POINTERS

LECTURE 04-1

LECTURE 04-1: POINTERS

RECALL

We've examined how the call stack operates.

We've allocated arrays and structs on the call stack.

We've passed arrays as pointers.

We've inspected pointers to stack variables using & notation.
We've obtained pointers to array data sitting on the heap with new.

We've released that array data by calling delete [] on that pointer.

Let's now see how these constructs are generalized in C++...

Example: three.cc

#include <iostream>

int main(void) {
int* A = new int[3];
A[0]=10; A[1]=35; A[2]=17;

int* front = &(A[0]);
int* middle = &(A[1l]);
int* end = &(A[2]);

std::cout<<A[0]<<" "<<A[1l]<<" "<<A[2]<<"\n";
front[l] = 36;
std::cout<<A[0]<<" "<<A[1l]<<" "<<A[2]<<"\n";
middle[0] = 37;
std::cout<<A[0]<<" "<<A[1l]<<" "<<A[2]<<"\n";
end[-1] = 38;
std::cout<<A[0]<<" "<<A[1l]<<" "<<A[2]<<"\n";

delete [] A;
// delete [] front; // would be ok, too.

Example: copylnto.cc

#include <iostream>
void outputArray(std::string lbl, int *A, int n) { ... }

void copyInto(int* src, int* dst, int num) {
for (int i=0; i<num; i++) {
dst[i] = src[i];
}
}

int main(void) {
int* A = new int[3];
A[0]=10; A[1]=35; A[2]=17;
int* B = new int[6];
B[0]=16; B[1]=25; B[2]=36; B[3]=49; B[4]=64; B[5]=81;
outputArray("A: ", A, 3);
outputArray("B: ", B, 6);
copyInto(A,&(B[2]),3);
outputArray("A: ", A, 3);
outputArray("B: ", B, 6);
delete [] A; delete [] B;

Example: swap.cc

#include <iostream>

void swap(int* x, int* y) {
int tmp = x[0];
x[0] = y[O];
y[0] = tmp;

}

int main(void) {
int i = 42;
int j = 37;

std::cout << i << " " << j << std::endl;
swap (&i,&]);
std::cout << i << " " << j << std::endl;

LECTURE 04-1: POINTERS

A PROGRAM'S MEMORY

When your C++ program is run by the operating system, it runs as a process.

»The system grants each process access to its own "fresh" array of memory;
its own address space

e That memory area is essentially a huge array of bytes.
»Each byte holds a value that is 8 bits long.

e The bit sequence 01011001, for example, represents the value 89.
(Using base 2 notation, binary, versus base 10 notation, decimal)

»Your program stores variables, arrays, and structs in this memory as bytes.

LECTURE 04-1: POINTERS

A PROGRAM'S MEMORY (CONT'D)

Each memory byte has a location in memory. Each byte sits at an address.

e Ata low level, your program executable requests bytes of data using their
addresses.

Addresses are just numbers. Like indexes into an array.
e They run from 0 up to the size of the process address space (minus one).

Most system's C++ addresses are represented as 8 bytes, i.e. 64 bits long.
e Today's computer systems appear to use only 47 of those bits.
= S0 247 addressable memory locations. That's 128 terabytes.

LECTURE 04-1: POINTERS

VARIABLES IN MEMORY

The C++ compiler organizes your program so that each variable has its value
stored in a sequence of bytes starting at some particular location in memory.

e Each program variable sits at some address in memory.

* You can use the address-of operator (&var-name) to see that address.

double x = 42.0;
std::cout << "The storage for x is Q" << (&x) << "\n";

* An int takes up 4 bytes, a double takes up 8 bytes, a char takes up one byte.

e Use sizeof(type), sizeof(var-name), or sizeof(expn) to get this number.

std::cout << "Ints use " << sizeof(int) << bytes.\n";
std::cout << "Doubles use " << sizeof(x) << " bytes.\n";
std::cout << "Chars use " << sizeof('a') << " bytes.\n";

LECTURE 04-1: POINTERS

VARIABLES IN MEMORY

Watching your program run, and when looking at the system level:

e When you access a variable's value, your program fetches the values of its
bytes from the computer memory to calculate with them.

std::cout << i * 10 << std::endl;

e When you modify a variable's value, your program tells the memory
system to update those bytes in its storage starting at that address.

i=1i* 10;

LECTURE 04-1: POINTERS

VARIABLES IN MEMORY

Variables local to a function (including its parameters) are organized in a frame.
»Every running function has an active frame that resides somewhere in memory.

»Those active frames are "stacked up:"
= Your code manages a call stack, made up of these active frames.

Suppose function £ calls function g...
»The variables of g become "live," so they get space in a new frame for g
»The callee g gets an area in memory for its new frame.
o |ts stack frame sits just next to the stack frame of its caller £.
»When g returns, its stack frame's memory will be reused for other frames later.

LECTURE 04-1: POINTERS

INSPECTING STACK FRAMES

It's fun to inspect stack frames by using &, like so:

void g(int x) {
int y=42;
std::cout << "g: " << &x << " " << &y << "\n";
}
void f(int a) {
int b=10;
std::cout << "f: " << &a << " " << &b << "\n";
g(37);
}
int main(void) {
int i = 357;
int j = 1000;
std::cout << "main: " << &i << " " << &j << "\n";
£(67);
g(89);

LECTURE 04-1: POINTERS

STACK-ALLOCATED DATA

»We first placed arrays and structs as local data within a function.

»These are stack-allocated arrays and structs.

int a[10];
cmpx z;

»We use & to find the addresses of array and struct components:

std: :cout <<
std: :cout <<
std: :cout <<
std: :cout <<

"a[2] lives
"a[3] lives
"z.re lives
"z.im lives

at
at
at
at

<<
<<
<<
<<

&(a[2])
&(a[3])
&(z.re)
&(z.im)

<<
<<
<<
<<

std:
std:
std:
std:

:endl;
tendl;
:endl;
tendl;

»These array and struct components are laid out in their stack frame's memory.

»Their lifetime is the same as the lifetime of their function.

LECTURE 04-1: POINTERS

THE STACK, THE BINARY SEGMENT, GLOBALS, AND THE HEAP

There are four major areas of memory:
»The call stack lives at the highest addresses; it grows to use lower addresses.
»The program's code or "binary" lives at the lowest addresses.

»The program's global data and constants sit just above there.

»The heap starts above the global area and grows upward.

LECTURE 04-1: POINTERS

HEAP-ALLOCATED ARRAYS

We just learned how to allocate arrays on the heap:

»We use new to get a chunk of memory from the heap. Syntax:
element-type* variable-name = new element-type [size] ;

»We are given size *sizeof (element-type) bytes from the heap.

»The value of is a pointer value, i.e. the address of the start of those bytes.

When you access an array item with variable-name [index 1 your program:
» It uses the pointer value as a base address
» It multiplies index by sizeof (element-type), adds that to the base.

»This is an offset from the base. It fetches the data at that calculated address.

LECTURE 04-1: POINTERS

INSPECTING ARRAY DATA LOCATIONS

int main(void) {

int* a = new int[10];
int* b new int[100];
int* ¢ = new int[10];

std::cout << "a[0] is at " << &(a[0]) << std::endl;
std::cout << "b[0] is at " << &(b[0]) << std::endl;
std::cout << "c[0] is at " << &(c[0]) << std::endl;

std::cout << "a starts at " << a << std::endl;
std::cout << "b starts at " << b << std::endl;
std::cout << "c starts at " << ¢ << std::endl;

std::cout << "a[0] is at " << &(a[0]) << std::endl;
std::cout << "a[l] is at " << &(a[l]) << std::endl;
std::cout << "a[2] is at " << &(a[2]) << std::endl;
std::cout << "a[3] is at " << &(a[3]) << std::endl;

LECTURE 04-1: POINTERS

HEAP-ALLOCATED ARRAYS (CONT'D)

»When allocated on the heap, an array's lifetime is decoupled from its
variables frame:

e Can pass the pointer to an array's storage to other functions
e Can return the pointer to an array's storage to the calling function.
»To "de-allocate" the array's heap storage, use the delete keyword:
delete [] variable-name;

»The heap can then re-use this storage for other allocation requests.

LECTURE 04-1: POINTERS

POINTERS

The keyword new gives us back a pointer value:
int* a = new int[4];

It gives us back a "pointer to an array of four integers"
16 bytes that live within the heap.

The address-of operator also gives us pointers! Consider the code below

int main(void) {
int i = 42;
int j = 37;
int* p = &i;
int* q = &j;
std::cout << "i lives at" << p << std::endl;
std::cout << "j lives at" << q << std::endl;

LECTURE 04-1: POINTERS

POINTERS

The address-of operator also gives us pointers! Consider the code below

int main(void) {

int a = new int[4];

int b = new int[3];

int i 42;

int j 37;

int* p = &i;

int* q = &j;

std::cout << "i lives at" << p << std::endl;
std::cout << "j lives at" << q << std::endl;

LECTURE 04-1: POINTERS

POINTERS

Ox7fff65fec6d8
Ox7fff55fec6d0
Ox7fff55fec6ec

Ox7fff55fec6c8
Ox7fff55fec6b8
Ox7fff55fec6b0

the call stack the heap

main

1| 0x55f8779ae690

| 2929292999

??

i+ [
222222

p:
P????7?7?

the call stack the heap

main

7?7 | 77 | 77 | 2

- ox55f8779ae690 *_I_>---
b: 0x55f8779ae6bo
)

the call stack the heap

main

7?7 | 77 | 77 | 2

- ox55f8779ae690 *_I_>---
b: 0x55f8779ae6bo
;

the call stack the heap

main

1| 0x55f8779ae690

b: 0X55f87 79ae6b0
;-

the call stack

J»---

the heap

main

2| 0x5518779ae690
| 0x5518779ae6b0

=

S

p

1| Ox7fff55fec6ce
q

the call stack the heap

main

[.

| 37

12 Ox7fff55fec6ce
- | Ox7fff55fec6¢c8

the call stack the heap

LECTURE 04-1: POINTERS

POINTERS AS ARRAYS!

We can treat p and q as arrays:

int main(void) {
int 1 = 42;
int j = 37;
int* p = &i;
int* q = &j;

std

std:
std:
std:
std:

std

s :cout
scout
scout
scout
scout
s :cout

<<
<<
<<
<<
<<
<<

"i lives at" << p << std::endl;

p[0] << "is stored there and ";
p[l] << "is just above" << std:
"jJ lives at" << q << std::endl;

q[0] << "is stored there and ";
q[l] << "is just above" << std:

:endl;

:endl;

LECTURE 04-1: POINTERS

| At (int* a, int* b) {
SWAP-AT ILLUSTRATED "int temporary = a[0];

a[0] = b[0];

b[0] = temporary;

swapAt (&i,&]);

Ox7fff55fec6ec
Ox7fff55fec6c8

LECTURE 04-1: POINTERS

| At (int* a, int* b) {
SWAP-AT ILLUSTRATED "int temporary = a[0];

a[0] = b[0];

b[0] = temporary;

swapAt (&i,&]);

Ox7fff55fec6ec
Ox7fff55fec6c8

LECTURE 04-1: POINTERS

void swapAt(int* a, int* b) «
SWAP'AT ILLUSTRATED int temporary = a[0];
a[0] = b[O];
b[0] = temporary;
}
swan cwapht (51,59)
temporary: ?7?
CH Ox 7fff55fec6ec
XN Ox7fff55fec6c8

Ox7fff55fec6ece 2

42
Ox7fff55fec6c8 -

the call stack

LECTURE 04-1: POINTERS

1d At (int* a, int* b) {
SWAP-AT ILLUSTRATED ""int temporary = a[0]; «

a[0] = b[O0];

b[0] = temporary;

}

At - s\ .
SWapAt swap (&lI&J) ’
temporary: 42

8l Ox7fff55fec6cc
M Ox7fff55fec6c8

Ox7fff55fec6ece 2

42
Ox7fff55fec6c8 -

the call stack

LECTURE 04-1: POINTERS

void swapAt(int* a, int* b) {

SWAP'AT ILLUSTRATED int temporary = a[0]; «

a[0] = b[O0];
b[0] = temporary;

}
a - .
swapAt swapAt (&1,&]);
temporary: 42

8l Ox7fff55fec6cc
M Ox7fff55fec6c8

Ox7fff55fec6ece 7

37
Ox7fff55fec6c8 -

the call stack

LECTURE 04-1: POINTERS

void swapAt(int* a, int* b) {

SWAP'AT ILLUSTRATED int temporary = a[0];
a[0] = b[O];
} b[0] = temporary; «

a - .
swapAt swapAt (&1,&]);
temporary: 42

8l Ox7fff55fec6cc
M Ox7fff55fec6c8

Ox7fff55fec6ece 7

37
Ox7fff55fec6c8 -

the call stack

LECTURE 04-1: POINTERS

| At (int* a, int* b) {
SWAP-AT ILLUSTRATED "int temporary = a[0];

a[0] = b[0];

b[0] = temporary;

swapAt (&i,&]);

Ox7fff55fec6ec
Ox7fff55fec6c8

LECTURE 04-1: POINTERS

ALTERNATE ARRAY ACCESS NOTATION: DEREFERENCE *

The array index notation arrayindex]is actually shorthand for the
"dereference at" notation:

* (array+index)
This means

"consider the pointer nudged index values further... access the memory there."

»The nudge depends on the array element's data type:
= 4*index for int, 1*index for char, 8*index for double, etc.
»The calculation in parenthesis is called "pointer arithmetic."

»The * means "access the value at" and is called “dereferencing the pointer."

LECTURE 04-1: POINTERS

DEREFERENCE OPERATOR

This means that array[0] can instead be written * (array).

LECTURE 04-1: POINTERS

DEREFERENCE OPERATOR

This means that array[0] can instead be written *array.

LECTURE 04-1: POINTERS

DEREFERENCE OPERATOR

This means that array[0] can instead be written (*array).

void swapAt(int* a, int* b) {
int temporary = a[0];
a[0] = b[0];
b[0] temporary;

}

swapAt (&i,&Jj);

LECTURE 04-1: POINTERS

DEREFERENCE OPERATOR

This means that array[0] can instead be written (*array).

void swapAt(int* a, int* b) {
int temporary = (*a);
(*a) = (*b);
(*b) = temporary;

}

swapAt (&i,&Jj);

LECTURE 04-1: POINTERS

DEREFERENCE OPERATOR

This means that array[0] can instead be written (*array).

Example. The code for swapat is normally written like so:

void swapAt(int* a, int* b) {

int temporary = (*a);
(*a) = (*b);
(*b) = temporary;

}

swapAt (&i,&j);

LECTURE 04-1: POINTERS

DEREFERENCE OPERATOR

This means that array[0] can instead be written (*array).

Example. The code for swapat is normally written like so:

void swapAt(int* a, int* b) {
int temporary = (*a);
(*a) = (*b);
(*b) = temporary;

}

swapAt (&i,&j);

» The & eans "get the address of" and the * means "access the value at."

LECTURE 04-1: POINTERS

POINTER PARAMETERS REVISITED

void swapAt (int* a, int* b) {
int temporary = (*a);
(*a) = (*b);
(*b) = temporary;

}

void incrementAt (int *p) {
(*p) = (*p) + 1;
}
int main(void) {
int 1 = 42;
int j = 37;
std::cout << "i lives at" << &i << " with value" << i << "\n";
std::cout << "j lives at" << &j << " with value" << j << "\n";
swapAt (&i, &j);
incrementAt (&i);

std::cout << "i lives at" << &i << " with value" << i << "\n";
std::cout << "j lives at" << &j << " with value" << j << "\n";

LECTURE 04-1: POINTERS

ALLOCATING "SINGLETONS™ ON THE HEAP

We can also request single data locations, not just arrays, from the heap:

int main(void) {
int *p = new int;

(*p) = 42;
int *q = new int;
(*q) = 37;

std: :cout << "The value at "<< p << is << (*p) << ".\n";
std::cout << "The value at "<< g << " 1is " << (*q) << ".\n";

swapAt (p,q);
incrementAt (p);

std::cout << "The value at "<< p << " is " << (*p) << ".\n";
std::cout << "The value at "<< q << " is " << (*q) << ".\n";
delete p;
delete q;

LECTURE 04-1: POINTERS

ALLOCATING "SINGLETONS™ ON THE HEAP

We can also request single data locations, not just arrays, from the heap:

int main(void) {
int *p = new int;

(*p) = 42;
int *q = new int;
(*q) = 37;

std: :cout << "The value at "<< p << is << (*p) << ".\n";
std::cout << "The value at "<< g << " 1is " << (*q) << ".\n";
swapAt (p,q);

incrementAt (p);

std::cout << "The value at "<< p << " is " << (*p) << ".\n";
std::cout << "The value at "<< q << " is " << (*q) << ".\n";
delete p;

delete q;

SINCE THESE ARE HEAP-ALLOCATED, MUST RELEASE THEIR STORAGE!

LECTURE 04-1: POINTERS

ALLOCATING STRUCTS ON THE HEAP

We can allocate structs within the heap.

Example. rewrite of car.cc from Lab 03:

struct car { ... };
void outputCar(car c) { ... }
void drive (double distance, car* p) { ... }

int main(void) {
car *vwbus = new car {"VW", "Bus", 12300, 10.8, 19};
outputCar (*vwbus) ;
drive(100.0, vwbus);
outputCar (*vwbus) ;

}

LECTURE 04-1: POINTERS

ALLOCATING STRUCTS ON THE HEAP

We can allocate structs within the heap.

» Example. rewrite of car.cc from Lab 03:

struct car { ... };
void outputCar(car c) { ... }

void drive (double distance, car* p) { ... }

int main(void) {
car *vwbus = new car {"VW", "Bus", 12300, 10.8, 19};
outputCar (*vwbus) ;
drive (100.0, vwbus);
outputCar (*vwbus) ;

}

LECTURE 04-1: POINTERS

ALLOCATING STRUCTS ON THE HEAP

We can allocate structs within the heap.

Example. rewrite of car.cc from Lab 03:

struct car { ... };
void outputCar(car c) { ... }
void drive (double distance, car* p) { ... }

int main(void) {
car *vwbus = new car {"VW", "Bus", 12300, 10.8, 19};
outputCar (*vwbus) ;
drive (100.0,vwbus);
outputCar (*vwbus) ;

}

LECTURE 04-1: POINTERS

ALLOCATING STRUCTS ON THE HEAP

We can allocate structs within the heap.

Example. rewrite of car.cc from Lab 03:

struct car { ... };
void outputCar(car c) { ... }
void drive (double distance, car* p) { ... }

int main(void) {
car *vwbus = new car {"VWw", "Bus", 12300, 10.8, 19};
outputCar (*vwbus) ;
drive (100.0,vwbus);
outputCar (*vwbus) ;

}

LECTURE 04-1: POINTERS

ALLOCATING STRUCTS ON THE HEAP

We can allocate structs within the heap.

Example. rewrite of car.cc from Lab 03:

struct car { ... };
void outputCar(car c) { ... }
void drive (double distance, car* p) { ... }

int main(void) {
car *vwbus = new car {"VW", "Bus", 12300, 10.8, 19};
outputCar (*vwbus) ;
drive (100.0,vwbus);
outputCar (*vwbus) ;

}

LECTURE 04-1: POINTERS

ALLOCATING STRUCTS ON THE HEAP

We can allocate structs within the heap.

» Example. rewrite of car.cc from Lab 03:

struct car { ... };
void outputCar(car c) { ... }
void drive (double distance, car* p) { ... }

int main(void) {
car *vwbus = new car {"VWw", "Bus", 12300, 10.8, 19};
outputCar (*vwbus) ;
drive (100.0,vwbus);
outputCar (*vwbus) ;

}

LECTURE 04-1: POINTERS

ALLOCATING STRUCTS ON THE HEAP

We can allocate structs within the heap.

» Example. rewrite of car.cc from Lab 03:

struct car { ... };

void outputCar(car c) { ... }

void drive (double distance, car* p) { ... }

int main(void) {
car *vwbus = new car {"VWw", "Bus", 12300, 10.8, 19};
outputCar (*vwbus) ;

drive (100.0,vwbus) ;
outputCar (*vwbus) ;

NOTICE HOW ALL THE TYPES MATCH UP!

LECTURE 04-1: POINTERS

ALLOCATING STRUCTS ON THE HEAP

We can allocate structs within the heap.

Example. rewrite of car.cc from Lab 03:

struct car { ... };
void outputCar(car c) { ... }
void drive (double distance, car* p) { ... }

int main(void) {
car *vwbus = new car {"VW", "Bus", 12300, 10.8, 19};
outputCar (*vwbus) ;
drive (100.0,vwbus);
outputCar (*vwbus) ;
delete vwbus;

} WHOOPS! DON'T FORGET TO GIVE RELEASE THE POINTER.

LECTURE 04-1: POINTERS

ALLOCATING STRUCTS ON THE HEAP

We can allocate structs within the heap.

Example. rewrite of car.cc from Lab 03:

struct car { ... };
void outputCar(car c) { ... }
void drive (double distance, car* p) { ... }

int main(void) {
car *vwbus = new car {"VW", "Bus", 12300, 10.8, 19};
outputCar (*vwbus) ;
drive (100.0,vwbus);
outputCar (*vwbus) ;
delete vwbus;

} WHOOPS! DON'T FORGET TO GIVE RELEASE THE POINTER.

LECTURE 04-1: POINTERS

ALLOCATING STRUCTS ON THE HEAP

We can allocate structs within the heap.

Example. rewrite of drive from Lab 03:

car drive(double d, car c) {
double fuelNeeded = d / c.mpg;
if (c.fuel > fuelNeeded) {

c.fuel -= fuelNeeded;
c.odometer += d;
} else {

double fraction = c.fuel / fuelNeeded;
c.fuel = 0.0;
c.odometer += fraction * d;

}

return c;

}
int main(void) {
car vwbus {"VW", "Bus", 12300, 10.8, 19};

vwbus = drive (100.0,vwbus)

LECTURE 04-1: POINTERS

ALLOCATING STRUCTS ON THE HEAP

We can allocate structs within the heap.

Example. rewrite of drive from Lab 03:

void drive(double d, car* p) {
double fuelNeeded = d / (*p).mpg;
if ((*p).fuel > fuelNeeded) {

(*p) . fuel -= fuelNeeded;
(*p) .odometer += 4;
} else {

double fraction = (*p).fuel / fuelNeeded;
(*p) . fuel = 0.0;
(*p) .odometer += fraction * d;

}

return;

}
int main(void) {
car* vwbus = new car {"VvWw", "Bus", 12300, 10.8, 19};

drive (100.0,vwbus)

LECTURE 04-1: POINTERS

ON WEDNESDAY

We'll look at linked data structures.

Our goal is to eventually...

d our own sequence data structures using "linked lists."

...0U

d our own search data structures using "binary trees."

...0U

d "resizeable" arrays and dictionaries E.qg. a "bucket hashtable."

...0U

