
ASSEMBLY
PROGRAMMING

LECTURE 08-1

JIM FIX, REED COLLEGE CS2-F20

COURSE LOGISTICS
▸TODAY: processor-level programming

• Finish working with the MINICS2 circuit/processor and its instruction set.

• Start looking at MIPS32 programming.

➡ We'll use the spim simulator to run MIPS32 assembly programs.

➡ (It's like the LogiSim for processor-level programming.)

➡Jim's office hours: Monday 4:30-6pm.

▸TOMORROW: lab is cancelled; no lab assignment.

➡ Jim's extra office hours: Tuesday 10-11am, 3:30-4:30pm.

▸STARTING THIS WEEK: "drop-in" tutoring

➡Monday, Tuesday, Wednesday 7-9pm. Will email Zoom links.

LECTURE 08-1: ASSEMBLY

COURSE LOGISTICS
▸WEDNESDAY: "in-class" midterm on C++ programming

• "closed book," i.e. no notes, programming tools, or on-line resources.

•5 or 6 problems; 75 minutes to complete, but should only need about 60.

➡ See the practice midterms for typical problems, scope.

• Taking the exam:

1. You'll "accept" an assignment to create a private Github repo with a PDF.

2. You'll write your answers to problems on paper.

3. You'll upload photos/scan of your answers to the repo on Github.

•Work for only 75 minutes, submit shortly after.

• I'll be available for Slack DMs, over email, and on office hours Zoom link.

LECTURE 08-1: ASSEMBLY

COURSE LOGISTICS
▸To be posted:

• Feedback on Homework 04 and 05. TONIGHT

• Sample solutions to the practice midterms. TONIGHT

• Solutions to Homework 04 and 05. TOMORROW EVENING

▸This gives you until 7pm to complete/submit Homework 04 and 05 for
significant credit.

➡Use office hours to seek help completing that work.

LECTURE 08-1: ASSEMBLY

RESPONSIBILITIES, OR LACK THEREOF
▸No Homework 07 on sequential circuits. Just Lab 07 for BONUS credit.

▸No Lab 08 this week.

▸Project 1 "stats and chats" due October 30th.

▸Lab 09 and Homework 09 next week will cover MIPS32 programming.

LECTURE 08-1: ASSEMBLY

MINICS2 PROCESSOR
▸Four 4-bit registers

•named $R0-$R3

▸16-byte program memory

•holds sequence of 8-bit instructions

• load, add, subtract, compare registers.

• can (conditionally) jump (i.e. "branch")

▸Two "program state" registers

•PC: program counter

➡ which instruction is executing

•CC: condition codes

➡ last comparison result NEG or ZERO

▸No additional memory.

LECTURE 08-1: ASSEMBLY

A MINICS2 PROGRAM
#
A MINICS2 program that sums 1+2+3, storing
the result in register $R0.
#
L0: LI $R0, 0 # sum = 0
L1: LI $R1, 1 # inc = 1
L2: LI $R2, 0 # count = 0
L3: LI $R3, 3 # last = 3
L4: CMP $R3, $R2 # if last - count == 0 go to L9
L5: BCCZ +3 #
L6: ADD $R2, $R2, $R1 # count += inc
L7: ADD $R0, $R0, $R2 # sum += count
L8: B -5 # go to L4
L9: B -1 # go to L9

LECTURE 08-1: ASSEMBLY

THAT MINICS2 PROGRAM'S BYTES
L# bits | hex value
0x0: 00 00 00 00 | 00
0x1: 00 01 00 01 | 11
0x2: 00 10 00 00 | 20
0x3: 00 11 00 11 | 33
0x4: 11 00 11 10 | CE
0x5: 11 10 00 11 | E3
0x6: 01 10 10 01 | 69
0x7: 01 00 00 10 | 42
0x8: 11 11 10 11 | FB
0x9: 11 11 11 11 | FF

LECTURE 08-1: ASSEMBLY

INTERPRETING THE INSTRUCTION BYTES
instruction, mnemonic ||i76|i54|i32|i10|| meaning
-----------------------++---+---+---+---++---------------------------
load immediate | LI || 00| d| vH vL|| Rd := v
add | ADD || 01| d| s1| s2|| Rd := Rs1 + Rs2
subtract | SUB || 10| d| s1| s2|| Rd := Rs1 - Rs2
-----------------------++---+---+---+---||
compare (set CC)| CMP || 11 00| s1| s2|| CC := NZ(Rs1 - Rs2)
-----------------------++---+---+---+---||
branch if neg | BCCN || 11 01| oH oL|| if N(CC): PC := PC + o + 1
branch if zero | BCCZ || 11 10| oH oL|| if Z(CC): PC := PC + o + 1
branch | B || 11 11| oH oL|| PC := PC + o + 1
-----------------------++---+---+---+---||---------------------------

LECTURE 08-1: ASSEMBLY

A MINICS2 "ASSEMBLY" PROGRAM
#
A MINICS2 assembly program that sums 1+2+3, storing
the result in register $R0.
#
MAIN:
 LI $R0, 0 # sum = 0
 LI $R1, 1 # inc = 1
 LI $R2, 0 # count = 0
 LI $R3, 3 # last = 3

LOOP:
 CMP $R3, $R2 # if last - count == 0 go to END
 BCCZ END #
 ADD $R2, $R2, $R1 # count += inc
 ADD $R0, $R0, $R2 # sum += count
 B LOOP # go to LOOP

END:
 B END # go to END

LECTURE 08-1: ASSEMBLY

ASSEMBLY LANGUAGE PROGRAMMING
▸An assembly language (or assembler language) program is a human-

readable "processor-level" program written using "mnemonic" instructions
from that processor's language.

▸A machine-language program is the actual sequence of bytes of the
program's binary image.

▸Uses easier-to-read elements: labels, constants, register names, mnemonics.

LECTURE 08-1: ASSEMBLY

an assembler
"assembles"

its bytes

assembly language program machine language program

MINICS2 INSTRUCTION: LOAD IMMEDIATE
▸Load an "immediate value" into a destination register.

Mnemonic code: LI $Rdest, value

•dest is one of 0, 1, 2, 3

• value is a 4-bit two's complement-encoded integer

▸Instruction format: opcode 00
||i76|i54|i32|i10||
++---+---+---+---++
|| 00| d| vH vL||

▸Instruction meaning:

Rd := v

PC := PC + 1

LECTURE 08-1: ASSEMBLY

MINICS2 INSTRUCTION: ADD
▸Sum two source registers; place result into a destination register.

Mnemonic code: ADD $Rdest,$Rsrc1,$Rsrc2

•dest, src1, src1 are each one of 0, 1, 2, 3

▸Instruction format: opcode 01
||i76|i54|i32|i10||
++---+---+---+---++
|| 01| d| s1| s2||

▸Instruction meaning:

Rd := Rs1 + Rs2

PC := PC + 1

LECTURE 08-1: ASSEMBLY

MINICS2 INSTRUCTION: COMPARE
▸Subtract two source registers; save condition bits; discard result.

Mnemonic code: CMP $Rsrc1,$Rsrc2

• src1, src1 are each one of 0, 1, 2, 3

▸Instruction format: opcode 1100
||i76|i54|i32|i10||
++---+---+---+---++
|| 11| 00| s1| s2||

▸Instruction meaning:

Ncc := isNegative(Rs1 - Rs2)

Zcc := isZero(Rs1 - Rs2)

PC := PC + 1

LECTURE 08-1: ASSEMBLY

MINICS2 INSTRUCTION: BRANCH ON RESULT OF ZERO
▸Jump to a labelled instruction if last comparison resulted in zero (set Zcc).

Mnemonic code: BCCZ label

▸Instruction format: opcode 1110
||i76|i54|i32|i10||
++---+---+---+---++
|| 11| 10| oL oH||

▸Instruction meaning:

if Zcc = 1 then PC := PC + 1 - o else PC := PC + 1

NOTE: CMP and BCCZ are like C++ "if (Rs1 == Rs2) { ... }"

LECTURE 08-1: ASSEMBLY

MINICS2 INSTRUCTION: BRANCH ON NEGATIVE RESULT
▸Jump to a labelled instruction if last comparison resulted in zero (set Ncc).

Mnemonic code: BCCN label

▸Instruction format: opcode 1101
||i76|i54|i32|i10||
++---+---+---+---++
|| 11| 01| oL oH||

▸Instruction meaning:

if Ncc = 1 then PC := PC + 1 - o else PC := PC + 1

NOTE: CMP and BCCN are like C++ "if (Rs1 < Rs2) { ... }"

LECTURE 08-1: ASSEMBLY

MIPS32 PROCESSOR
▸See https://en.wikipedia.org/wiki/MIPS_architecture_processors

▸Thirty-two 32-bit registers.

•named $v0-$v1, $a0-a3, $t0-$t9, $s0-$s7, $fp, $sp, $ra, a few others
(some are reserved)

▸Instructions are 32 bits wide.

▸In addition to registers, processor typically has access to an addressable "random
access" memory (RAM)

• combined program/data

• readable/writeable

• addresses are 32 bits wide.

LECTURE 08-1: ASSEMBLY

SAMPLE MIPS32 ASSEMBLY PROGRAM
.globl main
.text

main:
li $t0, 0 # sum = 0
li $t1, 1 # inc = 1
li $t2, 0 # count = 0
li $t3, 100 # last = 100

loop:
beq $t3, $t2, done # if last == count goto done
add $t2, $t2, $t1 # count += inc
add $t0, $t0, $t2 # sum += count
b loop

done:
li $v0, 0 # return 0
jr $ra #

LECTURE 08-1: ASSEMBLY

