INTRO TO C PROGRAMMING
(USING C++)

LECTURE 01-2

JIM FIX, REED COLLEGE CS2-F20

LECTURE 01-2: INTRO TO C-LIKE C++

TODAY

Let's take a look at some basic C(++) programming
»Program “anatomy”: main with supporting functions & procedures
» Program “statements”:

e variables & types, assignment, I/0, 1 £-else, loops, return

No textbook for this, only my notes & examples; references.
e Reading: Stroustrup’s “Tour” Ch1; “PrPrC++ " Chs 5-6,9-10,12
* (Note: Harvard's popular “CS50" has notes & tutorials on C)

e My (limited) grammar for C++, along with your knowledge of Python

LECTURE 01-2: INTRO TO C-LIKE C++

ANATOMY OF A C PROGRAM

a preamble of #include lines for needed header files
a procedure or function definition

a procedure or function definition

a procedure or function definition

definition of the main function

LECTURE 01-2: INTRO TO C-LIKE C++

EXAMPLE: helloimQut.cc

#include <iostream>
int main(void) {

std: :cout << "Hello, world!\n";
std::cout << "I must be going...\n";

return O;

}

LECTURE 01-2: INTRO TO C-LIKE C++

EXAMPLE: cloF.cc

#include <iostream>
int main(void) {

int c;

std::cout << "Enter a temperature in degrees celsius: ";
std::cin >> c;

int £f=¢c *9 /5 + 32;

std::cout << "That's " << f << " degrees fahrenheit.\n";

return O;

LECTURE 01-2: INTRO TO C-LIKE C++

RUNNING A C PROGRAM

»Python is an interpreted language, you run another program python3 run it.

= The command python3 is the Python interpreter. It is a machine executable.

python3 myProgram.py

»C code isn't normally run with an interpreter.

»C programs are compiled using another program, like so:

o7
o7
o7

»So,

g++ -o myProgram myProgram.ccC
ne command g++ is a C++ compiler. It is also a machine executable.

ne file named myProgram.ccisa C program's source code.

ne compiler produces a file named myProgram which is a machine executable, too!

technically speaking, you don't directly run a C program.

LECTURE 01-2: INTRO TO C-LIKE C++

RUNNING A C PROGRAM'S EXECUTABLE

» A machine executable file is a sequence of bytes.

* These bytes make up the codes of machine-readable instructions.

e They are "written" (by the compiler) in the machine's language.

»To run a machine executable named myProgram type the command line:
. /myProgram

e The . / is the "file path" to the program (the folder where it lives).

= The notation . here means "this folder that you're working within."

» NOTE: the files myProgram, python3, g++ are all machine executable files.

= And they probably all were compiled from C++ source code!

LECTURE 01-2: INTRO TO C-LIKE C++

INSPECTING MACHINE CODE

» Just for fun, we can use the Unix editor emacs to inspect code:

o I | type the command below, | get to see its bytes.

emacs myProgram

»You can also write machine code in a machine's assembly language.
»The C compiler can also write that assembly code for you:

g++ -S myProgram.cc
»The line above produces a human-readable (well, -ish) file named myProgram. s.

»This is normally either "x86 code" in either AT&T style, or else Intel style, assembly.

LECTURE 01-2: INTRO TO C-LIKE C++

BACK TO SYNTAX: ANATOMY OF MAIN

»Every C program has a main function.
» It must have the form shown below*:

int main(void) {

Sequence of program statements that the program
should perform when run, in order of their execution;
This is called the body of the main function.

return O;t

*We'll later learn how to use parameters arge and argv formain instead of void.

T We'll at some point learn how to return a non-zero (error) value here.

LECTURE 01-2: INTRO TO C-LIKE C++

PROGRAM STATEMENTS

»The main function has a body of statements. Example statements include:

= Avariable declaratione.g. int c;
+syntax is type-name variable-name ;

=Avariable assignmente.g. £ = ¢*9/5+32;
+syntax is variable-name = expression ;

=Input of a value into a variable from the std: : cin input stream
+syntaxis std: :cin >> variable-name;

=Qutput of text and values to the std : : cout output stream
+syntax is std: :cout << expression;

=return of a value. Syntax is return expression;

» Like Python, there are also conditionals and loops.

LECTURE 01-2: INTRO TO C-LIKE C++

EXAMPLE: guess.cc

#include <iostream>
#include <ctime> // For time|()
#include <cstdlib> // For srand() and rand()

int main() {
srand(time(0));

int number = (rand() % 100) + 1;
std::cout << "I've chosen a number from 1 to 100. ";
std::cout << "Try to guess what it is.\n";

int guess;
bool success = false;

while (!success) {
... // keep getting guesses and reporting their success

}

std: :cout << "Well done! 0
std: :cout << number << " was the number I chose.\n";

return 0;

LECTURE 01-2: INTRO TO C-LIKE C++

EXAMPLE: guess.cc

#include <iostream>
#include <ctime> // For time|()
#include <cstdlib> // For srand() and rand()

int main() {
srand(time(0));

int number = (rand() % 100) + 1;
std::cout << "I've chosen a number from 1 to 100. ";

std::cout << "Try to guess what it is.\n";

int guess; variable declarations

bool success = false;

while (!success) {
... // keep getting guesses and reporting their success

}

std: :cout << "Well done! 0
std: :cout << number << " was the number I chose.\n";

return 0;

LECTURE 01-2: INTRO TO C-LIKE C++

VARIABLES & TYPES

»In C++, a variable names a place in memory that stores a value as a sequence of bits/bytes.
»The representation depends on the type of its data.
e E.g.achar isonly one byte, i.e. 8 bits
»The type int is for integer values. It is four bytes wide, i.e. 32 bits.
= values ate -231 up to +2/31-1
= unsigned int hassame length, butvaluesare 0 up to 232-1

= long has twice the length, eight bytes wide

»The type double is for floating-point values, i.e. "calculator values"
= it uses eight bytes, +/-2.3E-308 to +/-1.7E+308
= float isfour bytes long, +/-1.2E-38 to +/-3.4E+38, less precision, use double

» NOTE: variable use must be consistent, can't mix the use. Strictly enforced.

LECTURE 01-2: INTRO TO C-LIKE C++

EXAMPLE: guess.cc

#include <iostream>
#include <ctime> // For time()
#include <cstdlib> // For srand() and rand()

int main() {
srand(time(0));

int number = (rand() % 100) + 1;
std::cout << "I've chosen a number from 1 to 100. ";
std::cout << "Try to guess what it is.\n";

int guess;

bool success = false; Whlle IOOP

std::cout << "Well done! ";
std: :cout << number << " was the number I chose.\n";
return O;

LECTURE 01-2: INTRO TO C-LIKE C++

EXAMPLE: guess.cc

#include <iostream>
#include <ctime> // For time|()
#include <cstdlib> // For srand() and rand()

int main() {
srand(time(0));

int number = (rand() % 100) + 1;
std::cout << "I've chosen a number from 1 to 100. ";
std::cout << "Try to guess what it is.\n";

int guess;
bool success = false;

while (!success) {
... // keep getting guesses and reporting their success

}
std: :cout << "Well done! "; OUtpUtStatement

std: :cout << number << " was the number I chose.\n";
return 0;

LECTURE 01-2: INTRO TO C-LIKE C++

EXAMPLE: guess.cc

#include <iostream>
#include <ctime> // For time()
#include <cstdlib> // For srand() and rand()

int main() {

srand (time(0)); "includes" list

int number = (rand() % 100) + 1;
std::cout << "I've chosen a number from 1 to 100. ";
std::cout << "Try to guess what it is.\n";

int guess;
bool success = false;

while (!success) {
... // keep getting guesses and reporting their success

}

std: :cout << "Well done! 0
std: :cout << number << " was the number I chose.\n";

return 0;

LECTURE 01-2: INTRO TO C-LIKE C++

EXAMPLE: guess.cc

int main() {

srand (time(0)); "includes" list

int number = (rand() % 100) + 1;
std: :cout << "I've chosen a number from 1 to 100. ";

std::cout << "Try to guess what it is.\n";

int guess; some uses of items defined in the includes

bool success = false;

while (!success) {
. // keep getting guesses and reporting their success

}

std: :cout << "Well done! ";
std: :cout << number << " was the number I chose.\n";

return 0;

LECTURE 01-2: INTRO TO C-LIKE C++

EXAMPLE: guess.cc

#include <iostream>
#include <ctime> // For time ()
#include <cstdlib> // For srand() and rand()

int main() {
srand(time(0));

int number = (rand() % 100) + 1;
std::cout << "I've chosen a number from 1 to 100. ";
std::cout << "Try to guess what it is.\n";

int guess;
bool success = false;

while (!success) {
... // keep getting guesses and reporting their success

}

std: :cout << "Well done! 0
std: :cout << number << " was the number I chose.\n";

return O;

LECTURE 01-2: INTRO TO C-LIKE C++

EXAMPLE (CONT"D): THE LOOP BODY FOR guess.cc

while (!success) {
std::cin >> guess;
i1f (guess < number) {
std::cout << "That's too low. Try again.\n";
} else if (guess > number) {
std::cout << "That's too high. Try again.\n";
} else {
success = true;

LECTURE 01-2: INTRO TO C-LIKE C++

EXAMPLE (CONT™D): THE LOOP BODY FOR guess.cc

while (!success) { conditional statement
std::cin >> guess;

LECTURE 01-2: INTRO TO C-LIKE C++

EXAMPLE (CONT"D): THE LOOP BODY FOR guess.cc

while (!success) {
std::cin >> guess; input statement
i1f (guess < number) {
std::cout << "That's too low. Try again.\n";
} else if (guess > number) {
std::cout << "That's too high. Try again.\n";
} else {
success = true;

LECTURE 01-2: INTRO TO C-LIKE C++

C VS. PYTHON SO FAR

»A C program is a collection of program components

e [tis not a line-by-line, top-to-bottom script.

e Instead, it is a series of declarations.
+A declaration defines each component: a function, a new type, etc.
e Must have amain function defined amongst its components.

emain is the top-level description of what the program does.

»C variables have to be explicitly defined before they get used.
e There needs to be a declaration of their type.

e Avariable's use has to be uniform in type.

LECTURE 01-2: INTRO TO C-LIKE C++

C VS. PYTHON SO FAR (CONT'D)

»A C program is not run by an interpreter; it is compiled instead.

e\Weuse g++ -o pgm pgm.cc tomakeaprogram named pgm.

»Whitespace (tabs, spacing, ends of lines) don't matter to C.
e Use braces {} and semicolons ; to structure code.

o \We format carefully only for readability.

» Comments are either
eembedded /* 1like this */ withinaline, ortheyare
eattheendofaline// like this.

LECTURE 01-2: INTRO TO C-LIKE C++

GRAMMAR FOR C PROGRAMS: FUNCTIONS AND CODE BLOCKS

program ::= function-declarations main
main ::= int main(void) { block}
block ::= variable-declarations statements
statement ::=

variable-name = expression ;

std: :cin >> variable-name;

std: :cout << expression;

conditional

loop

update;

return expression;

LECTURE 01-2: INTRO TO C-LIKE C++

GRAMMAR FOR C PROGRAMS: VARIABLE DECLARATIONS

statement ::=
variable-name = expression ;

variable-declaration ::=
type-name variable-name ;
type-name variable-name = expression ;

type-name variable-name { expression };

type-name ::=

int | double | bool | char | std::string | ...

LECTURE 01-2: INTRO TO C-LIKE C++

GRAMMAR FOR CONDITIONALS, WHILE, UPDATES

conditional ;:=

if (expression) { block}
if (expression) {block} else {block}
if (expression) {block} else if (expression) { block}

if (expression) {block} else if (expression) {block} else {block}

loop ::=

while (expression) { block}

do { block} while (expression) ;

for (statement ; expression ; statement) { block}
update ::=

variable-name operation= expression ;

variable-name++; | variable-name--; | ++variable-name; | --variable-name;

LECTURE 01-2: INTRO TO C-LIKE C++

GRAMMAR FOR EXPRESSIONS

expression ::=
expression binary-operation expression
unary-operation expression
literal-value

variable-name

binary-operation::=+ |- | *| /| s |&& ||| | <]|==]|>|<=]|>=]|!=
unary-operation ::= - | !
literal-value::=3 | 3.14159 | true | "hello" | 'c' | ...

variable-name ::=x | yO| doThis | or_this]| ...

LECTURE 01-2: INTRO TO C-LIKE C++

A FEW THINGS TO TRY

» Install and run the Atom editor.
e Has a GitHub component (an Atom “plug-in“).

e Has a collaboration component.

e Has a ssh/ftp component.
»Try out the on-line C++ system on repl.it
= Link is https://repl.it/languages/cpp
»Login to one of the "dumplings", CS-managed Linux machines:

ssh jimfix@gyoza.reed.edu

LECTURE 01-2: INTRO TO C-LIKE C++

UPCOMING COURSE WORK

» Thursday/tomorrow: Will publish a Homework 01 on the web page.

= A few simple C++ program puzzles.

= Work from my examples, low-pressure assignment.

= Can use repl.it, Atom, dumpling, whatever works.

» Next Tuesday: Lab 02 assignment

= Practice with Unix commands, Git, Unix editing and compilation.

= Will teach you how to obtain & submit assignments from GitHub.

» Next Wednesday: continue with C++

= You can ask ¢

= You can ask o

uestions a

uestions a

nout Homework 01

pout submitting through GitHub

» Next Thursday: Homework 01 due

ANAINVIHIVIAM 10U
expressions

statement ::= var-name

expression; | ...

expression ::=
expression binary-op expression ;
unary-op expression;
(expression)
literal-value
var-name

binary-operation ::= arithmetic | comparison | logical
arithmetic ::=+1*1-1/ 1%

comparison ::===|<I<=[]>1>=] 1=

logical ::=&& | ||

ANAINVIHIVIAM 10U
expressions

statement ::= var-name

expression; | ...

expression ::=
expression binary-op expression ;
unary-op expression;
(expression)
literal-value
var-name

binary-op ::= arithmetic | comparison | logical
arithmetic ::=+1*1-1/13%

comparison ::===|<I<=[]>[]>=] 1=

logical ::=&& | ||

ANAINVIHIVIAM 10U
expressions

statement ::= var-name

expression; | ...

expression ::=
expression binary-op expression ;
unary-op expression;
(expression)
literal-value
var-name

binary-op ::= arithmetic | comparison I logical
arithmetic ::=+1*1-1/ 1%

comparison ::===[<I<=[>]>=1] 1=

logical ::=&& | ||

ANAINVIHIVIAM 10U
expressions

statement ::= var-name

expression; | ...

expression ::=
expression binary-op expression ;
unary-op expression;
(expression)
literal-value
var-name

binary-op ::= arithmetic | comparison I logical
arithmetic ::=+1*1-1/ 1%

comparison ::===[<I<=[>]>=1] 1=

logical ::=&& | ||

ANAINVIHIVIAM 10U
expressions

statement ::= var-name

expression; | ...

expression ::=
expression binary-op expression ;
unary-op expression;
(expression)
literal-value
var-name

literal-value ::= 42 13.14 [truel "hello" | 'A']...

unary-op ::i= - |

ANAIVIIVIANM 1V a U
program

program ::= includes defs main
main ;= int main(void) { block}

block ::= statements

statement ::=
var-name =
var-dec
std: :cout << outs;
std::cin >> var-name ;
return expression ;
conditional
loop
update

expression;

Example: guess.cc

#include <iostream>
#include <ctime> // For time|()
#include <cstdlib> // For srand() and rand()

int main() {
srand(time (0));

int number = (rand() % 100) + 1;

std::cout << "I've chosen a number from 1 to 100. ";
std::cout << "Try to guess what it is.\n";

int guess;
bool success = false;

while (!success) {
... // keep getting guesses and reporting their success

}

std: :cout << "Well done! ;
std: :cout << number << " was the number I chose.\n";

return 0;

Example: guess.cc loop

while (!success) {
std::cin >> guess;
if (guess < number) {
std::cout << "That's too low. Try again.\n";
} else if (guess > number) {
std::cout << "That's too high. Try again.\n";
} else {
success = true;

Example: guess.cc

#include <iostream>
#include <ctime> // For time|()
#include <cstdlib> // For srand() and rand()

int main() {
srand(time (0));

int number = (rand() % 100) + 1;

std::cout << "I've chosen a number from 1 to 100. ";
std::cout << "Try to guess what it is.\n";

int guess;
bool success = false;

while (!success) {
... // keep getting guesses and reporting their success

}

std: :cout << "Well done! ;
std: :cout << number << " was the number I chose.\n";

return 0;

Example: guess.cc loop

while (!success) {
std::cin >> guess;
if (guess < number) {
std::cout << "That's too low. Try again.\n";
} else if (guess > number) {
std::cout << "That's too high. Try again.\n";
} else {
success = true;

1l allu II"LI1oC

e n e AIEMENES. e o sororn

execution of code blocks, driven by certain checks.

- There is an "if' statement

if (condition-to-test) {
statements-to-execute-if-true

}

- There is an "if-else" statement

if (condition-to-test) {
statements-to-execute-if-true

} else {
statements-to-execute-if-false

}

- Note: no semicolon after the brace for these "compound"
statements.

waotlaullly Il
statements

- They can end with just an "if"

if (condition-to-test) {
statements-to-execute-if-true

} else if (some-other-test) {
statements-to-execute-for-this-test

} else if...

} else if (...) {
statements

}

- They can end with an "else"

if (condition-to-test) {
statements-to-execute-if-true

} else if...

} else {
statements

}

Loops!

- Just like in Python, you can use loops to perform iteration, i.e.

repeated execution of a block of code until some condition no
longer holds.

- There is an "while'" statement
while (condition-to-test) {
statements-to-execute-when-true

}

- There is also a "do-while" statement!!!!
do {

statements-to-execute-once-and-continue-by-test-
below

} while (condition-to-test) ;

countUp.cc using while

#include <iostream>
int main() {

int top;
std::cout << "Enter the ending count: ";
std::cin >> top;

int count = 0;

while (count <= top) {
std: :cout << count << "\n";
count = count++;

}

std::cout << "Woo!\n";

return O;

COUIVOWIL.UU Uollly
while

#include <iostream>
int main() {

int top;
std::cout << "Enter the starting count: ";
std::cin >> top;

int count = top;

while (count > 0) {
std: :cout << count << "\n";
count = count--;

}

std::cout << "Woo!\n";

return O;

More C-like using for

#include <iostream>
int main() {

int top;
std: :cout << "Enter the ending count: ";
std::cin >> top;

for (int count = 0; count <= top; count++) {
std::cout << count << "\n";

}

std: :cout << "Woo!\n";

return 0;

More C-like using for

#include <iostream>
int main() {

int top;
std::cout << "Enter the starting count: ";
std::cin >> top;

for (int count = top; count > 0; count--) {
std::cout << count << "\n";

}

std: :cout << "Woo!\n";

return 0;

"for" loop

- Anytime you have a loop like this

initial-statement

while (condition-to-test) {
statements-to-execute-when-true
update-statement

}

- You can write it like below

for (initial-statement ; condition-to-test; update-statement) {
statements-to-execute-when-true

}

ANAIVIIVIANM 1V a U
program

program ::= fundefs main
main ::= int main(void) { block}
block ::= vardefs statements

statement ::=
variable = expression ;
update ;
std: :cout << outs;
std::cin >> in;
return expression ;
conditional
loop

JAN\AIVIIVIANM U U
statements

if (expression) {block}

if (expression) {block} else {block}

if (expression) {block} else if (expression) {block}

if (expression) {block} else if (expression) {block} else
{ block}

loop ::=

while (expression) {block}

do {block} while (expression);

for (statement;expression; statement) {block}

update ::=
variable operation = expression ;
variable ++;
variable --;

Example: guess.cc

#include <iostream>
#include <ctime> // For time|()
#include <cstdlib> // For srand() and rand()

int main() {
srand(time (0));

int number = (rand() % 100) + 1;

std::cout << "I've chosen a number from 1 to 100. ";
std::cout << "Try to guess what it is.\n";

int guess;
bool success = false;

while (!success) {
... // keep getting guesses and reporting their success

}

std: :cout << "Well done! ;
std: :cout << number << " was the number I chose.\n";

return 0;

Example: guess.cc loop

while (!success) {
std::cin >> guess;
if (guess < number) {
std::cout << "That's too low. Try again.\n";
} else if (guess > number) {
std::cout << "That's too high. Try again.\n";
} else {
success = true;

Code with style!

You should start getting in the habit of
...Using comments either /*as blocks*/ or //at line ends
...Indenting nicely to make code readable.
...Using good function/variable names
* In camelCaseForm Or snake case form

...Breaking your code up into meaningful procedures and
functions.

See my guessGame. c for an example, including top comments.

Coming up...

- | will post a Homework 01 for you to accept and start.

+ TAs can help you install XCode or Ubuntu/WSL pn
your machine.

- Next week:

= procedures and functions
= strings, conversions, more on |/O (?)
= structs and arrays

= some general hackery (with & and *)

