
C-STYLE
STRUCTS AND ARRAYS

LECTURE 03-1

JIM FIX, REED COLLEGE CS2-F20

HOMEWORK 01 FEEDBACK; HOMEWORK 02 EXTENSION
I'm working to finish grading everyone's Homework 01

• Look for a branch named feedback under your hw01-... repo.

• I've put comments within your code, and also a FEEDBACK.md file.

•People's C++ work generally looks good, some "style" issues...

▸I will be posting my solutions to their puzzles.

• (show solutions; Makefile)

▸Homework 02 my is due Wednesday at 3pm, instead.

▸We'll meet to work on Lab 02 tomorrow.

LECTURE 03-1: STRUCTS AND ARRAYS

A WORD ON STYLE
▸Use meaningful, readable names.

•Avoid single-letter names; only use them judiciously.

➡ Common exceptions are use of i, j, k, n, x, y

•Use camelCase or snake_case for names.

▸Indent code despite the braces.

• Structure it as if you were writing Python code.

•Use curly braces even around single-line conditional and loop blocks.

▸Typically I only want you to use constructs I've shown in class!

➡ Mostly I don't want you to avoid the puzzle of the problem.

LECTURE 03-1: STRUCTS AND ARRAYS

MORE ON STYLE
▸I'd prefer that you don't use namespace.

▸Start using std::endl instead of "\n".

➡You will still see me use \n in examples to fit code on slide.

▸Work to comment your code!

•Put them near or within tricky code.

•When using terse variable names, comment how they are being used.

•Make a top comment with your name and the assignment being solved.

•Comment each struct (today's topic), function, and procedure
definition.

LECTURE 03-1: STRUCTS AND ARRAYS

TODAY: C++ STRUCTS AND ARRAYS
We look at the primitive data structures that were introduced with C

•C++ arrays are like primitive Python lists

➡ sequences of data, all of same type

•C++ structs are like primitive Python objects

➡ conglomeration of data, of mixed type

▸There will be some important differences; some are subtle.

NOTE: for now, these will be stack-allocated

▸Soon we will look at pointers, and also heap-allocated arrays and structs.

LECTURE 03-1: STRUCTS AND ARRAYS

RECALL CALL STACK STUFF: stack.cc
double g(double a, double z0) {
 double z = 0.5 * (z0 + a/z0);
 return z;
}
double f(int i, double x) {
 double y = x/2.0;
 for (int j=0; j<i; j++) {
 y = g(x,y);
 }
 return y*y;
}
void P(int a, int b) {
 std::cout << f(a,2.0) << std::endl;
 std::cout << f(b,2.0) << std::endl;
}
int main() {
 P(2,5);
}

LECTURE 03-1: STRUCTS AND ARRAYS

RECALL CALL STACK STUFF: stack.cc
double g(double a, double z0) {
 // uses z
 ...
}
double f(int i, double x) {
 // uses x, j, y; calls g
 ...
}
void P(int a, int b) {
 // calls f twice
 ...
}
int main() {
 P(2,5);
} call stack

main:

LECTURE 03-1: STRUCTS AND ARRAYS

RECALL CALL STACK STUFF: stack.cc
double g(double a, double z0) {
 // uses z
 ...
}
double f(int i, double x) {
 // uses x, j, y; calls g
 ...
}
void P(int a, int b) {
 // calls f twice
 ...
}
int main() {
 P(2,5);
} call stack

main:

P: a, b

LECTURE 03-1: STRUCTS AND ARRAYS

RECALL CALL STACK STUFF: stack.cc
double g(double a, double z0) {
 // uses z
 ...
}
double f(int i, double x) {
 // uses x, j, y; calls g
 ...
}
void P(int a, int b) {
 // calls f twice
 ...
}
int main() {
 P(2,5);
} call stack

main:

P: a, b

LECTURE 03-1: STRUCTS AND ARRAYS

f: i, x, j, y

RECALL CALL STACK STUFF: stack.cc
double g(double a, double z0) {
 // uses z
 ...
}
double f(int i, double x) {
 // uses x, j, y; calls g
 ...
}
void P(int a, int b) {
 // calls f twice
 ...
}
int main() {
 P(2,5);
} call stack

main:

P: a, b

f: i, x, j, y

g: a, z, z0

LECTURE 03-1: STRUCTS AND ARRAYS

RECALL CALL STACK STUFF: stack.cc
double g(double a, double z0) {
 // uses z
 ...
}
double f(int i, double x) {
 // uses x, j, y; calls g
 ...
}
void P(int a, int b) {
 // calls f twice
 ...
}
int main() {
 P(2,5);
} call stack

main:

P: a, b, d

LECTURE 03-1: STRUCTS AND ARRAYS

f: i, x, j, y

CALL STACK FRAME SUMMARY
▸Every function and procedure has a collection of local variables.

• NOTE: These include its formal parameter variables.

• Each variable's bytes are stored in memory on a stack frame.

➡ This means they each (temporarily) live at some address in memory.

▸When a program first runs, a stack frame is built for main.

➡ This allocates storage for values of each of main's local variables.

▸When a function is called...

➡ a stack frame is built for its local variables. A new frame is "pushed on top."

▸When a function returns...

➡ its stack frame is "taken down"; storage is reclaimed. Frame is "popped off."

LECTURE 03-1: STRUCTS AND ARRAYS

ADDRESS-OF OPERATOR &
▸We can put & in front of an expression that accesses locations in memory.

➡ This tells us the start address of those locations.

▸RECALL: For fib.cc we...

➡ output &n, to inspect the memory address where each frame lived.

▸We saw that the stack "grew downward" from higher to lower addresses.

▸Let's do a similar thing with stack.cc from the animation...

LECTURE 03-1: STRUCTS AND ARRAYS

(DEMO in TERMINAL)

TODAY: C++ STRUCTS AND ARRAYS
We look at the primitive data structures that were introduced with C

•C++ arrays are like primitive Python lists

➡ sequences of data, all of same type

•C++ structs are like primitive Python objects

➡ conglomeration of data, of mixed type

▸There will be some important differences; some are subtle.

NOTE: for now, these will be stack-allocated

▸Soon we will look at pointers, and also heap-allocated arrays and structs.

LECTURE 03-1: STRUCTS AND ARRAYS

STACK-ALLOCATED ARRAYS
▸An array is a sequence of values, all of the same type.

• It is named with a single variable.

•Arrays are allocated on the stack with declarations like these:
int values[] = {8, 1, 8, 7, 5};

double stuff[3];

▸Each item of that sequence is accessible by an integer index

...values[index]...

• The index starts at 0, runs up to one less than its length
for (int i=0; i < 5; i++) {

 std::cout << values[i] << std::endl;

}

LECTURE 03-1: STRUCTS AND ARRAYS

STACK-ALLOCATED ARRAYS
▸An array is a sequence of memory locations, storing values of the same type

int values[] = {8, 1, 8, 7, 5};

▸Picture:

▸The expression values[3] refers to the storage of the 4th element, so
 std::cout << values[3]; // prints 7

➡ accesses and prints its integer value, and
values[3] = 47;

➡ modifies that element within the array.
 std::cout << values[3]; // now prints 47

LECTURE 03-1: STRUCTS AND ARRAYS

[0] [1] [2] [3] [4]

8 1 8 7 5

STACK-ALLOCATED ARRAYS
▸An array is a sequence of memory locations, storing values of the same type

int values[] = {8, 1, 8, 7, 5};

▸Picture:

▸The expression values[3] refers to the storage of the 4th element, so
 std::cout << values[3]; // prints 7

➡ accesses and prints its integer value, and
values[3] = 47;

➡ modifies that element within the array.
 std::cout << values[3]; // now prints 47

LECTURE 03-1: STRUCTS AND ARRAYS

[0] [1] [2] [3] [4]

8 1 8 7 5

STACK-ALLOCATED ARRAYS
▸An array is a sequence of memory locations, storing values of the same type

int values[] = {8, 1, 8, 7, 5};

▸Picture:

▸The expression values[3] refers to the storage of the 4th element, so
 std::cout << values[3]; // prints 7

➡ accesses and prints its integer value, and
values[3] = 49;

➡ modifies that element within the array.
 std::cout << values[3]; // now prints 49

LECTURE 03-1: STRUCTS AND ARRAYS

[0] [1] [2] [3] [4]

8 1 8 49 5

STACK-ALLOCATED ARRAYS
▸An array is a sequence of memory locations, storing values of the same type

int values[] = {8, 1, 8, 7, 5};

▸Picture:

▸The expression values[3] refers to the storage of the 4th element, so
 std::cout << values[3]; // prints 7

➡ accesses and prints its integer value, and
values[3] = 49;

➡ modifies that element within the array.
 std::cout << values[3]; // now prints 49

LECTURE 03-1: STRUCTS AND ARRAYS

[0] [1] [2] [3] [4]

8 1 8 49 5

EXAMPLE: array1.cc
#include <iostream>

int main(void) {
 int a[5] = {8,1,8,7,5};
 for (int i=0; i<5; i++) {
 std::cout << a[i] << std::endl;
 }
 return 0;
}

LECTURE 03-1: STRUCTS AND ARRAYS

% ./array1
8
1
8
7
5

EXAMPLE: array2.cc
#include <iostream>
int main(void) {
 int a[5] = {8,1,8,7,5};
 int sum = 0;
 for (int i=0; i<5; i++) {
 sum += a[i];
 }
 std::cout << sum << std::endl;
 return 0;
}

LECTURE 03-1: STRUCTS AND ARRAYS

% ./array2
29

EXAMPLE: array3.cc
#include <iostream>
int main(void) {
 int a[5];

 for (int i=0; i<5; i++) {
 a[i] = (6-i)*10 + i;
 }
 for (int i=0; i<5; i++) {
 std::cout << a[i] << std::endl;
 }
 std::cout << std::endl;

 a[2] = a[2] + 100;
 for (int i=0; i<5; i++) {
 std::cout << a[i] << std::endl;
 }
 return 0;
}

LECTURE 03-1: STRUCTS AND ARRAYS

% ./array3
60
51
42
33
24

60
51
142
33
24

ARRAY SYNTAX
▸To declare and allocate storage for a stack-allocated array

type-name variable-name[] = { initializer-list };

type-name variable-name[integer-literal];

▸To access the contents of an array item (this is an "R-value reference"):
... variable-name[integer-expression]...

▸To modify the contents of an array item (LHS is an "L-value reference"):
variable-name[integer-expression] = expression;

▸This means that you can think of each item as a variable in memory.
&variable-name[integer-expression] gives the address where the item lives in memory

▸NOTE: The array variable's value itself is a pointer. More on this Wednesday...
 variable-name on its own (no index/brackets) also gives the address of the 0-th item

LECTURE 03-1: STRUCTS AND ARRAYS

NOTES ON (STACK-ALLOCATED) ARRAYS
▸Notation is similar to a Python list, but:

➡ allocated on the function's stack frame with a declaration

✦ they are of fixed size set by the declaration

➡ elements all have to be the same type

➡ cannot resize the storage (can't change array to have fewer/more items)

➡ they "don't know" their length; can accidentally access at a bad index

➡ deallocated when the function returns (storage is reclaimed)

✦ shouldn't return a stack-allocated array!

➡ array variable's value is an address or pointer

✦passing arrays to functions as parameters requires a bit of explanation

LECTURE 03-1: STRUCTS AND ARRAYS

EXAMPLE: array4.cc
#include <iostream>

int main(void) {
 int i;
 int a[5] = {8,1,8,7,5};
 int j;  

 std::cout << " &i is " << &i << std::endl;
 std::cout << " a is " << a << std::endl;
 for (i=0; i<5; i++) {
 std::cout << "&a[" << i << "] is ";
 std::cout << &a[i] << std::endl;
 }
 std::cout << " &j is " << &j << std::endl;

 std::cout << " j is " << j << std::endl;
 a[-3] = 345;
 std::cout << " j is " << j << std::endl;
}

LECTURE 03-1: STRUCTS AND ARRAYS

EXAMPLE: array4.cc
#include <iostream>

int main(void) {
 int i;
 int a[5] = {8,1,8,7,5};
 int j;  

 std::cout << " &i is " << &i << std::endl;
 std::cout << " a is " << a << std::endl;
 for (i=0; i<5; i++) {
 std::cout << "&a[" << i << "] is ";
 std::cout << &a[i] << std::endl;
 }
 std::cout << " &j is " << &j << std::endl;

 std::cout << " j is " << j << std::endl;
 a[-3] = 345;
 std::cout << " j is " << j << std::endl;
}

LECTURE 03-1: STRUCTS AND ARRAYS % ./array4
 &i is 0x7ffee0ded9f8
 a is 0x7ffee0deda00
&a[0] is 0x7ffee0deda00
&a[1] is 0x7ffee0deda04
&a[2] is 0x7ffee0deda08
&a[3] is 0x7ffee0deda0c
&a[4] is 0x7ffee0deda10
 &j is 0x7ffee0ded9f4
 j is 111
 j is 345

STACK-ALLOCATED STRUCTS
▸An struct is a grouping of stored values; a collection of storage components

• Each component has a name. Also called a field or "instance variable".

• Each component can be of a different type.

▸You have to declare the struct as a new type before you use it.

•Arrays are allocated on the stack with declarations like these:
struct record {

 int value;

 std::string text;

 double amount;

};

▸You can use that type in a struct variable declaration, for example:
record r = {37, "hi", 3.14}; // creates a new record instance

LECTURE 03-1: STRUCTS AND ARRAYS

STACK-ALLOCATED STRUCTS
▸Like arrays, a struct is also a sequence of bytes in memory, chunked as fields

record r = {37, "hi", 3.14};

▸Picture:

▸The expression r.amount refers to the storage of the 3rd field, so
 std::cout << r.amount; // prints 3.14

➡ accesses and prints its double-precision floating point value, and
r.amount = 2.78;

➡ modifies that element within the array.
 std::cout << r.amount; // now prints 2.78

LECTURE 03-1: STRUCTS AND ARRAYS

value

37 "hi"

text amount

3.14

STACK-ALLOCATED STRUCTS
▸Like arrays, a struct is also a sequence of bytes in memory, chunked as fields

record r = {37, "hi", 3.14};

▸Picture:

▸The expression r.amount refers to the storage of the 3rd field, so
 std::cout << r.amount; // prints 3.14

➡ accesses and prints its double-precision floating point value, and
r.amount = 2.78;

➡ modifies that element within the array.
 std::cout << r.amount; // now prints 2.78

LECTURE 03-1: STRUCTS AND ARRAYS

value

37 "hi"

text amount

3.14

STACK-ALLOCATED STRUCTS
▸Like arrays, a struct is also a sequence of bytes in memory, chunked as fields

record r = {37, "hi", 3.14};

▸Picture:

▸The expression r.amount refers to the storage of the 3rd field, so
 std::cout << r.amount; // prints 3.14

➡ accesses and prints its double-precision floating point value, and
r.amount = 2.78;

➡ modifies that element within the array.
 std::cout << r.amount; // now prints 2.78

LECTURE 03-1: STRUCTS AND ARRAYS

value

37 "hi"

text amount

2.78

STACK-ALLOCATED STRUCTS
▸Like arrays, a struct is also a sequence of bytes in memory, chunked as fields

record r = {37, "hi", 3.14};

▸Picture:

▸The expression r.amount refers to the storage of the 3rd field, so
 std::cout << r.amount; // prints 3.14

➡ accesses and prints its double-precision floating point value, and
r.amount = 2.78;

➡ modifies that element within the array.
 std::cout << r.amount; // now prints 2.78

LECTURE 03-1: STRUCTS AND ARRAYS

value

37 "hi"

text amount

2.78

EXAMPLE: struct1.cc
#include <iostream>

struct CS2Student {
 std::string name;
 int year;
 bool isTA;  
};

void outputCS2Student(CS2Student student) { ... }

int main(void) {
 CS2Student s = {"Rory Gluthy", 1, false};
 CS2Student t;
 t.name = "Dom Kalemba";
 t.year = 2;
 t.isTA = true;
 outputCS2Student(s);
 outputCS2Student(t);
 ...
}

LECTURE 03-1: STRUCTS AND ARRAYS

EXAMPLE: struct1.cc
#include <iostream>
struct CS2Student {
 std::string name;
 int year;
 bool isTA;  
};
void outputCS2Student(CS2Student student) { ... }
int main(void) {
 CS2Student s = {"Rory Gluthy", 1, false};
 CS2Student t;
 t.name = "Dom Kalemba";
 t.year = 2;
 t.isTA = true;
 outputCS2Student(s);
 outputCS2Student(t);
 ...
}

LECTURE 03-1: STRUCTS AND ARRAYS

% ./struct1
A student named Rory Gluthy is a first year student.
A student named Dom Kalemba is a sophomore and is TAing CS2.

EXAMPLE: struct1.cc
void outputCS2Student(CS2Student student) {
 std::cout << "A student named " << student.name << " is a ";

 if (student.year == 1) {
 std::cout << "first year student";
 } else if (student.year == 2) {
 std::cout << "sophomore";
 } else if (student.year == 3) {
 std::cout << "junior";
 } else if (student.year == 4) {
 std::cout << "senior";
 } else {
 std::cout << "graduate";
 }

 if (student.isTA) {
 std::cout << " and is TAing CS2";
 }
 std::cout << "." << std::endl;
}

LECTURE 03-1: STRUCTS AND ARRAYS

EXAMPLE: struct1.cc
void outputCS2Student(CS2Student student) {
 std::cout << "A student named " << student.name << " is a ";

 if (student.year == 1) {
 std::cout << "first year student";
 } else if (student.year == 2) {
 std::cout << "sophomore";
 } else if (student.year == 3) {
 std::cout << "junior";
 } else if (student.year == 4) {
 std::cout << "senior";
 } else {
 std::cout << "graduate";
 }

 if (student.isTA) {
 std::cout << " and is TAing CS2";
 }
 std::cout << "." << std::endl;
}

LECTURE 03-1: STRUCTS AND ARRAYS

EXAMPLE: struct1.cc
void outputCS2Student(CS2Student student) {
 std::cout << "A student named " << student.name << " is a ";

 if (student.year == 1) {
 std::cout << "first year student";
 } else if (student.year == 2) {
 std::cout << "sophomore";
 } else if (student.year == 3) {
 std::cout << "junior";
 } else if (student.year == 4) {
 std::cout << "senior";
 } else {
 std::cout << "graduate";
 }

 if (student.isTA) {
 std::cout << " and is TAing CS2";
 }
 std::cout << "." << std::endl;
}

LECTURE 03-1: STRUCTS AND ARRAYS

EXAMPLE: struct1.cc
#include <iostream>
struct CS2Student { ... }
void outputCS2Student(CS2Student student) { ... }
int main(void) {
 ... // Declaration and init of s and t.
 outputCS2Student(s);
 outputCS2Student(t);
 std::cout << "A year goes by... " << std::endl;
 s.year++;
 s.isTA = !s.isTA;
 t.year++;
 t.isTA = !s.isTA;
 outputCS2Student(s);
 outputCS2Student(t);
}

LECTURE 03-1: STRUCTS AND ARRAYS

% ./struct1
A student named Rory Gluthy is a first year student.
A student named Dom Kalemba is a sophomore and is TAing CS2.
A year goes by...
A student named Rory Gluthy is a sophomore and is TAing CS2.
A student named Dom Kalemba is a junior.

STRUCT SYNTAX
▸To declare and allocate storage for a stack-allocated struct

struct-type-name variable-name = { initializer-list };

struct-type-name variable-name;

▸To access a component of a struct use the "dot notation":
... variable-name.component-name ...

▸To modify the contents of an array item (LHS is an "L-value reference"):
variable-name.component-name = expression;

▸This means that you can think of each component as a variable in memory.
& variable-name.component-name gives the address where the field's storage lives in memory

▸The struct variable itself is a collection of values that can be passed/returned by
value (much like a Python tuple).

LECTURE 03-1: STRUCTS AND ARRAYS

NOTES ON (STACK-ALLOCATED) STRUCTS
▸Notation is similar to a Python object, but:

➡ Allocated on the function's stack frame by a variable declaration statement.

➡ Their layout is fixed; based on the struct's type declaration

✦Cannot add fields at run-time

➡ (For now, they do not have methods.)

➡ Deallocated when the function returns (storage is reclaimed).

➡ Not passed or returned by reference, but passed/returned by value

LECTURE 03-1: STRUCTS AND ARRAYS

NOTES ON (STACK-ALLOCATED) STRUCTS
▸Notation is similar to a Python object, but:

➡ Allocated on the function's stack frame by a variable declaration statement.

➡ Their layout is fixed; based on the struct's type declaration

✦Cannot add fields at run-time

➡ (For now, they do not have methods.)

➡ Deallocated when the function returns (storage is reclaimed).

➡ Not passed or returned by reference, but passed/returned by value

✦ Component values are copied into the formal parameter's struct.

✦ Component values are copied back from the returned struct.

LECTURE 03-1: STRUCTS AND ARRAYS

EXAMPLE: struct2.cc
#include <iostream>
struct CS2Student { ... }
void outputCS2Student(CS2Student student) { ... }
void yearGoesByWith(CS2Student student) {

 ...

}
int main(void) {
 CS2Student s = {"Rory Gluthy", 1, false};
 outputCS2Student(s);
 yearGoesByWith(s);
 outputCS2Student(s);
}

LECTURE 03-1: STRUCTS AND ARRAYS

ATTEMPT #1: yearGoesBy
#include <iostream>
struct CS2Student { ... }
void outputCS2Student(CS2Student student) { ... }
void yearGoesByWith(CS2Student student) {
 if (student.year <= 4) {
 student.year++;
 }
}
int main(void) {
 CS2Student s = {"Rory Gluthy", 1, false};
 outputCS2Student(s);
 yearGoesByWith(s);
 outputCS2Student(s);
}

LECTURE 03-1: STRUCTS AND ARRAYS

ATTEMPT #1: yearGoesBy
#include <iostream>
struct CS2Student { ... }
void outputCS2Student(CS2Student student) { ... }
void yearGoesByWith(CS2Student student) {
 if (student.year <= 4) {
 student.year++;
 }
}
int main(void) {
 CS2Student s = {"Rory Gluthy", 1, false};
 outputCS2Student(s);
 yearGoesByWith(s);
 outputCS2Student(s);
}

LECTURE 03-1: STRUCTS AND ARRAYS

% ./struct2
A student named Rory Gluthy is a first year student.
A student named Rory Gluthy is a first year student.

ATTEMPT #1: yearGoesBy
#include <iostream>
struct CS2Student { ... }
void outputCS2Student(CS2Student student) { ... }
void yearGoesByWith(CS2Student student) {
 if (s.year <= 4) {
 s.year++;
 }
}
int main(void) {
 CS2Student s = {"Rory Gluthy", 1, false};
 outputCS2Student(s);
 yearGoesByWith(s);
 outputCS2Student(s);
}

LECTURE 03-1: STRUCTS AND ARRAYS

% ./struct2
A student named Rory Gluthy is a first year student.
A student named Rory Gluthy is a first year student.

ONLY ACCESSES AND CHANGES A COPY OF MAIN'S STRUCT.

ATTEMPT #2: yearGoesBy
#include <iostream>
struct CS2Student { ... }
void outputCS2Student(CS2Student student) { ... }
CS2Student yearGoesByWith(CS2Student student) {
 if (student.year <= 4) {
 student.year++;
 }
 return student;
}
int main(void) {
 CS2Student s = {"Rory Gluthy", 1, false};
 outputCS2Student(s);
 s = yearGoesByWith(s);
 outputCS2Student(s);
}

LECTURE 03-1: STRUCTS AND ARRAYS

ATTEMPT #2: yearGoesBy
#include <iostream>
struct CS2Student { ... }
void outputCS2Student(CS2Student student) { ... }
CS2Student yearGoesByWith(CS2Student student) {
 if (student.year <= 4) {
 student.year++;
 }
 return student;
}
int main(void) {
 CS2Student s = {"Rory Gluthy", 1, false};
 outputCS2Student(s);
 s = yearGoesByWith(s);
 outputCS2Student(s);
}

LECTURE 03-1: STRUCTS AND ARRAYS

ACCESSES AND CHANGES A COPY, RETURNS COPY BACK.

ATTEMPT #2: yearGoesBy
#include <iostream>
struct CS2Student { ... }
void outputCS2Student(CS2Student student) { ... }
CS2Student yearGoesByWith(CS2Student student) {
 if (student.year <= 4) {
 student.year++;
 }
 return student;
}
int main(void) {
 CS2Student s = {"Rory Gluthy", 1, false};
 outputCS2Student(s);
 s = yearGoesByWith(s);
 outputCS2Student(s);
}

LECTURE 03-1: STRUCTS AND ARRAYS

ACCESSES AND CHANGES A COPY, RETURNS COPY BACK.

REASSIGNS BASED ON RETURNED COPY.

ATTEMPT #2: yearGoesBy
#include <iostream>
struct CS2Student { ... }
void outputCS2Student(CS2Student student) { ... }
CS2Student yearGoesByWith(CS2Student student) {
 if (student.year <= 4) {
 student.year++;
 }
 return student;
}
int main(void) {
 CS2Student s = {"Rory Gluthy", 1, false};
 outputCS2Student(s);
 s = yearGoesByWith(s);
 outputCS2Student(s);
}

LECTURE 03-1: STRUCTS AND ARRAYS

ACCESSES AND CHANGES A COPY, RETURNS COPY BACK.

REASSIGNS BASED ON RETURNED COPY.

% ./struct2
A student named Rory Gluthy is a first year student.
A student named Rory Gluthy is a sophomore student.

EXAMPLE: struct4.cc
#include <iostream>

struct record {
 int value;
 std::string text;
 double amount;
}

int main(void) {
 int i;
 record r = {37, "hi", 3.14};
 int j;  

 std::cout << "&i is " << &i << std::endl;
 std::cout << "r is " << r << std::endl;
 std::cout << "&r.value is " << &r.value << std::endl;
 std::cout << "&r.text is " << &r.text << std::endl;
 std::cout << "&r.amount is " << &r.amount << std::endl;
 std::cout << "&j is " << &j << std::endl;
}

LECTURE 03-1: STRUCTS AND ARRAYS

EXAMPLE: struct4.cc
#include <iostream>

struct record {
 int value;
 std::string text;
 double amount;
}

int main(void) {
 int i;
 record r = {37, "hi", 3.14};
 int j;  

 std::cout << "&i is " << &i << std::endl;
 // std::cout << "r is " << r << std::endl; // error!
 std::cout << "&r.value is " << &r.value << std::endl;
 std::cout << "&r.text is " << &r.text << std::endl;
 std::cout << "&r.amount is " << &r.amount << std::endl;
 std::cout << "&j is " << &j << std::endl;
}

LECTURE 03-1: STRUCTS AND ARRAYS

EXAMPLE: struct4.cc
#include <iostream>

struct record {
 int value;
 std::string text;
 double amount;
}

int main(void) {
 int i;
 record r = {37, "hi", 3.14};
 int j;  

 std::cout << "&i is " << &i << std::endl;
 // std::cout << "r is " << r << std::endl; // error!
 std::cout << "&r.value is " << &r.value << std::endl;
 std::cout << "&r.text is " << &r.text << std::endl;
 std::cout << "&r.amount is " << &r.amount << std::endl;
 std::cout << "&j is " << &j << std::endl;
}

LECTURE 03-1: STRUCTS AND ARRAYS

EXAMPLE: struct4.cc
#include <iostream>

struct record {
 int value;
 std::string text;
 double amount;
}

int main(void) {
 int i;
 record r = {37, "hi", 3.14};
 int j;  

 std::cout << "&i is " << &i << std::endl;
 // std::cout << "r is " << r << std::endl; // error!
 std::cout << "&r.value is " << &r.value << std::endl;
 std::cout << "&r.text is " << &r.text << std::endl;
 std::cout << "&r.amount is " << &r.amount << std::endl;
 std::cout << "&j is " << &j << std::endl;
}

LECTURE 03-1: STRUCTS AND ARRAYS

% ./struct4
&i is 0x7ffee9498a1c
&r.value is 0x7ffee94989f0
&r.text is 0x7ffee94989f8
&r.amount is 0x7ffee9498a10
&j is 0x7ffee94989ec

EXAMPLE: struct4.cc
#include <iostream>
struct record { ... };
int main(void) {
 int i;
 record r = {37, "hi", 3.14};
 int j;  

 std::cout << "&i is " << &i << std::endl;
 std::cout << "&r.value is " << &r.value << std::endl;
 std::cout << "&r.text is " << &r.text << std::endl;
 std::cout << "&r.amount is " << &r.amount << std::endl;
 std::cout << "&j is " << &j << std::endl;

 std::cout << "j is " << j << std::endl;
 (&r.value)[-1] = 345;
 std::cout << "j is " << j << std::endl;
}

LECTURE 03-1: STRUCTS AND ARRAYS

% ./struct4
&i is 0x7ffee9498a1c
&r.value is 0x7ffee94989f0
&r.text is 0x7ffee94989f8
&r.amount is 0x7ffee9498a10
&j is 0x7ffee94989ec
j is 111
j is 345

TOMORROW IN TUESDAY LAB
We'll write simple code to get acquainted with struct/array syntax.

➡ Needn't worry too much about call stack, addresses, etc.

WEDNESDAY IN LECTURE
We'll look more at memory address stuff, and also:

•We'll define pointer types.

•We'll look at passing arrays as parameters.

•We'll look at allocating arrays and structs "dynamically" on the heap.

LECTURE 03-1: STRUCTS AND ARRAYS

