
INTRO TO LINKED LISTS

LECTURE 04-2

JIM FIX, REED COLLEGE CS2-F20



SOLUTIONS TO LAB 04
Two versions: 

▸One that uses (*c).odometer notation. 

▸One that uses c->odometer notation.

LECTURE 04-2: INTRO TO LINKED LISTS



NEED FOR LINKED DATA STRUCTURES
C++ arrays can be used to hold collections of data items, but they are limited in 
their "direct" application: 

▸They cannot be resized; their length is set at allocation time. 

▸The valid data items held in an array are normally contiguously laid out.  

➡ To add items, we normally must shift items; much copying. 

➡ Removing normally also  requires shifting items, or marking unused items. 

✦Marking forces us to sift through the array, looking for valid items. 

➡ Resizing often requires a new allocation and a copying of the items. 

▸Looking for items might require "overlay" structures; clever organization.

LECTURE 04-2: INTRO TO LINKED LISTS



LINKED DATA STRUCTURES
▸Using pointers, we can organize a data structure as a collection of components and 

then "link" several components together. 

➡ A component containing one/several data items can point to other 
components containing related data. 

▸We can link an arbitrary number of these components to make a collection. 

➡ This makes it possible to add or remove items from the collection. 

➡ To resize a linked collection, we simply link in more components. 

✦We just allocate more cnew omponents from the heap, any number 

Today we study data structures called linked lists. Gateway to trees, graphs, ...

LECTURE 04-2: INTRO TO LINKED LISTS ¥?¥ as
"

DesD→D*



EXAMPLE STRUCTURES
Before looking at linked lists, consider some linked designs: 

struct fleet {
  car* cars;
  int size;
};

struct number {
  int* digits;
  int numDigits;
  int capacity;
};

LECTURE 04-2: INTRO TO LINKED LISTS

e- HETTIE
,tag*

affect
¥

Tj÷TEz



EXAMPLE STRUCTURES
Before looking at linked lists, consider some linked designs: 

struct table {
  row* rows;
  int height;
  int width;
};

struct row {
  douuble* columns; 
};

LECTURE 04-2: INTRO TO LINKED LISTS

4

-



EXAMPLE STRUCTURES
Before looking at linked lists, consider some linked designs: 

struct room {
  std::string name;
  room* north;
  room* south;
  room* east;
  room* west;
};

LECTURE 04-2: INTRO TO LINKED LISTS

LT
= IT

nullptr



EXAMPLE STRUCTURES
Before looking at linked lists, consider some linked designs: 

struct room {
  std::string name;
  struct room* north;
  struct room* south;
  struct room* east;
  struct room* west;
};

LECTURE 04-2: INTRO TO LINKED LISTS



EXAMPLE STRUCTURES
Before looking at linked lists, consider some linked designs: 

struct room {
  std::string name;
  struct room* north;
  struct room* south;
  struct room* east;
  struct room* west;
};

LECTURE 04-2: INTRO TO LINKED LISTS

THROUGH SOME QUIRK OF C INHERITED BY C++, "STRUCT ROOM" IS 
DEFINED RIGHT AWAY BUT THE NEW TYPE "ROOM" IS DEFINED AFTER.

-
-

- ) within room 's detritus !

Q
. room r ;

mom * p;



EXAMPLE STRUCTURES
Before looking at linked lists, consider some linked designs: 

struct room {
  std::string name;
  struct room* north;
  struct room* south;
  struct room* east;
  struct room* west;
};

LECTURE 04-2: INTRO TO LINKED LISTS

THROUGH SOME QUIRK OF C INHERITED BY C++, "STRUCT ROOM" IS 
DEFINED RIGHT AWAY BUT THE NEW TYPE "ROOM" IS DEFINED AFTER.

These can each be nullptr for walls in maze.



EXAMPLE STRUCTURES
Before looking at linked lists, consider some linked designs: 
struct student {
  std::string name;
  std::string major;
  int year;
  struct student* mentor;
  struct prof* advisor;
}; 

struct prof {
  std::string name;
  std::string department;
  student* advisees;
};

LECTURE 04-2: INTRO TO LINKED LISTS

FETTE

→

ne÷÷÷



LINKED LIST STRUCTURES
Here are the two structs defined for use as a linked list of integers: 
 
struct node {
  int data
  struct node* next;
};

struct llist {
  node* first;
};

LECTURE 04-2: INTRO TO LINKED LISTS

" [5,737
"

node

- i:÷i÷ Eis:-
•→

.-7 I

uiTT¥I "** u ,

It

=



LINKED LIST STRUCTURES
Here are the two structs defined for use as a linked list of integers: 
 
struct node {
  int data
  struct node* next;
};

struct llist {
  node* first;
};

LECTURE 04-2: INTRO TO LINKED LISTS

This is nullptr if the list is empty.

"

[ J
"

-

"←



LINKED LIST STRUCTURES
Here are the two structs defined for use as a linked list of integers: 
 
struct node {
  int data
  struct node* next;
};

struct llist {
  node* first;
};

LECTURE 04-2: INTRO TO LINKED LISTS

This is nullptr if the holding the last item.
•

-



SEARCH TREE STRUCTURES, A PREVIEW
Here are the two structs used for a binary search tree storing integers: 
 
struct bstnode {
  int key;
  struct bstnode* parent;
  struct bstnode* left;
  struct bstnode* right
};

struct bst {
  bstnode* root;
};

LECTURE 04-2: INTRO TO LINKED LISTS

D
bstn.de / Og

- t.fi.
on

⑤ §%do



SEARCH TREE STRUCTURES, A PREVIEW
Here are the two structs used for a binary search tree storing integers: 
 
struct bstnode {
  int key;
  struct bstnode* parent;
  struct bstnode* left;
  struct bstnode* right
};

struct bst {
  bstnode* root;
};

LECTURE 04-2: INTRO TO LINKED LISTS

This is nullptr if the tree's collection is empty.

This is nullptr for the tree's root.



SEARCH TREE STRUCTURES, A PREVIEW
Here are the two structs used for a binary search tree storing integers: 
 
struct bstnode {
  int key;
  struct bstnode* parent;
  struct bstnode* left;
  struct bstnode* right
};

struct bst {
  bstnode* root;
};

LECTURE 04-2: INTRO TO LINKED LISTS

These are nullptr at a leaf node.



SOME LINKED LIST CODE
Consider this code. What does it do? 
 
struct node {  
  int data;  
  struct node* next;  
};
  
int main(void) {  
  node a;  
  node b;  
  node c;  
  a.data = 5;  
  b.data = 7;  
  c.data = 3;  
  node* first = &a;  
  a.next = &b;  
  b.next = &c;  
  c.next = nullptr;  
}

LECTURE 04-2: INTRO TO LINKED LISTS

"..

.

if
"t

=
-

A



SOME LINKED LIST CODE
Consider this code. What does it do? 
 
struct node {  
  int data;  
  struct node* next;  
};
  
int main(void) {  
  node* a = new node {5, nullptr};  
  node* b = new node {7, nullptr};  
  node* c = new node {3, nullptr};  
  node* first = a;  
  a.next = b;  
  b.next = c;  
}

LECTURE 04-2: INTRO TO LINKED LISTS get - - std=cttI7
- o foo
Foo .CC

÷

"

÷
.

→
Cttll , Ctth



SOME LINKED LIST CODE
Consider this code. What does it do? 
 
struct node {  
  int data;  
  struct node* next;  
};
struct llist {  
  node* first;  
};
  
int main(void) {  
  node* a = new node {5, nullptr};  
  node* b = new node {7, nullptr};  
  node* c = new node {3, nullptr};  
  llist* LL = new llist {a};  
  node* first = a;  
  a.next = b;  
  b.next = c;  
}

LECTURE 04-2: INTRO TO LINKED LISTS

-
•

I first pointer
→



SOME LINKED LIST CODE
Consider this code. What does it do? 
 
struct node {  
  int data;  
  struct node* next;  
};
struct llist {  
  node* first;  
};
  
int main(void) {  
  node* c = new node {3, nullptr};  
  node* b = new node {7, c};  
  node* a = new node {5, b};  
  llist* LL = new llist {a};  
}

LECTURE 04-2: INTRO TO LINKED LISTS

-

O- next
I O- next

O- first



SOME LINKED LIST CODE
Consider this code. What does it do? 
struct node {...};  
struct llist {...};  
 
 
  

int main(void) {  
  node* c = new node {3, nullptr};  
  node* b = new node {7, c};  
  node* a = new node {5, b};  
  llist* LL = new llist {a};  
  std::cout << LL->first->data << std::endl;  
  std::cout << LL->first->next->data << std::endl;  
  std::cout << LL->first->next->next->data << std::endl;  
}

LECTURE 04-2: INTRO TO LINKED LISTS

1) ist node

first

"
¥4475122.EI

] builds
"

Cs,> 37
"

Koutputs 5
Howtp cuts

7

11 outputs 3



SOME LINKED LIST CODE
Consider this code. What does it do? 
struct node {...};  
struct llist {...};  
 
 
 
int main(void) {  
  node* c = new node {3, nullptr};  
  node* b = new node {7, c};  
  node* a = new node {5, b};  
  llist* LL = new llist {a};  
   
  node* current = LL->first;  
  while (current != nullptr) {  
    std::cout << current->data << std::endl;  
    current = current->next;  
  }  
}

LECTURE 04-2: INTRO TO LINKED LISTS

7 '

,u-t.AT#D-tTE
current ID

.

"

true?:L . .



TRAVERSING A LIST: OUTPUT 
We can package that list traversal as a separate procedure: 
struct node {...};  
struct llist {...};  
 
void output(llist* list) {   
  node* current = list->first;  
  while (current != nullptr) {  
    std::cout << current->data << std::endl;  
    current = current->next;  
  }  
}  
  
int main(void) {  
  node* c = new node {3, nullptr};  
  node* b = new node {7, c};  
  node* a = new node {5, b};  
  llist* LL = new llist {a};  
  output(LL);  
}

LECTURE 04-2: INTRO TO LINKED LISTS

-

- y



BUILDING A LIST: ADDING AN ITEM IN FRONT
We can package the code that adds items as a separate procedure: 
... // struct defs  
void output(llist* list) {...}  
 
void insertAtFront(int value, llist* list) {  
  node* newNode = new node {value, list->front};  
  list->front = newNode;  
}  
 
int main(void) {  
  llist* LL = new llist {nullptr};  
  insertAtFront(3, LL);  
  insertAtFront(7, LL);  
  insertAtFront(5, LL);  
  output(LL);  
}

LECTURE 04-2: INTRO TO LINKED LISTS

① ②

③ Fit j.IE
""

③ →
②

- u↳pf¥E¥"'

da
.* ..



GETTING THE LAST ITEM
Write the missing code: 
... // struct defs  
void output(llist* list) { ... }  
void insertAtFront(int value, llist* list) { ... }  
 
int outputLast(llist* list) {  
 

  ???? 
}  
 
int main(void) {  
  llist* LL = new llist {nullptr};  
  insertAtFront(3, LL);  
  insertAtFront(7, LL);  
  insertAtFront(5, LL);  
  outputLast(LL);  
}

LECTURE 04-2: INTRO TO LINKED LISTS



ADDING AN ITEM ONTO THE END
Write the missing code: 
... // struct defs  
void output(llist* list) { ... }  
void insertAtFront(int value, llist* list) { ... }  
void outputLast(llist* list) { ... }  
 
void insertAtEnd(int value, llist* list) {  
 
  ???? 
}  
 
int main(void) {  
  llist* LL = new llist {nullptr};  
  insertAtEnd(5, LL);  
  insertAtEnd(7, LL);  
  insertAtEnd(3, LL);  
  output(LL);  
}

LECTURE 04-2: INTRO TO LINKED LISTS



NEXT
▸MONDAY:  

We'll continue to develop these linked list "methods."  

•We'll essentially build a class-like definition for linked lists. 

▸TOMORROW:  
I'll post a Homework 04 

▸TONIGHT: 
I'll post these annotated slides and also the linked list code.

LECTURE 04-2: INTRO TO LINKED LISTS


