
POINTERS

LECTURE 04-1

JIM FIX, REED COLLEGE CS2-F20

RECALL
We've examined how the call stack operates.

We've allocated arrays and structs on the call stack.

We've passed arrays as pointers.

We've inspected pointers to stack variables using & notation.

We've obtained pointers to array data sitting on the heap with new.

We've released that array data by calling delete [] on that pointer.

Let's now see how these constructs are generalized in C++...

LECTURE 04-1: POINTERS

Example: three.cc
#include <iostream>
int main(void) {
 int* A = new int[3];
 A[0]=10; A[1]=35; A[2]=17;

 int* front = &(A[0]);
 int* middle = &(A[1]);
 int* end = &(A[2]);

 std::cout<<A[0]<<" "<<A[1]<<" "<<A[2]<<"\n";
 front[1] = 36;
 std::cout<<A[0]<<" "<<A[1]<<" "<<A[2]<<"\n";
 middle[0] = 37;
 std::cout<<A[0]<<" "<<A[1]<<" "<<A[2]<<"\n";
 end[-1] = 38;
 std::cout<<A[0]<<" "<<A[1]<<" "<<A[2]<<"\n";

 delete [] A;
 // delete [] front; // would be ok, too.
}

Example: copyInto.cc
#include <iostream>

void outputArray(std::string lbl, int *A, int n) { ... }

void copyInto(int* src, int* dst, int num) {
 for (int i=0; i<num; i++) {
 dst[i] = src[i];
 }
}

int main(void) {
 int* A = new int[3];
 A[0]=10; A[1]=35; A[2]=17;
 int* B = new int[6];
 B[0]=16; B[1]=25; B[2]=36; B[3]=49; B[4]=64; B[5]=81;
 outputArray("A: ", A, 3);
 outputArray("B: ", B, 6);
 copyInto(A,&(B[2]),3);
 outputArray("A: ", A, 3);
 outputArray("B: ", B, 6);
 delete [] A; delete [] B;
}

Example: swap.cc
#include <iostream>

void swap(int* x, int* y) {
 int tmp = x[0];
 x[0] = y[0];
 y[0] = tmp;
}

int main(void) {
 int i = 42;
 int j = 37;
 std::cout << i << " " << j << std::endl;
 swap(&i,&j);
 std::cout << i << " " << j << std::endl;
}

A PROGRAM'S MEMORY
When your C++ program is run by the operating system, it runs as a process.

▸The system grants each process access to its own "fresh" array of memory;
its own address space

• That memory area is essentially a huge array of bytes.

▸Each byte holds a value that is 8 bits long.

• The bit sequence 01011001, for example, represents the value 89.
(Using base 2 notation, binary, versus base 10 notation, decimal)

▸Your program stores variables, arrays, and structs in this memory as bytes.

LECTURE 04-1: POINTERS

A PROGRAM'S MEMORY (CONT'D)
Each memory byte has a location in memory. Each byte sits at an address.

•At a low level, your program executable requests bytes of data using their
addresses.

Addresses are just numbers. Like indexes into an array.

• They run from 0 up to the size of the process address space (minus one).

Most system's C++ addresses are represented as 8 bytes, i.e. 64 bits long.

• Today's computer systems appear to use only 47 of those bits.

➡ So 2^47 addressable memory locations. That's 128 terabytes.

LECTURE 04-1: POINTERS

VARIABLES IN MEMORY
The C++ compiler organizes your program so that each variable has its value
stored in a sequence of bytes starting at some particular location in memory.

• Each program variable sits at some address in memory.

• You can use the address-of operator (&var-name) to see that address.
double x = 42.0;  
std::cout << "The storage for x is @" << (&x) << "\n";

•An int takes up 4 bytes, a double takes up 8 bytes, a char takes up one byte.

•Use sizeof(type), sizeof(var-name), or sizeof(expn) to get this number.
std::cout << "Ints use " << sizeof(int) << " bytes.\n";  
std::cout << "Doubles use " << sizeof(x) << " bytes.\n";  
std::cout << "Chars use " << sizeof('a') << " bytes.\n";

LECTURE 04-1: POINTERS

VARIABLES IN MEMORY
Watching your program run, and when looking at the system level:

•When you access a variable's value, your program fetches the values of its
bytes from the computer memory to calculate with them.
std::cout << i * 10 << std::endl;

•When you modify a variable's value, your program tells the memory
system to update those bytes in its storage starting at that address.
i = i * 10;

LECTURE 04-1: POINTERS

VARIABLES IN MEMORY
Variables local to a function (including its parameters) are organized in a frame.

▸Every running function has an active frame that resides somewhere in memory.

▸Those active frames are "stacked up:"

➡ Your code manages a call stack, made up of these active frames.

Suppose function f calls function g...

▸The variables of g become "live," so they get space in a new frame for g

▸The callee g gets an area in memory for its new frame.

• Its stack frame sits just next to the stack frame of its caller f.

▸When g returns, its stack frame's memory will be reused for other frames later.

LECTURE 04-1: POINTERS

INSPECTING STACK FRAMES
It's fun to inspect stack frames by using &, like so:
void g(int x) {  
 int y=42;  
 std::cout << "g: " << &x << " " << &y << "\n";  
}

void f(int a) {  
 int b=10;  
 std::cout << "f: " << &a << " " << &b << "\n";  
 g(37);  
}

int main(void) {  
 int i = 357;  
 int j = 1000;  
 std::cout << "main: " << &i << " " << &j << "\n";  
 f(67);  
 g(89);  
}

LECTURE 04-1: POINTERS

STACK-ALLOCATED DATA
▸We first placed arrays and structs as local data within a function.

▸These are stack-allocated arrays and structs.
int a[10];  
cmpx z;

▸We use & to find the addresses of array and struct components:
std::cout << "a[2] lives at " << &(a[2]) << std::endl;  
std::cout << "a[3] lives at " << &(a[3]) << std::endl;  
std::cout << "z.re lives at " << &(z.re) << std::endl;  
std::cout << "z.im lives at " << &(z.im) << std::endl;

▸These array and struct components are laid out in their stack frame's memory.

▸Their lifetime is the same as the lifetime of their function.

LECTURE 04-1: POINTERS

THE STACK, THE BINARY SEGMENT, GLOBALS, AND THE HEAP
There are four major areas of memory:

▸The call stack lives at the highest addresses; it grows to use lower addresses.

▸The program's code or "binary" lives at the lowest addresses.

▸The program's global data and constants sit just above there.

▸The heap starts above the global area and grows upward.

LECTURE 04-1: POINTERS

HEAP-ALLOCATED ARRAYS
We just learned how to allocate arrays on the heap:

▸We use new to get a chunk of memory from the heap. Syntax:

element-type* variable-name = new element-type [size];

▸We are given size *sizeof(element-type) bytes from the heap.

▸The value of is a pointer value, i.e. the address of the start of those bytes.

When you access an array item with variable-name[index]your program:

▸It uses the pointer value as a base address

▸It multiplies index by sizeof(element-type), adds that to the base.

▸This is an offset from the base. It fetches the data at that calculated address.

LECTURE 04-1: POINTERS

INSPECTING ARRAY DATA LOCATIONS
int main(void) {  
 
 int* a = new int[10];  
 int* b = new int[100];  
 int* c = new int[10];  
 
 std::cout << "a[0] is at " << &(a[0]) << std::endl;  
 std::cout << "b[0] is at " << &(b[0]) << std::endl;  
 std::cout << "c[0] is at " << &(c[0]) << std::endl;  
 
 std::cout << "a starts at " << a << std::endl;  
 std::cout << "b starts at " << b << std::endl;  
 std::cout << "c starts at " << c << std::endl;  
 
 std::cout << "a[0] is at " << &(a[0]) << std::endl;  
 std::cout << "a[1] is at " << &(a[1]) << std::endl;  
 std::cout << "a[2] is at " << &(a[2]) << std::endl;  
 std::cout << "a[3] is at " << &(a[3]) << std::endl;  
}

LECTURE 04-1: POINTERS

HEAP-ALLOCATED ARRAYS (CONT'D)
▸When allocated on the heap, an array's lifetime is decoupled from its

variables frame:

•Can pass the pointer to an array's storage to other functions

•Can return the pointer to an array's storage to the calling function.

▸To "de-allocate" the array's heap storage, use the delete keyword:

delete [] variable-name;

▸The heap can then re-use this storage for other allocation requests.

LECTURE 04-1: POINTERS

POINTERS
▸The keyword new gives us back a pointer value:

int* a = new int[4];
▸It gives us back a "pointer to an array of four integers"

➡16 bytes that live within the heap.

The address-of operator also gives us pointers! Consider the code below
int main(void) {
 int i = 42;
 int j = 37;
 int* p = &i;
 int* q = &j;
 std::cout << "i lives at" << p << std::endl;
 std::cout << "j lives at" << q << std::endl;
}

LECTURE 04-1: POINTERS

POINTERS
The address-of operator also gives us pointers! Consider the code below

int main(void) {
 int a = new int[4];
 int b = new int[3];
 int i = 42;
 int j = 37;
 int* p = &i;
 int* q = &j;
 std::cout << "i lives at" << p << std::endl;
 std::cout << "j lives at" << q << std::endl;
}

LECTURE 04-1: POINTERS

POINTERS

LECTURE 04-1: POINTERS

the call stack

main
 0x7fff55fec6d8 a:  

 0x7fff55fec6d0 b:

 0x7fff55fec6cc i:

 0x7fff55fec6c8 j:

 0x7fff55fec6b8 p:

 0x7fff55fec6b0 q:

??????

??????

??????

??

??

the heap

??????

POINTERS

LECTURE 04-1: POINTERS

the call stack

main
 0x7fff55fec6d8 a:  

 0x7fff55fec6d0 b:

 0x7fff55fec6cc i:

 0x7fff55fec6c8 j:

 0x7fff55fec6b8 p:

 0x7fff55fec6b0 q:

0x55f8779ae690

???????

??????

??

??

the heap

?? ?? ?? ??

??????

POINTERS

LECTURE 04-1: POINTERS

the call stack

main
 0x7fff55fec6d8 a:  

 0x7fff55fec6d0 b:

 0x7fff55fec6cc i:

 0x7fff55fec6c8 j:

 0x7fff55fec6b8 p:

 0x7fff55fec6b0 q:

0x55f8779ae690

0x55f8779ae6b0

??????

??

??

the heap

?? ?? ?? ??

5?? ????

??????

POINTERS

LECTURE 04-1: POINTERS

the call stack

main
 0x7fff55fec6d8 a:  

 0x7fff55fec6d0 b:

 0x7fff55fec6cc i:

 0x7fff55fec6c8 j:

 0x7fff55fec6b8 p:

 0x7fff55fec6b0 q:

0x55f8779ae690

0x55f8779ae6b0

??????

42

??

the heap

?? ?? ?? ??

5?? ????

??????

POINTERS

LECTURE 04-1: POINTERS

the call stack

main
 0x7fff55fec6d8 a:  

 0x7fff55fec6d0 b:

 0x7fff55fec6cc i:

 0x7fff55fec6c8 j:

 0x7fff55fec6b8 p:

 0x7fff55fec6b0 q:

0x55f8779ae690

0x55f8779ae6b0

??????

42

37

the heap

?? ?? ?? ??

5?? ????

??????

POINTERS

LECTURE 04-1: POINTERS

the call stack

main
 0x7fff55fec6d8 a:  

 0x7fff55fec6d0 b:

 0x7fff55fec6cc i:

 0x7fff55fec6c8 j:

 0x7fff55fec6b8 p:

 0x7fff55fec6b0 q:

0x55f8779ae690

0x55f8779ae6b0

0x7fff55fec6cc

42

37

the heap

?? ?? ?? ??

5?? ????

??????

POINTERS

LECTURE 04-1: POINTERS

the call stack

main
 0x7fff55fec6d8 a:  

 0x7fff55fec6d0 b:

 0x7fff55fec6cc i:

 0x7fff55fec6c8 j:

 0x7fff55fec6b8 p:

 0x7fff55fec6b0 q:

0x55f8779ae690

0x55f8779ae6b0

0x7fff55fec6cc

42

37

the heap

?? ?? ?? ??

5?? ????

0x7fff55fec6c8

POINTERS AS ARRAYS!
We can treat p and q as arrays:

int main(void) {
 int i = 42;
 int j = 37;
 int* p = &i;
 int* q = &j;
 std::cout << "i lives at" << p << std::endl;
 std::cout << p[0] << "is stored there and ";
 std::cout << p[1] << "is just above" << std::endl;
 std::cout << "j lives at" << q << std::endl;
 std::cout << q[0] << "is stored there and ";
 std::cout << q[1] << "is just above" << std::endl;
}

LECTURE 04-1: POINTERS

SWAP-AT ILLUSTRATED

LECTURE 04-1: POINTERS

the call stack

main

 0x7fff55fec6cc i:

 0x7fff55fec6c8 j:
42

37

void swapAt(int* a, int* b) {
 int temporary = a[0];
 a[0] = b[0];
 b[0] = temporary;
}
 ...
 swapAt(&i,&j);
 ...

SWAP-AT ILLUSTRATED

LECTURE 04-1: POINTERS

the call stack

main

 0x7fff55fec6cc i:

 0x7fff55fec6c8 j:
42

37

void swapAt(int* a, int* b) {
 int temporary = a[0];
 a[0] = b[0];
 b[0] = temporary;
}
 ...
 swapAt(&i,&j);
 ...

swapAt

 temporary:

 a:

 b:

SWAP-AT ILLUSTRATED

LECTURE 04-1: POINTERS

the call stack

main

 0x7fff55fec6cc i:

 0x7fff55fec6c8 j:

0x7fff55fec6cc

42

37

0x7fff55fec6c8

??

void swapAt(int* a, int* b) {
 int temporary = a[0];
 a[0] = b[0];
 b[0] = temporary;
}

... swapAt(&i,&j); ...

void swapAt(int* a, int* b) {
 int temporary = a[0];
 a[0] = b[0];
 b[0] = temporary;
}
 ...
 swapAt(&i,&j);
 ...

swapAt

 temporary:

 a:

 b:

SWAP-AT ILLUSTRATED

LECTURE 04-1: POINTERS

the call stack

main

 0x7fff55fec6cc i:

 0x7fff55fec6c8 j:

0x7fff55fec6cc

42

37

0x7fff55fec6c8

42

void swapAt(int* a, int* b) {
 int temporary = a[0];
 a[0] = b[0];
 b[0] = temporary;
}

... swapAt(&i,&j); ...

void swapAt(int* a, int* b) {
 int temporary = a[0];
 a[0] = b[0];
 b[0] = temporary;
}
 ...
 swapAt(&i,&j);
 ...

swapAt

 temporary:

 a:

 b:

SWAP-AT ILLUSTRATED

LECTURE 04-1: POINTERS

the call stack

main

 0x7fff55fec6cc i:

 0x7fff55fec6c8 j:

0x7fff55fec6cc

37

37

0x7fff55fec6c8

42

void swapAt(int* a, int* b) {
 int temporary = a[0];
 a[0] = b[0];
 b[0] = temporary;
}

... swapAt(&i,&j); ...

void swapAt(int* a, int* b) {
 int temporary = a[0];
 a[0] = b[0];
 b[0] = temporary;
}
 ...
 swapAt(&i,&j);
 ...

swapAt

 temporary:

 a:

 b:

SWAP-AT ILLUSTRATED

LECTURE 04-1: POINTERS

the call stack

main

 0x7fff55fec6cc i:

 0x7fff55fec6c8 j:

0x7fff55fec6cc

37

42

0x7fff55fec6c8

42

void swapAt(int* a, int* b) {
 int temporary = a[0];
 a[0] = b[0];
 b[0] = temporary;
}
 ...
 swapAt(&i,&j);
 ...

SWAP-AT ILLUSTRATED

LECTURE 04-1: POINTERS

the call stack

main

 0x7fff55fec6cc i:

 0x7fff55fec6c8 j:
37

42

void swapAt(int* a, int* b) {
 int temporary = a[0];
 a[0] = b[0];
 b[0] = temporary;
}
 ...
 swapAt(&i,&j);
 ...

ALTERNATE ARRAY ACCESS NOTATION: DEREFERENCE *
The array index notation array[index]is actually shorthand for the
"dereference at" notation:

*(array+index)

This means

"consider the pointer nudged index values further... access the memory there."

▸The nudge depends on the array element's data type:

➡ 4*index for int, 1*index for char, 8*index for double, etc.

▸The calculation in parenthesis is called "pointer arithmetic."

▸The * means "access the value at" and is called "dereferencing the pointer."

LECTURE 04-1: POINTERS

DEREFERENCE OPERATOR
This means that array[0] can instead be written *(array).

LECTURE 04-1: POINTERS

DEREFERENCE OPERATOR
This means that array[0] can instead be written *array.

LECTURE 04-1: POINTERS

DEREFERENCE OPERATOR
This means that array[0] can instead be written (*array).

LECTURE 04-1: POINTERS

void swapAt(int* a, int* b) {
 int temporary = a[0];
 a[0] = b[0];
 b[0] = temporary;
}
 ...
 swapAt(&i,&j);
 ...

DEREFERENCE OPERATOR
This means that array[0] can instead be written (*array).

LECTURE 04-1: POINTERS

void swapAt(int* a, int* b) {
 int temporary = (*a);
 (*a) = (*b);
 (*b) = temporary;
}
 ...
 swapAt(&i,&j);
 ...

DEREFERENCE OPERATOR
This means that array[0] can instead be written (*array).

Example. The code for swapAt is normally written like so:

LECTURE 04-1: POINTERS

void swapAt(int* a, int* b) {
 int temporary = (*a);
 (*a) = (*b);
 (*b) = temporary;
}
 ...
 swapAt(&i,&j);
 ...

DEREFERENCE OPERATOR
This means that array[0] can instead be written (*array).

Example. The code for swapAt is normally written like so:

Do not confuse the & and * operators!!!!! (They are inverses, actually.)

▸ The & eans "get the address of" and the * means "access the value at."

LECTURE 04-1: POINTERS

void swapAt(int* a, int* b) {
 int temporary = (*a);
 (*a) = (*b);
 (*b) = temporary;
}
 ...
 swapAt(&i,&j);
 ...

POINTER PARAMETERS REVISITED
void swapAt(int* a, int* b) {
 int temporary = (*a);
 (*a) = (*b);
 (*b) = temporary;
}

 void incrementAt(int *p) {

 (*p) = (*p) + 1;

 }
int main(void) {
 int i = 42;
 int j = 37;
 std::cout << "i lives at" << &i << " with value" << i << "\n";
 std::cout << "j lives at" << &j << " with value" << j << "\n";
 swapAt(&i,&j);
 incrementAt(&i);
 std::cout << "i lives at" << &i << " with value" << i << "\n";
 std::cout << "j lives at" << &j << " with value" << j << "\n";
}

LECTURE 04-1: POINTERS

ALLOCATING "SINGLETONS" ON THE HEAP
We can also request single data locations, not just arrays, from the heap:
int main(void) {
 int *p = new int;
 (*p) = 42;
 int *q = new int;
 (*q) = 37;
 std::cout << "The value at "<< p << " is " << (*p) << ".\n";
 std::cout << "The value at "<< q << " is " << (*q) << ".\n";
 swapAt(p,q);
 incrementAt(p);
 std::cout << "The value at "<< p << " is " << (*p) << ".\n";
 std::cout << "The value at "<< q << " is " << (*q) << ".\n";
 delete p;
 delete q;
}

LECTURE 04-1: POINTERS

ALLOCATING "SINGLETONS" ON THE HEAP
We can also request single data locations, not just arrays, from the heap:
int main(void) {
 int *p = new int;
 (*p) = 42;
 int *q = new int;
 (*q) = 37;
 std::cout << "The value at "<< p << " is " << (*p) << ".\n";
 std::cout << "The value at "<< q << " is " << (*q) << ".\n";
 swapAt(p,q);
 incrementAt(p);
 std::cout << "The value at "<< p << " is " << (*p) << ".\n";
 std::cout << "The value at "<< q << " is " << (*q) << ".\n";
 delete p;
 delete q;
}

LECTURE 04-1: POINTERS

SINCE THESE ARE HEAP-ALLOCATED, MUST RELEASE THEIR STORAGE!

ALLOCATING STRUCTS ON THE HEAP
We can allocate structs within the heap.

▸Example. rewrite of car.cc from Lab 03:

struct car { ... };

void outputCar(car c) { ... }

void drive (double distance, car* p) { ... }

int main(void) {
 car *vwbus = new car {"VW", "Bus", 12300, 10.8, 19};
 outputCar(*vwbus);
 drive(100.0, vwbus);
 outputCar(*vwbus);
}

LECTURE 04-1: POINTERS

ALLOCATING STRUCTS ON THE HEAP
We can allocate structs within the heap.

▸Example. rewrite of car.cc from Lab 03:

struct car { ... };

void outputCar(car c) { ... }

void drive (double distance, car* p) { ... }

int main(void) {
 car *vwbus = new car {"VW", "Bus", 12300, 10.8, 19};
 outputCar(*vwbus);
 drive(100.0, vwbus);
 outputCar(*vwbus);
}

LECTURE 04-1: POINTERS

ALLOCATING STRUCTS ON THE HEAP
We can allocate structs within the heap.

▸Example. rewrite of car.cc from Lab 03:

struct car { ... };

void outputCar(car c) { ... }

void drive (double distance, car* p) { ... }

int main(void) {
 car *vwbus = new car {"VW", "Bus", 12300, 10.8, 19};
 outputCar(*vwbus);
 drive(100.0,vwbus);
 outputCar(*vwbus);
}

LECTURE 04-1: POINTERS

ALLOCATING STRUCTS ON THE HEAP
We can allocate structs within the heap.

▸Example. rewrite of car.cc from Lab 03:

struct car { ... };

void outputCar(car c) { ... }

void drive (double distance, car* p) { ... }

int main(void) {
 car *vwbus = new car {"VW", "Bus", 12300, 10.8, 19};
 outputCar(*vwbus);
 drive(100.0,vwbus);
 outputCar(*vwbus);
}

LECTURE 04-1: POINTERS

ALLOCATING STRUCTS ON THE HEAP
We can allocate structs within the heap.

▸Example. rewrite of car.cc from Lab 03:

struct car { ... };

void outputCar(car c) { ... }

void drive (double distance, car* p) { ... }

int main(void) {
 car *vwbus = new car {"VW", "Bus", 12300, 10.8, 19};
 outputCar(*vwbus);
 drive(100.0,vwbus);
 outputCar(*vwbus);
}

LECTURE 04-1: POINTERS

ALLOCATING STRUCTS ON THE HEAP
We can allocate structs within the heap.

▸Example. rewrite of car.cc from Lab 03:

struct car { ... };

void outputCar(car c) { ... }

void drive (double distance, car* p) { ... }

int main(void) {
 car *vwbus = new car {"VW", "Bus", 12300, 10.8, 19};
 outputCar(*vwbus);
 drive(100.0,vwbus);
 outputCar(*vwbus);
}

LECTURE 04-1: POINTERS

ALLOCATING STRUCTS ON THE HEAP
We can allocate structs within the heap.

▸Example. rewrite of car.cc from Lab 03:

struct car { ... };

void outputCar(car c) { ... }

void drive (double distance, car* p) { ... }

int main(void) {
 car *vwbus = new car {"VW", "Bus", 12300, 10.8, 19};
 outputCar(*vwbus);
 drive(100.0,vwbus);
 outputCar(*vwbus);
}

LECTURE 04-1: POINTERS

NOTICE HOW ALL THE TYPES MATCH UP!

ALLOCATING STRUCTS ON THE HEAP
We can allocate structs within the heap.

▸Example. rewrite of car.cc from Lab 03:

struct car { ... };

void outputCar(car c) { ... }

void drive (double distance, car* p) { ... }

int main(void) {
 car *vwbus = new car {"VW", "Bus", 12300, 10.8, 19};
 outputCar(*vwbus);
 drive(100.0,vwbus);
 outputCar(*vwbus);  
 delete vwbus;
}

LECTURE 04-1: POINTERS

WHOOPS! DON'T FORGET TO GIVE RELEASE THE POINTER.

ALLOCATING STRUCTS ON THE HEAP
We can allocate structs within the heap.

▸Example. rewrite of car.cc from Lab 03:

struct car { ... };

void outputCar(car c) { ... }

void drive (double distance, car* p) { ... }

int main(void) {
 car *vwbus = new car {"VW", "Bus", 12300, 10.8, 19};
 outputCar(*vwbus);
 drive(100.0,vwbus);
 outputCar(*vwbus);  
 delete vwbus;
}

LECTURE 04-1: POINTERS

WHOOPS! DON'T FORGET TO GIVE RELEASE THE POINTER.

ALLOCATING STRUCTS ON THE HEAP
We can allocate structs within the heap.

▸Example. rewrite of drive from Lab 03:
car drive(double d, car c) {
 double fuelNeeded = d / c.mpg;
 if (c.fuel > fuelNeeded) {
 c.fuel -= fuelNeeded;
 c.odometer += d;
 } else {
 double fraction = c.fuel / fuelNeeded;
 c.fuel = 0.0;
 c.odometer += fraction * d;
 }
 return c;
}
int main(void) {
 car vwbus {"VW", "Bus", 12300, 10.8, 19};
 ...
 vwbus = drive(100.0,vwbus)
 ...

LECTURE 04-1: POINTERS

ALLOCATING STRUCTS ON THE HEAP
We can allocate structs within the heap.

▸Example. rewrite of drive from Lab 03:
void drive(double d, car* p) {
 double fuelNeeded = d / (*p).mpg;
 if ((*p).fuel > fuelNeeded) {
 (*p).fuel -= fuelNeeded;
 (*p).odometer += d;
 } else {
 double fraction = (*p).fuel / fuelNeeded;
 (*p).fuel = 0.0;
 (*p).odometer += fraction * d;
 }
 return;
}
int main(void) {
 car* vwbus = new car {"VW", "Bus", 12300, 10.8, 19};
 ...
 drive(100.0,vwbus)
 ...

LECTURE 04-1: POINTERS

ON WEDNESDAY
We'll look at linked data structures.

Our goal is to eventually...

▸...build our own sequence data structures using "linked lists."

▸...build our own search data structures using "binary trees."

▸...build "resizeable" arrays and dictionaries E.g. a "bucket hashtable."

LECTURE 04-1: POINTERS

