
LAST MIPS LECTURE REDO

LECTURE 10-1

JIM FIX, REED COLLEGE CS2-S20

TODAY'S PLAN

A "REDO" OF THE SECOND HALF OF LAST WEDNESDAY

▸LINKED LIST MIPS CODE

▸SHIFTING A REGISTER'S BITS LEFT AND RIGHT

▸MULTIPLICATION USING BASE TWO "SCHOOLBOOK METHOD"

▸CALL STACK AND CALLING CONVENTIONS

LECTURE 10-1 MIPS ODDS AND ENDS

THIS WEEK

▸HOMEWORK 09 ASSIGNED TONIGHT, DUE NEXT MONDAY.

▸NO LABS TOMORROW. (Happy election day.)

▸WILL HOLD OFFICE HOURS 9:30-10:30, 3:30-4:30. (See the Slack.)

▸WEDNESDAY'S LECTURE WILL BE OVER ZOOM ONLY

LECTURE 10-1 MIPS ODDS AND ENDS

▸MIPS code that outputs a linked list
1. print:
2. move $s1, $s0 # current = first;
3. print_loop:
4. beqz $s1, done # if current==nullptr goto done;
5. print_data:
6. lw $a0, ($s1) # print(current->data);
7. li $v0, 1
8. syscall
9. lw $s1, 4($s1) # current = current->next;
10. b print_loop
11. done:

▸Check out my sample "inorder.s" that builds a linked list in sorted order.

TRAVERSING A LINKED LIST

LECTURE 10-1 MIPS ODDS AND ENDS

▸MIPS code that outputs a linked list
1. print:
2. move $s1, $s0 # current = first;
3. print_loop:
4. beqz $s1, done # if current==nullptr goto done;
5. print_data:
6. lw $a0, ($s1) # print(current->data);
7. li $v0, 1
8. syscall
9. lw $s1, 4($s1) # current = current->next;
10. b print_loop
11. done:

▸Check out my sample "inorder.s" that builds a linked list in sorted order.

TRAVERSING A LINKED LIST

LECTURE 10-1 MIPS ODDS AND ENDS

▸This starting code sets up the data for 6 linked list nodes
 .data
next: .asciiz "next\n"
eoln: .asciiz "\n"
num_nodes: .word 6
nodes: .word 35, 0x0000, 6, 0x0000, 17, 0x0000,
 3, 0x0000, 132, 0x0000, 20, 0x0000
 .globl main
 .text

▸It then uses $a1 to point to the first, and scans through the rest using $a2.
main:
 la $a1, nodes # first = the first node
 addi $a2, $a1, 8 # others = first + (8 bytes)
 lw $a3, num_nodes #
 addi $a3, $a3, -1 # to_insert = num_nodes-1
insert_each:
 beqz $a3, done_insert # if to_insert == 0 goto done_insert  

▸We use $a3 to keep track of how many items still need to be inserted.

SAMPLE MIPS: INORDER.S

LECTURE 10-1 MIPS ODDS AND ENDS

▸This sets up $t3 to hold data for a value to be inserted
insert_in_order:
 lw $t3, ($a2) # load node->data

▸This sets up $t4 and $t5 as list traversal pointers. Then we scan the list for the
insertion place.
 move $t4, $a1 # curr = first
 li $t5, 0x0000 # prev = null
find_place:
 beqz $t4, insert # if curr == nullptr go to insert
 lw $t6, ($t4) # load curr->data
 ble $t3, $t6, insert # if node->data < curr->data
 # go to insert
 move $t5, $t4 # prev = curr
 lw $t4, 4($t4) # curr = curr->next
 b find_place

SAMPLE MIPS: INORDER.S

LECTURE 10-1 MIPS ODDS AND ENDS

▸In the code below we either update first, or update prev->next
insert:
 addi $a3, $a3, -1 # to_insert -= 1
 sw $t4, 4($a2) # node->next = curr
 beqz $t5, insert_in_front # if prev == nullptr
 # go to insert_at_front
insert_middle:
 sw $a2, 4($t5) # prev->next = node
 b bump_node
insert_in_front:
 move $a1, $a2 # first = node  

▸This code advances our pointer within the nodes array within .data.
bump_node:
 addi $a2, $a2, 8 # node = next node in the node array
 b insert_each

SAMPLE MIPS: INORDER.S

LECTURE 10-1 MIPS ODDS AND ENDS

MULTIPLICATION

▸Consider these two expressions
 return 10 * tens + ones;

 return 100 * number;  

▸Q: How do we perform those multiplications in MIPS?

LECTURE 10-1 MIPS ODDS AND ENDS

MULTIPLICATION

▸Consider these two expressions
 return 10 * tens + ones;

 return 100 * number;  

▸Q: How do we perform those multiplications in MIPS?

▸A1: Repeated addition.

LECTURE 10-1 MIPS ODDS AND ENDS

MULTIPLICATION

▸Consider these two expressions
 return 10 * tens + ones;

 return 100 * number;  

▸Q: How do we perform those multiplications in MIPS?

▸A1: Repeated addition. Not how multiplication is perfomed. Too slow.

LECTURE 10-1 MIPS ODDS AND ENDS

MULTIPLICATION

▸Consider these two expressions
 return 10 * tens + ones;

 return 100 * number;  

▸Q: How do we perform those multiplications in MIPS?

▸A1: Repeated addition. Not how multiplication is perfomed. Too slow.

▸A2: Use the MIPS MULT instruction, along with MFLO and MFHI

LECTURE 10-1 MIPS ODDS AND ENDS

MULTIPLICATION

▸Consider these two expressions
 return 10 * tens + ones;

 return 100 * number;  

▸Q: How do we perform those multiplications in MIPS?

▸A1: Repeated addition. Not how multiplication is perfomed. Too slow.

▸A2: Use the MIPS MULT instruction, along with MFLO and MFHI

▸A3: That's probably the best way. But let's consider a third way...

LECTURE 10-1 MIPS ODDS AND ENDS

ANSWER 3: USE BIT SHIFTING OPERATIONS

▸Using built-in multiplication is fine, but there is another way, too.

▸RECALL: multiplying by two will shift the bits of a number left:
 111 <= binary for the value 7
 1110 <= binary for the value 2*7=14 
 111000 <= binary for the value 8*7=56 

LECTURE 10-1 MIPS ODDS AND ENDS

ANSWER 3: USE BIT SHIFTING OPERATIONS

▸Using built-in multiplication is fine, but there is another way, too.

▸RECALL: multiplying by two will shift the bits of a number left:
 111 <= binary for the value 7
 1110 <= binary for the value 2*7=14 
 111000 <= binary for the value 8*7=56 

▸Q: So how might we multiply by 10?

LECTURE 10-1 MIPS ODDS AND ENDS

ANSWER 3: USE BIT SHIFTING OPERATIONS

▸Using built-in multiplication is fine, but there is another way, too.

▸RECALL: multiplying by two will shift the bits of a number left:
 111 <= binary for the value 7
 1110 <= binary for the value 2*7=14 
 111000 <= binary for the value 8*7=56 

▸Q: So how might we multiply by 10?

▸NOTE: 10 x = (2+8) x = 2 x + 8 x

LECTURE 10-1 MIPS ODDS AND ENDS

ANSWER 3: USE BIT SHIFTING OPERATIONS

▸Using built-in multiplication is fine, but there is another way, too.

▸RECALL: multiplying by two will shift the bits of a number left:
 111 <= binary for the value 7
 1110 <= binary for the value 2*7=14 
 111000 <= binary for the value 8*7=56 

▸Q: So how might we multiply by 10?

▸NOTE: 10 x = (2+8) x = 2 x + 8 x

▸A: We can multiply by 2, then by 8, and sum the two results.

▸I.E...

LECTURE 10-1 MIPS ODDS AND ENDS

ANSWER 3: USE BIT SHIFTING OPERATIONS

▸Using built-in multiplication is fine, but there is another way, too.

▸RECALL: multiplying by two will shift the bits of a number left:
 111 <= binary for the value 7
 1110 <= binary for the value 2*7=14 
 111000 <= binary for the value 8*7=56 

▸Q: So how might we multiply by 10?

▸NOTE: 10 x = (2+8) x = 2 x + 8 x

▸A: We can multiply by 2, then by 8, and sum the two results.

▸I.E. We can shift left one bit and also shift left three bits. Then add.

LECTURE 10-1 MIPS ODDS AND ENDS

ANSWER 3: USE BIT SHIFTING OPERATIONS

▸The code below uses the SLL instruction to do exactly that with t0:
 sll $t1,$t0,1
 sll $t2,$t0,3
 addu $t0,$t1,$t2  

LECTURE 10-1 MIPS ODDS AND ENDS

ANSWER 3: USE BIT SHIFTING OPERATIONS

▸The code below uses the SLL instruction to do exactly that with t0:
 sll $t1,$t0,1
 sll $t2,$t0,3 tmp = tmp * 10
 addu $t0,$t1,$t2  

▸It has the effect of multiplying t0 by 10.

LECTURE 10-1 MIPS ODDS AND ENDS

ANSWER 3: USE BIT SHIFTING OPERATIONS

▸The code below uses the SLL instruction to do exactly that with t0:
 sll $t1,$t0,1
 sll $t2,$t0,3 tmp = tmp * 10
 addu $t0,$t1,$t2  

▸It has the effect of multiplying t0 by 10.

▸Q: So how might we multiply by 100?

LECTURE 10-1 MIPS ODDS AND ENDS

ANSWER 3: USE BIT SHIFTING OPERATIONS

▸The code below uses the SLL instruction to do exactly that with t0:
 sll $t1,$t0,1
 sll $t2,$t0,3 tmp = tmp * 10
 addu $t0,$t1,$t2  

▸It has the effect of multiplying t0 by 10.

▸Q: So how might we multiply by 100?

▸SAME IDEA: 100 = 64 + 32 + 4

▸A: So we shift 2, 5, and 6 places left. Add.

LECTURE 10-1 MIPS ODDS AND ENDS

MULTIPLICATION BY 100

▸The code below multiplies t0 by 100:
 sll $t1,$t0,2
 sll $t2,$t0,5
 sll $t3,$t0,6
 addu $t0,$t1,$t2
 addu $t0,$t0,$t3  

LECTURE 10-1 MIPS ODDS AND ENDS

LECTURE 08-1 MIPS ASSEMBLY

SHIFTING BITS LEFT (LOGICAL)

SHIFT A REGISTER'S BITS LEFT SOME NUMBER OF POSITIONS

SLL destination,positions  

▸NOTES:

• This is a "shift logical value left"

• The bits of the destination are shifted left, with the leftmost bits "lost."

• The rightmost bits shifted into the register are 000..00

• It's a multiplication by 2positions but with limited precision.

LECTURE 08-1 MIPS ASSEMBLY

SHIFTING BITS RIGHT (LOGICAL)

SHIFT A REGISTER'S BITS LEFT SOME NUMBER OF POSITIONS

SRL destination,positions  

▸NOTES:

• This is a "shift logical value right"

• The bits of the destination are shifted right, with the rightmost bits "lost."

• The leftmost bits shifted into the register are 000..00

• It's a division by 2positions but with limited precision, treating the number
as an unsigned value.

LECTURE 08-1 MIPS ASSEMBLY

SHIFTING BITS RIGHT (ARITHMETIC)

SHIFT A REGISTER'S BITS RIGHT SOME NUMBER OF POSITIONS

SRA destination,positions  

▸NOTES:

• This is a "shift arithmetic value right"

• The bits of the destination are shifted right, with the rightmost bits "lost."

• The leftmost bits shifted in are sss..ss where s is the sign bit.

• It's a division by 2positions with limited precision, treating the number as a
two's complement encoded integer.

▸This outputs the bits of a register's value, in reverse order:
output_loop:
 beqz $t1, done # if y == 0 go to done
 andi $t0, $t1, 1 # bit = x % 2
output_bit:
 li $v0, 1 # print(bit)
 move $a0, $t0 #
 syscall #
shift_right:
 sra $t1, $t1, 1 # x /= 2
 b output_loop
done:

SAMPLE MIPS: BITSINREVERSE.S

LECTURE 10-1 MIPS ODDS AND ENDS

▸This outputs the bits of a register's value in the correct order:
li $t2, 0x80000000 # set up the bit mask
li $t4, 0 # start = false

output_loop:
beqz $t2, done # if mask == 0 go to done
and $t0, $t1, $t2 # extract the bit using the bit mask
li $t3, 0 # bit = 0
beqz $t0, after_set_1
li $t3, 1 # bit = 1
li $t4, 1 # start = true

after_set_1:
beqz $t4, shift_right

output_bit:
li $v0, 1 # print(bit)
move $a0, $t3 #
syscall #

shift_right:
srl $t2, $t2, 1 # shift the bit mask right
b output_loop

done:

SAMPLE MIPS: BITS.S

LECTURE 10-1 MIPS ODDS AND ENDS

▸Suppose we want to multiply 34 by 11 using binary notation:

SCHOOLBOOK MULTIPLICATION IN BINARY

LECTURE 10-1 MIPS ODDS AND ENDS

▸The resulting "schoolbook" code is surprisingly compact
multiply:
 li $t0, 0 # product = 0
multiply_loop:
 beqz $t2, report # if y == 0 go to report
 andi $t3, $t2, 1 # bit = y % 2
 beqz $t3, skip # if bit == 0 go to skip
 add $t0, $t0, $t1 # sum += x
skip:
 sll $t1, $t1, 1 # x *= 2
 sra $t2, $t2, 1 # y /= 2
 b multiply_loop
report:

SAMPLE MIPS: MULTIPLY.S

LECTURE 10-1 MIPS ODDS AND ENDS

FUNCTION CALLS IN MIPS

The MIPS ystem calls hint at a more general mechanism we need, namely...

Q: How do we mimic C++'s function calling mechanism in MIPS?

A: By following the MIPS function calling conventions and stack discipline.

OUTLINE:

▸SOME SIMPLE C++ EXAMPLES

▸CALL/RETURN WITH JAL/JR ; PARAMETER PASSING

▸CREATE/PUSH AND TAKE-DOWN/POP OF STACK FRAME

▸EXAMINE CONVENTIONS FOR SAVING REGISTERS' VALUES ON THE FRAME

LECTURE 09-2 FUNCTIONS IN MIPS

RECALL: FUNCTIONS IN C++

▸We considered this C++ program:
1. int two_digits(int tens, int ones) {
2. return 10 * tens + ones;
3. }
4. int times100(int number) {
5. return 100 * number;
6. }
7. int main(void) { int A, B, C, D;
8. cin >> A;
9. cin >> B;
10. cin >> C;
11. cin >> D;
12. int hi = two_digits(A,B);
13. int lo = two_digits(C,D);
14. int n = times100(hi) + lo;
15. cout << n << endl;
16. }

LECTURE 09-2 FUNCTIONS IN MIPS

RECALL: FUNCTIONS IN C++

▸We considered this C++ program:
1. int two_digits(int tens, int ones) {
2. return 10 * tens + ones;
3. }
4. int times100(int number) {
5. return 100 * number;
6. }
7. int main(void) { int A, B, C, D;
8. cin >> A;
9. cin >> B;
10. cin >> C;
11. cin >> D;
12. int hi = two_digits(A,B);
13. int lo = two_digits(C,D);
14. int n = times100(hi) + lo;
15. cout << n << endl;
16. }

LECTURE 09-2 FUNCTIONS IN MIPS

RECALL: FUNCTIONS IN C++
▸We considered this C++ code
1. int two_digits(int tens, int ones) {
2. return 10 * tens + ones;
3. }
4. int times100(int number) {
5. return 100 * number;
6. }
7. int four_digits(int w,int x,int y,int z) {
8. return times100(two_digits(w,x)) + two_digits(y,z);
9. }
10. int main(void) { int A, B, C, D;
11. cin >> A;
12. cin >> B;
13. cin >> C;
14. cin >> D;
15. cout << four_digits(A,B,C,D) << endl;
16. }

▸We're going to work to convert this and the earlier example into MIPS code.

LECTURE 09-2 FUNCTIONS IN MIPS

JUMPING FOR CALL AND RETURN
▸There are two "jump" instructions used to call and return from functions:

•JAL label

➡This jumps to the callee code at that label.

➡It saves the return address into register $ra

➡The return address is for the caller's instruction just below the JAL.

•JR $ra

➡This jumps from the callee back to the instruction below the call site.

➡The caller then continues executing.

LECTURE 09-2 FUNCTIONS IN MIPS

SPECIAL REGISTERS IN MIPS
▸There are several conventions for registers in MIPS:

•Registers $a0-$a3 hold the arguments for the call. (The first 16 bytes.)

•Registers $v0-$v1 hold the result of the call.

•Registers $ra holds the return address of the call.

•Registers $fp and $fp mark the top and bottom of the stack frame.

LECTURE 09-2 FUNCTIONS IN MIPS

STACK FRAME DISCIPLINE
▸The MIPS calling conventions designate that...

• register fp points to the byte just above the top of a function's frame.

• register sp points to the byte just at the bottom of a function's frame

▸...and that the callee preserve the caller's frame.

CALLER'S FRAME

fp

sp*BEFORE THE CALL*

CALL STACK

LECTURE 09-2 FUNCTIONS IN MIPS

STACK FRAME DISCIPLINE
▸The MIPS calling conventions designate that...

• register fp points to the byte just above the top of a function's frame.

• register sp points to the byte just at the bottom of a function's frame

▸...and that the callee preserve the caller's frame.

CALLER'S FRAME

fp

sp*BEFORE THE CALL*

CALL STACK

CALLEE'S FRAME

LECTURE 09-2 FUNCTIONS IN MIPS

STACK FRAME DISCIPLINE
▸The MIPS calling conventions designate that...

• register fp points to the byte just above the top of a function's frame.

• register sp points to the byte just at the bottom of a function's frame

▸...and that the callee preserve the caller's frame.

CALLEE'S FRAME

CALLER'S FRAME
fp

sp

DURING THE CALL

CALL STACK

LECTURE 09-2 FUNCTIONS IN MIPS

STACK FRAME DISCIPLINE
▸The MIPS calling conventions designate that...

• register fp points to the byte just above the top of a function's frame.

• register sp points to the byte just at the bottom of a function's frame

▸...and that the callee preserve the caller's frame.

CALLEE'S FRAME

CALLER'S FRAME
AFTER THE CALL

CALL STACK fp

sp

LECTURE 09-2 FUNCTIONS IN MIPS

STACK FRAME DISCIPLINE (CONT'D)
▸The MIPS calling conventions designate that...

• the frame size should be at least 32 bytes

• the addresses in fp and sp should be word-aligned (multiples of 4).

• (some say they should be double-word aligned (multiples of 8)

LECTURE 09-2 FUNCTIONS IN MIPS

CODE STRUCTURE

▸Every call site has a prologue and an epilogue:

• The caller's prologue saves registers and sets up arguments.

• Its epilogue gets the return value and restores saved registers.

▸Every function's code has a prologue and an epilogue:

• The callee's prologue sets up its frame, saves registers, grabs arguments.

• Its epilogue restores registers, takes down the frame, sets the return value.

LECTURE 09-2 FUNCTIONS IN MIPS

CALLEE-SAVED REGISTERS

▸The MIPS calling conventions designate that...

•Registers need to be preserved with a function call. No clobbering!

▸Some registers are "callee-saved"

➡ The function called must save the values of these registers on the stack
before using them.

➡It must restore their values from the stack before it retuns to the caller.

• These registers' values are guaranteed to be preserved with a function call.

LECTURE 09-2 FUNCTIONS IN MIPS

CALLER-SAVED REGISTERS

▸The MIPS calling conventions designate that...

•Registers need to be preserved with a function call. No clobbering!

▸Some registers are "caller-saved"

➡ The caller saves these on the stack before calling a function.

➡ The caller restores them from the stack after the call.

• These registers' values may not be preserved with a function call.

LECTURE 09-2 FUNCTIONS IN MIPS

FOUR_DIGITS IN MIPS USING T REGISTERS
four_digits:
 sw $ra,-4($sp)
 sw $fp,-8($sp)
 move $fp,$sp
 addi $sp,$sp,-32
 sw $a2,-20($fp)
 sw $a3,-24($fp)
 jal two_digits
 move $t0,$v0
 sw $t0,-12($fp)
 lw $a0,-20($fp)
 lw $a1,-24($fp)
 jal two_digits
 move $t1,$v0
 sw $t1,-16($fp)
 lw $t0,-12($fp)
 move $a0,$t0
 jal times100
 lw $t1,-16($fp)
 add $v0,$v0,$t1
 addi $sp,$sp,32
 lw $fp,-8($sp)
 lw $ra,-4($sp)
 jr $ra

LECTURE 09-2 FUNCTIONS IN MIPS

MIPS CALLING CONVENTIONS SUMMARY: THE CALLER

▸Before the caller calls a function...

• It saves caller-saved registers (a0-a3, t0-t9) onto its stack frame.

• It places the parameters into registers a0-a3.

• It pushes 5th, 6th, etc parameters onto the bottom of its stack frame.

▸Using JAL saves a return address to register ra.

▸After the function is called...

• The caller restores registers it has saved, if needed.

• It extracts the return value from register v0 and v1.

LECTURE 09-2 FUNCTIONS IN MIPS

LECTURE 09-2 FUNCTIONS IN MIPS

MIPS CALLING CONVENTIONS SUMMARY: THE CALLEE

▸When a function is called...

• It saves callee-saved registers (fp, sp, ra, s0-s7) onto its stack frame.

• It extracts argument registers a0-a3 and from slots just above its frame.

• It normally sets fp to the old sp, subtracts an offset from sp.

➡ The offset it chooses is the callee's frame size. It has to be a multiple of 8.

▸Before a function returns...

• It puts the return value into register v0 and v1.

• It restores registers for the caller, including fp, sp, and ra.

▸It then performs JR $RA to return control back to the caller.

FOUR_DIGITS IN MIPS WITH SOME CLEAN-UP
four_digits:
 sw $ra,-4($sp)
 sw $fp,-8($sp)
 move $fp,$sp
 addi $sp,$sp,-32
 sw $a2,-16($fp)
 sw $a3,-20($fp)
 jal two_digits
 sw $v0,-12($fp)
 lw $a0,-16($fp)
 lw $a1,-20($fp)
 jal two_digits
 lw $a0,-12($fp)
 sw $v0,-12($fp)
 jal times100
 lw $t1,-12($fp)
 add $v0,$v0,$t1
 addi $sp,$sp,32
 lw $fp,-8($sp)
 lw $ra,-4($sp)
 jr $ra

LECTURE 09-2 FUNCTIONS IN MIPS

CAN SEE COMPILER BEHAVIOR ONLINE
Check out https://godbolt.org/

LECTURE 09-2 FUNCTIONS IN MIPS

