

3 11

4

5

CONSOLE

•
•

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

9. #include "Stck.hh"
10. #include <iostream>
11. int main(void) {
12. Stck* s = new Stck {5};
13. s->push(7);
14. s->push(1);
15. s->push(3);
16. std::cout << s->pop() << std::endl;
17. std::cout << s->pop() << std::endl;
18. s->push(11);
19. std::cout << s->pop() << std::endl;
20. delete s;
21. }

 elements  
 
 size  
 
 capacity

s

HEAP-ALLOCATED STACK ILLUSTRATED

7 11 3 ?? ??

1

5

HEAP MEMORY

STACK FRAME

1 3

2 1

3 11

4

5

CONSOLE

•
•

The destructor code
gets called with

delete

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

9. #include "Stck.hh"
10. #include <iostream>
11. int main(void) {
12. Stck* s = new Stck {5};
13. s->push(7);
14. s->push(1);
15. s->push(3);
16. std::cout << s->pop() << std::endl;
17. std::cout << s->pop() << std::endl;
18. s->push(11);
19. std::cout << s->pop() << std::endl;
20. delete s;
21. }

 elements  
 
 size  
 
 capacity

s

HEAP-ALLOCATED STACK ILLUSTRATED

7

1

5

HEAP MEMORY

STACK FRAME

1 3

2 1

3 11

4

5

CONSOLE

•
•

The destructor code
gets called with

delete...which deletes
s->elements.

7 11 3 ?? ??

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

9. #include "Stck.hh"
10. #include <iostream>
11. int main(void) {
12. Stck* s = new Stck {5};
13. s->push(7);
14. s->push(1);
15. s->push(3);
16. std::cout << s->pop() << std::endl;
17. std::cout << s->pop() << std::endl;
18. s->push(11);
19. std::cout << s->pop() << std::endl;
20. delete s;
21. }

 elements  
 
 size  
 
 capacity

s

HEAP-ALLOCATED STACK ILLUSTRATED

7

1

5

HEAP MEMORY

STACK FRAME

1 3

2 1

3 11

4

5

CONSOLE

•
•

7 11 3 ?? ??

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

9. #include "Stck.hh"
10. #include <iostream>
11. int main(void) {
12. Stck* s = new Stck {5};
13. s->push(7);
14. s->push(1);
15. s->push(3);
16. std::cout << s->pop() << std::endl;
17. std::cout << s->pop() << std::endl;
18. s->push(11);
19. std::cout << s->pop() << std::endl;
20. delete s;
21. }

 elements  
 
 size  
 
 capacity

s

HEAP-ALLOCATED STACK ILLUSTRATED

7

1

5

HEAP MEMORY

STACK FRAME

1 3

2 1

3 11

4

5

CONSOLE

•
•

7 11 3 ?? ??

Then the frame gets
taken down.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

9. #include "Stck.hh"
10. #include <iostream>
11. int main(void) {
12. Stck* s = new Stck {5};
13. s->push(7);
14. s->push(1);
15. s->push(3);
16. std::cout << s->pop() << std::endl;
17. std::cout << s->pop() << std::endl;
18. s->push(11);
19. std::cout << s->pop() << std::endl;
20. delete s;
21. }

 elements  
 
 size  
 
 capacity

s

HEAP-ALLOCATED STACK ILLUSTRATED

7

1

5

HEAP MEMORY

STACK FRAME

1 3

2 1

3 11

4

5

CONSOLE

•
•

7 11 3 ?? ??

Then the frame gets
taken down.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

SUMMARY OF CONSTRUCTORS AND DESTRUCTORS
▸Constructors

•Code is invoked when an object's struct is allocated

➡within the stack frame, and

➡on the heap using new.

• Initialize the instance's variables.

▸Destructors

•Code is invoked when an object's struct is de-allocated

➡upon exit from a function when the stack frame is taken down, and

➡upon explicit call of delete on a pointer to an instance.

• Typically for giving back heap-allocated components.

✦ (Other use: class-wide accounting.)

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

MODERN C++ WE COVER
▸BASIC OBJECT-ORIENTATION: CLASSES, METHODS, CON-/DE-STRUCTORS

▸INHERITANCE

▸TEMPLATES

▸SOME NITTY-GRITTY STUFF

•OPERATOR OVERLOADING

•REFERENCES & ; const ; COPY/MOVE CONSTRUCTORS/ASSIGNMENT

▸THE C++ STANDARD TEMPLATE LIBRARY

•vector, map, unordered_map, ...
▸lambda
▸SMART POINTERS, "RAII": shared_ptr AND weak_ptr

LECTURES 12-X, 13-X, 14-X

MODERN C++ WE COVER
▸BASIC OBJECT-ORIENTATION: CLASSES, METHODS, CON-/DE-STRUCTORS √

▸INHERITANCE

▸TEMPLATES

▸SOME NITTY-GRITTY STUFF

•OPERATOR OVERLOADING √

•REFERENCES & ; const ; COPY/MOVE CONSTRUCTORS/ASSIGNMENT

▸THE C++ STANDARD TEMPLATE LIBRARY

•vector, map, unordered_map, ...
▸lambda
▸SMART POINTERS, "RAII": shared_ptr AND weak_ptr

LECTURES 12-X, 13-X, 14-X

LECTURES 12-X, 13-X, 14-X

MODERN C++ WE COVER
▸BASIC OBJECT-ORIENTATION: CLASSES, METHODS, CON-/DE-STRUCTORS √

▸INHERITANCE Today

▸TEMPLATES Wednesday

▸SOME NITTY-GRITTY STUFF

•OPERATOR OVERLOADING √

•REFERENCES & ; const ; COPY/MOVE CONSTRUCTORS/ASSIGNMENT

▸THE C++ STANDARD TEMPLATE LIBRARY Wednesday

•vector, map, unordered_map, ... Wednesday
▸lambda after Txgvg

▸SMART POINTERS, "RAII": shared_ptr AND weak_ptr after Txgvg

Today
after Txgvg

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

RECALL: IN C++ ARGUMENTS ARE PASSED BY VALUE
▸Consider these function definitions

void increment(int i) {
 i = i+1;
}
void swap(int x, int y) {
 int tmp = x;
 x = y;
 y = tmp;
}

▸They don't do much. The code below does this:
int count = 10;
int a = 17;
int b = 42;
std::cout << count << " " << a << " " << b << "\n";
increment(count);
swap(a,b);
std::cout << count << " " << a << " " << b << "\n";

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

RECALL: IN C++ ARGUMENTS ARE PASSED BY VALUE
▸Consider these function definitions

void increment(int i) {
 i = i+1;
}
void swap(int x, int y) {
 int tmp = x;
 x = y;
 y = tmp;
}

▸They don't do much. The code below does this:
int count = 10;
int a = 17;
int b = 42;
std::cout << count << " " << a << " " << b << "\n";
increment(count);
swap(a,b);
std::cout << count << " " << a << " " << b << "\n";

1 10 17 42

2 10 17 42

CONSOLE

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

PASSING POINTERS
▸If we use pointers instead

void increment(int* ip) {
 (*ip) = (*ip)+1;
}
void swap(int* xp, int* yp) {
 int tmp = (*xp);
 (*xp) = (*yp);
 (*yp) = tmp;
}

▸...then we achieve what we want:
int count = 10;
int a = 17;
int b = 42;
std::cout << count << " " << a << " " << b << "\n";
increment(&count);
swap(&a,&b);
std::cout << count << " " << a << " " << b << "\n";

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

PASSING POINTERS
▸If we use pointers instead

void increment(int* ip) {
 (*ip) = (*ip)+1;
}
void swap(int* xp, int* yp) {
 int tmp = (*xp);
 (*xp) = (*yp);
 (*yp) = tmp;
}

▸...then we achieve what we want:
int count = 10;
int a = 17;
int b = 42;
std::cout << count << " " << a << " " << b << "\n";
increment(&count);
swap(&a,&b);
std::cout << count << " " << a << " " << b << "\n";

1 10 17 42

2 11 42 17

CONSOLE

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

PASSING POINTERS
▸If we use pointers instead

void increment(int* ip) {
 (*ip) = (*ip)+1;
}
void swap(int* xp, int* yp) {
 int tmp = (*xp);
 (*xp) = (*yp);
 (*yp) = tmp;
}

▸...then we achieve what we want:
int count = 10;
int a = 17;
int b = 42;
std::cout << count << " " << a << " " << b << "\n";
increment(&count);
swap(&a,&b);
std::cout << count << " " << a << " " << b << "\n";

1 10 17 42

2 11 42 17

CONSOLE

We pass pointers that refer to
the storage of the variables.

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

PASSING POINTERS
▸If we use pointers instead

void increment(int* ip) {
 (*ip) = (*ip)+1;
}
void swap(int* xp, int* yp) {
 int tmp = (*xp);
 (*xp) = (*yp);
 (*yp) = tmp;
}

▸...then we achieve what we want:
int count = 10;
int a = 17;
int b = 42;
std::cout << count << " " << a << " " << b << "\n";
increment(&count);
swap(&a,&b);
std::cout << count << " " << a << " " << b << "\n";

1 10 17 42

2 11 42 17

CONSOLE

We pass pointers that refer to
the storage of the variables.

This makes *ip, *xp, *yp
"aliases" of count, a, b.

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

PASSING AND RETURNING STRUCTS
▸When a structure is passed as an argument with a function call, each of its

components is copied into the local storage of the callee.
struct point100d {
 double x1;
 double x2;
 ...
 double x100;
};

void print(point100d p) {
 std::cout << "(" << p.x1 << ",";
 std::cout << p.x2 << ",";
 ...
}
...
 point100d big_point = ...;
 print(big_point);
...

Copies 100 doubles,
640 bytes.

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

PASSING AND RETURNING STRUCTS
▸When a structure is passed as an argument with a function call, each of its

components is copied into the local storage of the callee.
struct point100d {
 double x1;
 double x2;
 ...
 double x100;
};

void print(point100d* p) {
 std::cout << "(" << p->x1 << ",";
 std::cout << p->x2 << ",";
 ...
}
...
 point100d big_point = ...;
 print(&big_point);
...

Copies 100 doubles,
640 bytes.

In C, people passed
pointers to prevent
all this copying... a
pointer is only 8 bytes.

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

PASSING AND RETURNING STRUCTS
▸Copying of components happens when a function returns a struct.

struct point100d {
 double x1;
 double x2;
 ...
 double x100;
};

point100d input(void) {
 point100d p;
 std::cin >> p.x1;
 std::cin >> p.x2;
 ...
 return p;
}
...
 point100d big_point = input();
...

Copies 100 doubles,
640 bytes.

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

PASSING AND RETURNING STRUCTS
▸Copying of components happens when a function returns a struct.

struct point100d {
 double x1;
 double x2;
 ...
 double x100;
};

void get(point100d *p) {
 std::cin >> p->x1;
 std::cin >> p->x2;
 ...
 std::cin >> p->x100;
}
...
 point100d big_point;
 get(&big_point);
...

One way to prevent all this
copying is to pass the
address of the struct and
have get take a pointer.

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

PASSING "BY REFERENCE"
▸C++ allows you to pass parameters by reference.

void increment(int& i) {
 i = i+1;
}
void swap(int& x, int& y) {
 int tmp = x;
 x = y;
 y = tmp;
}

▸The client code looks none the wiser:
int count = 10;
int a = 17;
int b = 42;
std::cout << count << " " << a << " " << b << "\n";
increment(count);
swap(a,b);
std::cout << count << " " << a << " " << b << "\n";

▸Under the covers C++ does all the logistical work of passing pointers
instead of copying values.

1 10 17 42

2 11 42 17

CONSOLE

The use of & makes
parameters i, x, and y
aliases of count, a, and b.

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

PASSING STRUCTS "BY REFERENCE"
▸We can do the same to avoid copying when we pass structs:

void print(point100d& p) {
 std::cout << "(" << p.x1 << ",";
 std::cout << p.x2 << ",";
 ...
 std::cout << p.x100 << ")" << std::endl;
}

▸And we can modify structs' components this way, of course, too:
void get(point100d& p) {
 std::cin >> p.x1;
 std::cin >> p.x2;
 ...
 std::cin >> p.x100;
}

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

PASSING OBJECTS BY REFERENCE
▸We can do the same to avoid copying when we pass objects as parameters:

class Point100d {
 double x1;
 double x2;
 ...
 double x100;
 void operator+=(Point100d& that) {
 this->x1 += that.x1;
 this->x2 += that.x2;
 ...
 this->x100 += that.x100;
 }
};

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

PASSING OBJECTS BY REFERENCE
▸We can do the same to avoid copying when we pass objects as parameters:

class Point100d {
 double x1;
 double x2;
 ...
 double x100;
 void operator+=(Point100d& that) {
 this->x1 += that.x1;
 this->x2 += that.x2;
 ...
 this->x100 += that.x100;
 }
};

▸But, this kind of reference passing might be concerning to the client.

▸It might not want the method to change the contents of what it passes.

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

CONST PARAMETERS
▸The keyword const advertises and enforces this restriction:

class Point100d {
 double x1;
 double x2;
 ...
 double x100;
 void operator+=(const Point100d& that) {
 this->x1 += that.x1;
 this->x2 += that.x2;
 ...
 this->x100 += that.x100;
 }
};

▸The const keyword indicates that the contents of that aren't modified.

▸The compiler enforces this. Raises an error if the method's body violates it.

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

CONST METHODS
▸Consider the print method below:

class Point100d {
 double x1;
 double x2;
 ...
 double x100;
 void print(void) const {
 std::cout << "(" << this->x1 << ",";
 std::cout << this->x2 << ",";
 ...
 std::cout << this->x100 << ")";
 }
};

▸The const keyword indicates that the contents of this aren't modified.

▸The compiler enforces this, too, makes sure the method body behaves.

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

EXAMPLE CLASS INTERFACES WITH CONST AND REFERENCE
class Rational {
private:
 int num;
 int den;

public:
 // constructors
 Rational(void);
 Rational(std::string s);
 Rational(int n);
 Rational(int n, int d);

 // methods
 Rational plus(const Rational& that) const;
 Rational times(const Rational& that) const;
 std::string to_string(void) const;
};

Rational operator+(const Rational& q1, const Rational& q2);
Rational operator*(const Rational& q1, const Rational& q2);

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

EXAMPLE CLASS INTERFACES WITH CONST AND REFERENCE
class Stck {

private:
 int *elements;
 int num_elements;
 int capacity;

public:
 Stck(int capacity);
 bool is_empty() const;
 void push(int value);
 int pop();
 int top() const;
 std::string to_string() const;
 ~Stck();
 friend ostream& operator<<(ostream& os, const Stck& s);
 friend istream& operator<<(istream& is, Stck& s);
};

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

HMMM... LET'S WAIT TO DISCUSS THIS ANOTHER DAY
class Stck {

private:
 int *elements;
 int num_elements;
 int capacity;

public:
 Stck(int capacity);
 bool is_empty() const;
 void push(int value);
 int pop();
 int top() const;
 std::string to_string() const;
 ~Stck();
 friend ostream& operator<<(ostream& os, const Stck& s);
 friend istream& operator<<(istream& is, Stck& s);
};

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

INHERITANCE
▸RECALL: OO languages allow us to extend object classes:

➡adding instance variables enhances what they can represent.

➡adding methods enhances their behavior.

• The standard mechanism for this is subclassing.

➡ A subclass inherits the fields and behavior of its superclass.

➡ The extensions make it more specialized.

➡ We can develop a class hierarchy.

▸Example:

CheckingSavings

Account

Promotional

super-

sub-
"inherits"

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

INHERITANCE
▸RECALL: OO languages allow us to extend object classes:

➡adding instance variables enhances what they can represent.

➡adding methods enhances their behavior.

• The standard mechanism for this is subclassing.

➡ A subclass inherits the fields and behavior of its superclass.

➡ The extensions make it more specialized.

➡ We can develop a class hierarchy.

▸Example:

CheckingSavings

Account

Promotional

super-

sub-
"inherits"

base

derived

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

ACCOUNT CLASS
class Account {
private:
 static long gNextNumber; // used to generate account nos.
 // instance variables
 std::string name; // description of the account
 long number; // account no.
 double balance; // money held
 double rate; // monthly interest
public:
 ...
};

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

ACCOUNT CLASS
class Account {
private:
 static long gNextNumber;
 // instance variables
 ...
public:
 Account(std::string name, double amount, double interest);
 // getters
 double getBalance() const;
 std::string getName() const;
 long getNumber() const;
 double getRate() const;
 // methods
 void deposit(double amount); // add money
 void gainInterest(); // each month
 double withdraw(double amount); // remove money
};

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

ACCOUNT CLASS IMPLEMENTATION (MISSING GETTERS)
Account::Account(std::string name, double amount, double
interest) : name {name},
 balance {amount},
 rate {interest},
 number {Account::gNextNumber++}
{ }

void Account::deposit(double amount) {
 balance += amount;
}
void Account::gainInterest() {
 deposit(rate * balance);
}
double Account::withdraw(double amount) {
 if (amount > balance) {
 amount = balance;
 balance = 0.0;
 } else {
 balance -= amount;
 }
 return amount;
}

LECTURE 10-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

SUBCLASSES OF ACCOUNT
• Savings accounts accrue 2% interest. They charge a penalty for withdrawal.

class Savings : public Account { ... }

•Checking accounts accrue 1% interest, but only if balance is above $1000.
class Checking : public Account { ... }

•Promotional checking accounts accrue 0.7% interest, but give you $100 to open the
account. You must stay above $100 to earn that interest.

class Promotional : public Checking { ... }

▸The keyword public means that

• all public members are accessible as public members in the derived class,

• all protected members are accessible as public members in the derived class,

•private members are only accessible if a friend.

▸The full class hierarchy we'll flesh out...

•Savings accounts accrue 2% interest. They charge a penalty for withdrawal.
class Savings : public Account { ... }

• .
class Checking : public Account { ... }

• .

class Promotional : public Checking { ... }

CLASS ACCOUNT AND ITS DERIVED CLASSES

CheckingSavings

Account

Promotional

superclass

subclass

"inherits"

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

▸The full class hierarchy we'll flesh out...

•Savings accounts accrue 2% interest. They charge a penalty for withdrawal.
class Savings : public Account { ... }

•Checking accounts accrue 1% interest, but only if balance is above $1000.
class Checking : public Account { ... }

• .

class Promotional : public Checking { ... }

CheckingSavings

Account

Promotional

superclass

subclass

"inherits"

CLASS ACCOUNT AND ITS DERIVED CLASSES

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

▸The full class hierarchy we'll flesh out...

•Savings accounts accrue 2% interest. They charge a penalty for withdrawal.
class Savings : public Account { ... }

•Checking accounts accrue 1% interest, but only if balance is above $1000.
class Checking : public Account { ... }

•Promotional checking accounts accrue 0.7% interest, but give you $100 to
open the account. You must stay above $100 to earn that interest.

class Promotional : public Checking { ... }

CheckingSavings

Account

Promotional

superclass

subclass

"inherits"

CLASS ACCOUNT AND ITS DERIVED CLASSES

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

▸The full class hierarchy we'll flesh out...

•Savings accounts accrue 2% interest. They charge a penalty for withdrawal.
class Savings : public Account { ... }

•Checking accounts accrue 1% interest, but only if balance is above $1000.
class Checking : public Account { ... }

•Promotional checking accounts accrue 0.7% interest, but give you $100 to
open the account. You must stay above $100 to earn that interest.

class Promotional : public Checking { ... }

CheckingSavings

Account

Promotional

superclass

subclass

"inherits"

"base"

"derived"

"...is a..."

CLASS ACCOUNT AND ITS DERIVED CLASSES

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

ACCOUNT CLASS, READIED FOR DERIVING
class Account {
private:
 static long gNextNumber;
protected:
 // instance variables
 ...
public:
 // methods
 Account(std::string name, double amount, double interest);
 virtual double getBalance() const;
 virtual std::string getName() const;
 virtual long getNumber() const;
 virtual double getRate() const;
 virtual void deposit(double amount);
 virtual void gainInterest();
 virtual double withdraw(double amount);
}; Virtual keyword indicates that the code of

overriding methods in subclass will get called.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

ACCOUNT CLASS, READIED FOR DERIVING
class Account {
private:
 static long gNextNumber;
protected:
 // instance variables
 std::string name;
 long number;
 double balance;
 double rate;
public:
 // methods
 ...
};

Not publicly accessible, but
accessible to any derived class.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

SUBCLASSES OF ACCOUNT
▸Example of a subclass Savings deriving from a base Account:

class Savings : public Account { ... }  

▸The keyword public means that...

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

SUBCLASSES OF ACCOUNT
▸Example of a subclass Savings deriving from a base Account:

class Savings : public Account { ... }  

▸The keyword public means that

• all public members are accessible as public in the derived class,

• all protected members are accessible as protected in the derived class,

•private members are only accessible if that subclass is a friend.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

EXTENSIONS AND OVERRIDES
class Savings : public Account {
protected:
 double penalty; // Savings accounts have a withdrawal penalty.
public:
 Savings(std::string name, double amount);
 double withdraw(double amount); // Charges a penalty.
};

class Checking : public Account {
protected:
 double level;
public:
 Checking(std::string name, double amount);
 void gainInterest();
};

class Promotional : public Checking {
public:
 Promotional(std::string name, double amount);
};

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

EXTENSIONS AND OVERRIDES
class Savings : public Account {
protected:
 double penalty; // Savings accounts have a withdrawal penalty.
public:
 Savings(std::string name, double amount);
 double withdraw(double amount); // Charges a penalty.
};

class Checking : public Account {
protected:
 double level;
public:
 Checking(std::string name, double amount);
 void gainInterest();
};

class Promotional : public Checking {
public:
 Promotional(std::string name, double amount);
};

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

EXTENSIONS AND OVERRIDES
class Savings : public Account {
protected:
 double penalty;
public:
 Savings(std::string name, double amount);
 double withdraw(double amount);
};

class Checking : public Account {
protected:
 double level; // Checking accounts gain interest above a level
public:
 Checking(std::string name, double amount);
 void gainInterest(); // Checks that level
};

class Promotional : public Checking {
public:
 Promotional(std::string name, double amount);
};

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

EXTENSIONS AND OVERRIDES
class Savings : public Account {
protected:
 double penalty;
public:
 Savings(std::string name, double amount);
 double withdraw(double amount);
};

class Checking : public Account {
protected:
 double level;
public:
 Checking(std::string name, double amount);
 void gainInterest();
};

class Promotional : public Checking {
public: // Promotional accounts are a special kind of checking
 Promotional(std::string name, double amount); // account
};

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

SAVINGS ACCOUNT
Savings accounts accrue 2% interest. They charge a penalty for withdrawal.

▸We add a penalty instance variable.
class Savings : public Account {
protected:
 double penalty;
public:
 Savings(std::string name, double amount);
 double withdraw(double amount);
};

Savings::Savings(std::string name, double amount) :
 Account {name,amount,0.02}, penalty {50.0}
{ }

double Savings::withdraw(double amount) {
 double howmuch = Account::withdraw(amount);
 Account::withdraw(penalty);
 return howmuch;
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

SAVINGS ACCOUNT
Savings accounts accrue 2% interest. They charge a penalty for withdrawal.

▸We override the withdraw method to charge that penalty.
class Savings : public Account {
protected:
 double penalty;
public:
 Savings(std::string name, double amount);
 double withdraw(double amount);
};

Savings::Savings(std::string name, double amount) :
 Account {name,amount,0.02}, penalty {50.0}
{ }

double Savings::withdraw(double amount) {
 double howmuch = Account::withdraw(amount);
 Account::withdraw(penalty);
 return howmuch;
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

SAVINGS ACCOUNT
Savings accounts accrue 2% interest. They charge a penalty for withdrawal.

▸We rely on Account's implementation in several places.
class Savings : public Account {
protected:
 double penalty;
public:
 Savings(std::string name, double amount);
 double withdraw(double amount);
};

Savings::Savings(std::string name, double amount) :
 Account {name,amount,0.02}, penalty {50.0}
{ }

double Savings::withdraw(double amount) {
 double howmuch = Account::withdraw(amount);
 Account::withdraw(penalty);
 return howmuch;
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

CHECKING ACCOUNT
Checking accounts accrue 1% interest, but only if balance is above $1000.

▸We add a level instance variable.
class Checking : public Account {
protected:
 double level;
public:
 Checking(std::string name, double amount);
 void gainInterest();
};

Checking::Checking(std::string name, double amount) :
 Account {name, amount, 0.01}, level {1000.0}
{ }

void Checking::gainInterest() {
 if (balance >= level) {
 Account::gainInterest();
 }
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

CHECKING ACCOUNT
Checking accounts accrue 1% interest, but only if balance is above $1000.

▸We override the gainInterest method to check that level.
class Checking : public Account {
protected:
 double level;
public:
 Checking(std::string name, double amount);
 void gainInterest();
};

Checking::Checking(std::string name, double amount) :
 Account {name, amount, 0.01}, level {1000.0}
{ }

void Checking::gainInterest() {
 if (balance >= level) {
 Account::gainInterest();
 }
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

CHECKING ACCOUNT
Checking accounts accrue 1% interest, but only if balance is above $1000.

▸We rely on Account's implementation in several places.
class Checking : public Account {
protected:
 double level;
public:
 Checking(std::string name, double amount);
 void gainInterest();
};

Checking::Checking(std::string name, double amount) :
 Account {name, amount, 0.01}, level {1000.0}
{ }

void Checking::gainInterest() {
 if (balance >= level) {
 Account::gainInterest();
 }
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

PROMOTIONAL (CHECKING) ACCOUNT
Promotional accrues less interest, has an opening gift, has lower threshold.

▸It derives from Checking. There are no extensions or overrides.
class Promotional : public Checking {
public:
 Promotional(std::string name, double amount);
};

Promotional::Promotional(std::string name, double amount) :
 Checking {name, amount + 100.0}
{
 rate = 0.07;
 level = 100.0;
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

VIRTUAL METHODS: DISPATCH ACCORDING TO CONTENTS
▸Consider these two class definitions

class A {
 ...
 virtual void m(...); // yes virtual
 ...
}
class B : public A {
 ...
 void m(...);
 ...
}

▸Consider this client code
A *b = new B();
b->m(x);  

▸Since m is marked virtual, the code for B::m runs like we'd normally expect.

•

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

VIRTUAL METHODS: DISPATCH ACCORDING TO CONTENTS
▸Consider these two class definitions

class A {
 ...
 virtual void m(...); // yes virtual
 ...
}
class B : public A {
 ...
 void m(...);
 ...
}

▸Consider this client code
A *b = new B();
b->m(x);  

▸Since m is marked virtual, the code for B::m runs like we'd normally expect.

• This is sometimes called "dynamic dispatch" of the "message" m.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

VIRTUAL METHODS: DISPATCH ACCORDING TO CONTENTS
▸Consider these two class definitions

class A {
 ...
 virtual void m(...); // yes virtual
 ...
}
class B : public A {
 ...
 void m(...);
 ...
}

▸Consider this client code
A *b = new B();
b->m(x);  

▸Since m is marked virtual, the code for B::m runs like we'd normally expect.

•Code run for m is determined by the contents at b, i.e. at run time.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

VIRTUAL METHODS: DISPATCH ACCORDING TO CONTENTS
▸Consider these two class definitions

class A {
 ...
 virtual void m(...); // yes virtual
 ...
}
class B : public A {
 ...
 void m(...);
 ...
}

▸Consider this client code
A *b = new B();
b->m(x);  

▸Since m is marked virtual, the code for B::m runs like we'd normally expect.

•Code run for m is determined by the contents at b, i.e. at run time.

dynamic!!

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

NON-VIRTUAL METHODS: DISPATCH ACCORDING TO TYPE
▸Consider these two class definitions

class A {
 ...
 void m(...); // NOTE: not virtual!!!
 ...
}
class B : public A {
 ...
 void m(...);
 ...
}

▸Consider this client code
A *b = new B();
b->m(x);  

▸Since m is not marked virtual, the code for A::m runs instead.

•

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

NON-VIRTUAL METHODS: DISPATCH ACCORDING TO TYPE
▸Consider these two class definitions

class A {
 ...
 void m(...); // NOTE: not virtual!!!
 ...
}
class B : public A {
 ...
 void m(...);
 ...
}

▸Consider this client code
A *b = new B();
b->m(x); //  

▸Since m is not marked virtual, the code for A::m runs instead!!!!!!!

• This is sometimes called "static dispatch" of the "message" m.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

NON-VIRTUAL METHODS: DISPATCH ACCORDING TO TYPE
▸Consider these two class definitions

class A {
 ...
 void m(...); // NOTE: not virtual!!!
 ...
}
class B : public A {
 ...
 void m(...);
 ...
}

▸Consider this client code
A *a = new B();
a->m(x);  

▸Since m is not marked virtual, the code for A::m runs instead!!!!!!!

•Code run for m is determined by the type of b, i.e. at compile time.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

NON-VIRTUAL METHODS: DISPATCH ACCORDING TO TYPE
▸Consider these two class definitions

class A {
 ...
 void m(...); // NOTE: not virtual!!!
 ...
}
class B : public A {
 ...
 void m(...);
 ...
}

▸Consider this client code
A *a = new B();
a->m(x);  

▸Since m is not marked virtual, the code for A::m runs instead!!!!!!!

•Code run for m is determined by the type of b, i.e. at compile time.

static.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

WHY YOU WANT DYNAMIC DISPATCH
▸Imagine We have the following hierarchy:

class Shape { virtual void draw(); ... };
class Oval : public Shape { void draw(); ... };
class Rectangle : public Shape { void draw(); ... };

▸Consider this client code that has a linked list shapes:
ShapeNode* current = shapes->first;
while (current != nullptr) {
 current->shape->draw();
}

▸

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

WHY YOU WANT DYNAMIC DISPATCH
▸Imagine We have the following hierarchy:

class Shape { virtual void draw(); ... };
class Oval : public Shape { void draw(); ... };
class Rectangle : public Shape { void draw(); ... };

▸Consider this client code that has a linked list of shapes:
ShapeNode* current = shapes->first;
while (current != nullptr) {
 current->shape->draw();
}

▸In the above code, current->shape is of type Shape*.

▸

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

WHY YOU WANT DYNAMIC DISPATCH
▸Imagine We have the following hierarchy:

class Shape { virtual void draw(); ... };
class Oval : public Shape { void draw(); ... };
class Rectangle : public Shape { void draw(); ... };

▸Consider this client code that has a linked list of shapes:
ShapeNode* current = shapes->first;
while (current != nullptr) {
 current->shape->draw();
}

▸In the above code, current->shape is of type Shape*.

▸Because the draw method is virtual, dynamic dispatch is used.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

WHY YOU WANT DYNAMIC DISPATCH
▸Imagine We have the following hierarchy:

class Shape { virtual void draw(); ... };
class Oval : public Shape { void draw(); ... };
class Rectangle : public Shape { void draw(); ... };

▸Consider this client code that has a linked list of shapes:
ShapeNode* current = shapes->first;
while (current != nullptr) {
 current->shape->draw();
}

▸In the above code, current->shape is of type Shape*.

▸Because the draw method is virtual, dynamic dispatch is used.

•When the list node points to an Oval instance, Oval::draw is called.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

WHY YOU WANT DYNAMIC DISPATCH
▸Imagine We have the following hierarchy:

class Shape { virtual void draw(); ... };
class Oval : public Shape { void draw(); ... };
class Rectangle : public Shape { void draw(); ... };

▸Consider this client code that has a linked list of shapes:
ShapeNode* current = shapes->first;
while (current != nullptr) {
 current->shape->draw();
}

▸In the above code, current->shape is of type Shape*.

▸Because the draw method is virtual, dynamic dispatch is used.

•When the list node points to an Oval instance, Oval::draw is called.

•When it points to a Rectangle, Rectangle::draw is called.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

ABSTRACT CLASSES
▸Note that the Account class probably shouldn't have an instance.

•Nonetheless, it does define a few methods useful to subclass instances:

➡The deposit and withdraw methods as defined in Account
provide a default behavior that subclasses may use, or override.

▸Classes not meant to be instantiated are called abstract.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

"PURELY VIRTUAL" METHODS IN AN ABSTRACT BASE
▸Can't always provide a "default" method behavior in an abstract base...

▸In C++ we can designate methods as "purely virtual" with a value of 0:
class A {
 ...
 virtual T m(T1 v1, T2 v2, ...) = 0;
 ...
};

class B : public A {
 ...
 T m(T1 v1, T2 v2, ...) { ... /* actual behavior on B */ }
 ...
};

➡Method m must be defined by classes that derive from abstract A.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

"PURELY VIRTUAL" METHODS IN AN ABSTRACT BASE
▸We can't always provide a "default" behavior in the base abstract class.

▸In C++ we can designate methods as "purely virtual" with a value of 0:
class A {
 ...
 virtual T m(T1 v1, T2 v2, ...) = 0;
 ...
};

class B : public A {
 ...
 T m(T1 v1, T2 v2, ...) { ... /* actual behavior on B */ }
 ...
};

➡Method m must be defined by classes that derive from abstract A.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

"PURELY VIRTUAL" METHODS IN AN ABSTRACT BASE
▸We can't always provide a "default" behavior in the base abstract class.

▸In C++ we can designate methods as "purely virtual" with a value of 0:
class A {
 ...
 virtual T m(T1 v1, T2 v2, ...) = 0;
 ...
};

class B : public A {
 ...
 T m(T1 v1, T2 v2, ...) { ... /* actual behavior on B */ }
 ...
};

➡Method m must be defined by classes that derive from abstract A.

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

EXAMPLE: SHAPE HIERARCHY
class Shape {
public:
 virtual double perimeter(void) const = 0;
 virtual double area(void) const = 0;
 virtual void print(void) const = 0;
 virtual double getHeight(void) const = 0;
 virtual double getWidth(void) const = 0;
 Rectangle bounds(void);
};

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

CIRCLE SUBCLASS DERIVED FROM SHAPE
class Circle : public Shape {
private:
 double radius;
public:
 Circle(double r) : radius(r) { }
 double perimeter(void) { return 2.0 * M_PI * radius; }
 double area(void) { return M_PI * radius * radius; }
 void print(void); // This one's many lines long.
 double getHeight(void) { return 2.0 * radius; }
 double getWidth(void) { return 2.0 * radius; }
};

void Circle::print(void) const {
 cout << "A circle with radius " << radius << ":\n" << endl;
 int w = static_cast<int>(ceil(getWidth()));
 if (w == 1) {
 std::cout << "+" << std::endl;
 return;
 }
 ...

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

CIRCLE SUBCLASS DERIVED FROM SHAPE
class Circle : public Shape {
private:
 double radius;
public:
 Circle(double r) : radius(r) { }
 double perimeter(void) { return 2.0 * M_PI * radius; }
 double area(void) { return M_PI * radius * radius; }
 void print(void); // This one's many lines long.
 double getHeight(void) { return 2.0 * radius; }
 double getWidth(void) { return 2.0 * radius; }
};

void Circle::print(void) const {
 cout << "A circle with radius " << radius << ":\n" << endl;
 int w = static_cast<int>(ceil(getWidth()));
 if (w == 1) {
 std::cout << "+" << std::endl;
 return;
 }
 ...

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

CIRCLE SUBCLASS DERIVED FROM SHAPE
class Circle : public Shape {
private:
 double radius;
public:
 Circle(double r) : radius(r) { }
 double perimeter(void) { return 2.0 * M_PI * radius; }
 double area(void) { return M_PI * radius * radius; }
 void print(void); // This one's many lines long.
 double getHeight(void) { return 2.0 * radius; }
 double getWidth(void) { return 2.0 * radius; }
};

void Circle::print(void) const {
 cout << "A circle with radius " << radius << ":\n" << endl;
 int w = static_cast<int>(ceil(getWidth()));
 if (w == 1) {
 std::cout << "+" << std::endl;
 return;
 }
 ...

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

CIRCLE SUBCLASS DERIVED FROM SHAPE
class Circle : public Shape {
private:
 double radius;
public:
 Circle(double r) : radius(r) { }
 double perimeter(void) { return 2.0 * M_PI * radius; }
 double area(void) { return M_PI * radius * radius; }
 void print(void); // This one's many lines long.
 double getHeight(void) { return 2.0 * radius; }
 double getWidth(void) { return 2.0 * radius; }
};

void Circle::print(void) const {
 cout << "A circle with radius " << radius << ":\n" << endl;
 int w = static_cast<int>(ceil(getWidth()));
 if (w == 1) {
 std::cout << "+" << std::endl;
 return;
 }
 ...

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

RECTANGLE SUBCLASS DERIVED FROM SHAPE
class Rectangle : public Shape {
private:
 double width;
 double height;
 void depict(void);
public:
 Rectangle(double w,double h) : width(w), height(h) { }
 double perimeter(void) { return 2.0 * (width + height); }
 double area(void) { return width * height; }
 void print(void);
 double getHeight(void) { return height; }
 double getWidth(void) { return width; }
 friend class Square;
};

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

RECTANGLE SUBCLASS DERIVED FROM SHAPE
class Rectangle : public Shape {
private:
 double width;
 double height;
 void depict(void);
public:
 Rectangle(double w,double h) : width(w), height(h) { }
 double perimeter(void) { return 2.0 * (width + height); }
 double area(void) { return width * height; }
 void print(void);
 double getHeight(void) { return height; }
 double getWidth(void) { return width; }
 friend class Square;
};

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

RECTANGLE SUBCLASS DERIVED FROM SHAPE
class Rectangle : public Shape {
private:
 double width;
 double height;
 void depict(void);
public:
 Rectangle(double w,double h) : width(w), height(h) { }
 double perimeter(void) { return 2.0 * (width + height); }
 double area(void) { return width * height; }
 void print(void);
 double getHeight(void) { return height; }
 double getWidth(void) { return width; }
 friend class Square;
};

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

RECTANGLE SUBCLASS DERIVED FROM SHAPE
class Rectangle : public Shape {
private:
 double width;
 double height;
 void depict(void) const;
public:
 Rectangle(double w,double h) : width(w), height(h) { }
 double perimeter(void) { return 2.0 * (width + height); }
 double area(void) { return width * height; }
 void print(void);
 double getHeight(void) { return height; }
 double getWidth(void) { return width; }
 friend class Square;
};
void Rectangle::print(void) const {
 std::cout << "Here is a " << width << "x" << height;
 std::cout << " rectangle:\n" << std::endl;
 depict();
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

RECTANGLE SUBCLASS DERIVED FROM SHAPE
class Rectangle : public Shape {
private:
 double width;
 double height;
 void depict(void) const;
public:
 Rectangle(double w,double h) : width(w), height(h) { }
 double perimeter(void) { return 2.0 * (width + height); }
 double area(void) { return width * height; }
 void print(void);
 double getHeight(void) { return height; }
 double getWidth(void) { return width; }
 friend class Square;
};
void Rectangle::print(void) const {
 std::cout << "Here is a " << width << "x" << height;
 std::cout << " rectangle:\n" << std::endl;
 depict();
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

SQUARE SUBCLASS DERIVED FROM RECTANGLE
class Rectangle : public Shape {
private:
 void depict(void);
public:
 ...
 friend Square;
}

class Square : public Rectangle {
public:
 Square(double s) : Rectangle {s, s} { }
 void print(void);
};

void Square::print(void) const {
 std::cout << "Here is a " << getWidth() << "x" << getHeight();
 std::cout << " square:\n" << std::endl;
 Rectangle::depict();
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

SQUARE SUBCLASS DERIVED FROM RECTANGLE
class Rectangle : public Shape {
private:
 void depict(void);
public:
 ...
 friend Square;
}

class Square : public Rectangle {
public:
 Square(double s) : Rectangle {s, s} { }
 void print(void);
};

void Square::print(void) const {
 std::cout << "Here is a " << getWidth() << "x" << getHeight();
 std::cout << " square:\n" << std::endl;
 Rectangle::depict();
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

SQUARE SUBCLASS DERIVED FROM RECTANGLE
class Rectangle : public Shape {
private:
 void depict(void);
public:
 ...
 friend Square;
}

class Square : public Rectangle {
public:
 Square(double s) : Rectangle {s, s} { }
 void print(void);
};

void Square::print(void) const {
 std::cout << "Here is a " << getWidth() << "x" << getHeight();
 std::cout << " square:\n" << std::endl;
 Rectangle::depict();
}

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

SHAPE PROGRAM OUTPUT
Here is a circle with radius 5:

 ++++++
 ++++++++
++++++++++
++++++++++
++++++++++
++++++++++
++++++++++
++++++++++
 ++++++++
 ++++++

Here is a 7x3 rectangle:

+++++++
+++++++
+++++++

Here is a 1x1 square:

+

LECTURE 12-1 IMMUTABILITY, REFERENCE, AND INHERITANCE

MODERN C++ WE COVER
▸BASIC OBJECT-ORIENTATION: CLASSES, METHODS, CON-/DE-STRUCTORS

▸INHERITANCE

▸TEMPLATES

▸SOME NITTY-GRITTY STUFF

•OPERATOR OVERLOADING

•REFERENCES & ; const ; COPY/MOVE CONSTRUCTORS/ASSIGNMENT

▸THE C++ STANDARD TEMPLATE LIBRARY

•vector, map, unordered_map, ...
▸lambda
▸SMART POINTERS, "RAII": shared_ptr AND weak_ptr

LECTURES 12-X, 13-X, 14-X

▸BASIC OBJECT-ORIENTATION: CLASSES, METHODS, CON-/DE-STRUCTORS √

▸INHERITANCE

▸TEMPLATES

▸SOME NITTY-GRITTY STUFF

•OPERATOR OVERLOADING √

•REFERENCES & ; const ; COPY/MOVE CONSTRUCTORS/ASSIGNMENT

▸THE C++ STANDARD TEMPLATE LIBRARY

•vector, map, unordered_map, ...
▸lambda
▸SMART POINTERS, "RAII": shared_ptr AND weak_ptr

MODERN C++ WE COVER

LECTURES 12-X, 13-X, 14-X

√

√ √

LECTURES 12-X, 13-X, 14-X

MODERN C++ WE COVER
▸BASIC OBJECT-ORIENTATION: CLASSES, METHODS, CON-/DE-STRUCTORS √

▸INHERITANCE

▸TEMPLATES Wednesday

▸SOME NITTY-GRITTY STUFF

•OPERATOR OVERLOADING √

•REFERENCES & ; const ; COPY/MOVE CONSTRUCTORS/ASSIGNMENT

▸THE C++ STANDARD TEMPLATE LIBRARY Wednesday

•vector, map, unordered_map, ... Wednesday
▸lambda after Txgvg

▸SMART POINTERS, "RAII": shared_ptr AND weak_ptr after Txgvg

after Txgvg

√

√ √

