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SOLUTIONS TO LAB 04
Two versions: 

▸One that uses (*c).odometer notation. 

▸One that uses c->odometer notation.
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NEED FOR LINKED DATA STRUCTURES
C++ arrays can be used to hold collections of data items, but they are limited in 
their "direct" application: 

▸They cannot be resized; their length is set at allocation time. 

▸The valid data items held in an array are normally contiguously laid out.  

➡ To add items, we normally must shift items; much copying. 

➡ Removing normally also  requires shifting items, or marking unused items. 

✦Marking forces us to sift through the array, looking for valid items. 

➡ Resizing often requires a new allocation and a copying of the items. 

▸Looking for items might require "overlay" structures; clever organization.
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LINKED DATA STRUCTURES
▸Using pointers, we can organize a data structure as a collection of components and 

then "link" several components together. 

➡ A component containing one/several data items can point to other 
components containing related data. 

▸We can link an arbitrary number of these components to make a collection. 

➡ This makes it possible to add or remove items from the collection. 

➡ To resize a linked collection, we simply link in more components. 

✦We just allocate more cnew omponents from the heap, any number 

Today we study data structures called linked lists. Gateway to trees, graphs, ...
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EXAMPLE STRUCTURES
Before looking at linked lists, consider some linked designs: 

struct fleet {
  car* cars;
  int size;
};

struct number {
  int* digits;
  int numDigits;
  int capacity;
};
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EXAMPLE STRUCTURES
Before looking at linked lists, consider some linked designs: 

struct table {
  row* rows;
  int height;
  int width;
};

struct row {
  douuble* columns; 
};
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EXAMPLE STRUCTURES
Before looking at linked lists, consider some linked designs: 

struct room {
  std::string name;
  room* north;
  room* south;
  room* east;
  room* west;
};
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EXAMPLE STRUCTURES
Before looking at linked lists, consider some linked designs: 

struct room {
  std::string name;
  struct room* north;
  struct room* south;
  struct room* east;
  struct room* west;
};
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EXAMPLE STRUCTURES
Before looking at linked lists, consider some linked designs: 

struct room {
  std::string name;
  struct room* north;
  struct room* south;
  struct room* east;
  struct room* west;
};
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EXAMPLE STRUCTURES
Before looking at linked lists, consider some linked designs: 

struct room {
  std::string name;
  struct room* north;
  struct room* south;
  struct room* east;
  struct room* west;
};
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THROUGH SOME QUIRK OF C INHERITED BY C++, "STRUCT ROOM" IS 
DEFINED RIGHT AWAY BUT THE NEW TYPE "ROOM" IS DEFINED AFTER.
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EXAMPLE STRUCTURES
Before looking at linked lists, consider some linked designs: 
struct student {
  std::string name;
  std::string major;
  int year;
  struct student* mentor;
  struct prof* advisor;
}; 

struct prof {
  std::string name;
  std::string department;
  student* advisees;
};
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LINKED LIST STRUCTURES
Here are the two structs defined for use as a linked list of integers: 
 
struct node {
  int data
  struct node* next;
};

struct llist {
  node* first;
};
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LINKED LIST STRUCTURES
Here are the two structs defined for use as a linked list of integers: 
 
struct node {
  int data
  struct node* next;
};

struct llist {
  node* first;
};
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LINKED LIST STRUCTURES
Here are the two structs defined for use as a linked list of integers: 
 
struct node {
  int data
  struct node* next;
};

struct llist {
  node* first;
};
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SEARCH TREE STRUCTURES, A PREVIEW
Here are the two structs used for a binary search tree storing integers: 
 
struct bstnode {
  int key;
  struct bstnode* parent;
  struct bstnode* left;
  struct bstnode* right
};

struct bst {
  bstnode* root;
};
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SEARCH TREE STRUCTURES, A PREVIEW
Here are the two structs used for a binary search tree storing integers: 
 
struct bstnode {
  int key;
  struct bstnode* parent;
  struct bstnode* left;
  struct bstnode* right
};

struct bst {
  bstnode* root;
};
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This is nullptr if the tree's collection is empty.

This is nullptr for the tree's root.



SEARCH TREE STRUCTURES, A PREVIEW
Here are the two structs used for a binary search tree storing integers: 
 
struct bstnode {
  int key;
  struct bstnode* parent;
  struct bstnode* left;
  struct bstnode* right
};

struct bst {
  bstnode* root;
};
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SOME LINKED LIST CODE
Consider this code. What does it do? 
 
struct node {  
  int data;  
  struct node* next;  
};
  
int main(void) {  
  node a;  
  node b;  
  node c;  
  a.data = 5;  
  b.data = 7;  
  c.data = 3;  
  node* first = &a;  
  a.next = &b;  
  b.next = &c;  
  c.next = nullptr;  
}
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SOME LINKED LIST CODE
Consider this code. What does it do? 
 
struct node {  
  int data;  
  struct node* next;  
};
  
int main(void) {  
  node* a = new node {5, nullptr};  
  node* b = new node {7, nullptr};  
  node* c = new node {3, nullptr};  
  node* first = a;  
  a.next = b;  
  b.next = c;  
}
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SOME LINKED LIST CODE
Consider this code. What does it do? 
 
struct node {  
  int data;  
  struct node* next;  
};
struct llist {  
  node* first;  
};
  
int main(void) {  
  node* a = new node {5, nullptr};  
  node* b = new node {7, nullptr};  
  node* c = new node {3, nullptr};  
  llist* LL = new llist {a};  
  node* first = a;  
  a.next = b;  
  b.next = c;  
}
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SOME LINKED LIST CODE
Consider this code. What does it do? 
 
struct node {  
  int data;  
  struct node* next;  
};
struct llist {  
  node* first;  
};
  
int main(void) {  
  node* c = new node {3, nullptr};  
  node* b = new node {7, c};  
  node* a = new node {5, b};  
  llist* LL = new llist {a};  
}
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SOME LINKED LIST CODE
Consider this code. What does it do? 
struct node {...};  
struct llist {...};  
 
 
  

int main(void) {  
  node* c = new node {3, nullptr};  
  node* b = new node {7, c};  
  node* a = new node {5, b};  
  llist* LL = new llist {a};  
  std::cout << LL->first->data << std::endl;  
  std::cout << LL->first->next->data << std::endl;  
  std::cout << LL->first->next->next->data << std::endl;  
}
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SOME LINKED LIST CODE
Consider this code. What does it do? 
struct node {...};  
struct llist {...};  
 
 
 
int main(void) {  
  node* c = new node {3, nullptr};  
  node* b = new node {7, c};  
  node* a = new node {5, b};  
  llist* LL = new llist {a};  
   
  node* current = LL->first;  
  while (current != nullptr) {  
    std::cout << current->data << std::endl;  
    current = current->next;  
  }  
}
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TRAVERSING A LIST: OUTPUT 
We can package that list traversal as a separate procedure: 
struct node {...};  
struct llist {...};  
 
void output(llist* list) {   
  node* current = list->first;  
  while (current != nullptr) {  
    std::cout << current->data << std::endl;  
    current = current->next;  
  }  
}  
  
int main(void) {  
  node* c = new node {3, nullptr};  
  node* b = new node {7, c};  
  node* a = new node {5, b};  
  llist* LL = new llist {a};  
  output(LL);  
}
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BUILDING A LIST: ADDING AN ITEM IN FRONT
We can package the code that adds items as a separate procedure: 
... // struct defs  
void output(llist* list) {...}  
 
void insertAtFront(int value, llist* list) {  
  node* newNode = new node {value, list->front};  
  list->front = newNode;  
}  
 
int main(void) {  
  llist* LL = new llist {nullptr};  
  insertAtFront(3, LL);  
  insertAtFront(7, LL);  
  insertAtFront(5, LL);  
  output(LL);  
}
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GETTING THE LAST ITEM
Write the missing code: 
... // struct defs  
void output(llist* list) { ... }  
void insertAtFront(int value, llist* list) { ... }  
 
int outputLast(llist* list) {  
 

  ???? 
}  
 
int main(void) {  
  llist* LL = new llist {nullptr};  
  insertAtFront(3, LL);  
  insertAtFront(7, LL);  
  insertAtFront(5, LL);  
  outputLast(LL);  
}
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ADDING AN ITEM ONTO THE END
Write the missing code: 
... // struct defs  
void output(llist* list) { ... }  
void insertAtFront(int value, llist* list) { ... }  
void outputLast(llist* list) { ... }  
 
void insertAtEnd(int value, llist* list) {  
 
  ???? 
}  
 
int main(void) {  
  llist* LL = new llist {nullptr};  
  insertAtEnd(5, LL);  
  insertAtEnd(7, LL);  
  insertAtEnd(3, LL);  
  output(LL);  
}
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NEXT
▸MONDAY:  

We'll continue to develop these linked list "methods."  

•We'll essentially build a class-like definition for linked lists. 

▸TOMORROW:  
I'll post a Homework 04 

▸TONIGHT: 
I'll post these annotated slides and also the linked list code.
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