
INTRO TO C PROGRAMMING
(USING C++)

LECTURE 01-2

JIM FIX, REED COLLEGE CS2-F20

TODAY
Let’s take a look at some basic C(++) programming

▸Program “anatomy”: main with supporting functions & procedures

▸Program “statements”:

• variables & types, assignment, I/O, if-else, loops, return

No textbook for this, only my notes & examples; references.

•Reading: Stroustrup’s “Tour” Ch1; “PrPrC++ ” Chs 5-6,9-10,12

• (Note: Harvard’s popular “CS50” has notes & tutorials on C)

•My (limited) grammar for C++, along with your knowledge of Python

LECTURE 01-2: INTRO TO C-LIKE C++

ANATOMY OF A C PROGRAM
a preamble of #include lines for needed header files

a procedure or function definition

a procedure or function definition

…

a procedure or function definition

definition of the main function

LECTURE 01-2: INTRO TO C-LIKE C++

EXAMPLE: helloImOut.cc
#include <iostream>

int main(void) {

 std::cout << "Hello, world!\n";
 std::cout << "I must be going...\n";

 return 0;
}

LECTURE 01-2: INTRO TO C-LIKE C++

EXAMPLE: cToF.cc
#include <iostream>

int main(void) {

 int c;
 std::cout << "Enter a temperature in degrees celsius: ";
 std::cin >> c;
 int f = c * 9 / 5 + 32;
 std::cout << "That's " << f << " degrees fahrenheit.\n";

 return 0;
}

LECTURE 01-2: INTRO TO C-LIKE C++

RUNNING A C PROGRAM
▸Python is an interpreted language, you run another program python3 run it.

➡ The command python3 is the Python interpreter. It is a machine executable.

 python3 myProgram.py

▸C code isn't normally run with an interpreter.

▸C programs are compiled using another program, like so:

 g++ -o myProgram myProgram.cc

• The command g++ is a C++ compiler. It is also a machine executable.

• The file named myProgram.cc is a C program's source code.

• The compiler produces a file named myProgram which is a machine executable, too!

▸So, technically speaking, you don't directly run a C program.

LECTURE 01-2: INTRO TO C-LIKE C++

RUNNING A C PROGRAM'S EXECUTABLE
▸A machine executable file is a sequence of bytes.

• These bytes make up the codes of machine-readable instructions.

• They are "written" (by the compiler) in the machine's language.

▸To run a machine executable named myProgram type the command line:

./myProgram

• The ./ is the "file path" to the program (the folder where it lives) .

➡ The notation . here means "this folder that you're working within."

▸NOTE: the fi les myProgram, python3, g++ are all machine executable files.

➡ And they probably all were compiled from C++ source code!

LECTURE 01-2: INTRO TO C-LIKE C++

INSPECTING MACHINE CODE
▸Just for fun, we can use the Unix editor emacs to inspect code:

• If I type the command below, I get to see its bytes.

emacs myProgram

▸You can also write machine code in a machine's assembly language.

▸The C compiler can also write that assembly code for you:

g++ -S myProgram.cc
▸The line above produces a human-readable (well, -ish) file named myProgram.s.

▸This is normally either "x86 code" in either AT&T style, or else Intel style, assembly.

LECTURE 01-2: INTRO TO C-LIKE C++

BACK TO SYNTAX: ANATOMY OF MAIN
▸Every C program has a main function.

▸It must have the form shown below*:

int main(void) {

Sequence of program statements that the program
should perform when run, in order of their execution;
This is called the body of the main function.

 return 0;†
}  

* We’ll later learn how to use parameters argc and argv for main instead of void.

† We’ll at some point learn how to return a non-zero (error) value here.

LECTURE 01-2: INTRO TO C-LIKE C++

PROGRAM STATEMENTS
▸The main function has a body of statements. Example statements include:

➡ A variable declaration e.g. int c;

✦ syntax is type-name variable-name ;

➡A variable assignment e.g. f = c*9/5+32;

✦ syntax is variable-name = expression;

➡Input of a value into a variable from the std::cin input stream

✦ syntax is std::cin >> variable-name;

➡Output of text and values to the std::cout output stream

✦ syntax is std::cout << expression;

➡return of a value. Syntax is return expression;

▸Like Python, there are also conditionals and loops.

LECTURE 01-2: INTRO TO C-LIKE C++

EXAMPLE: guess.cc
#include <iostream>
#include <ctime> // For time()
#include <cstdlib> // For srand() and rand()

int main() {
 srand(time(0));

 int number = (rand() % 100) + 1;
 std::cout << "I've chosen a number from 1 to 100. ";
 std::cout << "Try to guess what it is.\n";

 int guess;
 bool success = false;

 while (!success) {
 ... // keep getting guesses and reporting their success
 }

 std::cout << "Well done! ";
 std::cout << number << " was the number I chose.\n";
 return 0;
}

LECTURE 01-2: INTRO TO C-LIKE C++

EXAMPLE: guess.cc
#include <iostream>
#include <ctime> // For time()
#include <cstdlib> // For srand() and rand()

int main() {
 srand(time(0));

 int number = (rand() % 100) + 1;
 std::cout << "I've chosen a number from 1 to 100. ";
 std::cout << "Try to guess what it is.\n";

 int guess;
 bool success = false;

 while (!success) {
 ... // keep getting guesses and reporting their success
 }

 std::cout << "Well done! ";
 std::cout << number << " was the number I chose.\n";
 return 0;
}

LECTURE 01-2: INTRO TO C-LIKE C++

variable declarations

VARIABLES & TYPES
▸In C++, a variable names a place in memory that stores a value as a sequence of bits/bytes.

▸The representation depends on the type of its data.

• E.g. a char is only one byte, i.e. 8 bits

▸The type int is for integer values. It is four bytes wide, i.e. 32 bits.

➡ values ate -2^31 up to +2^31-1

➡ unsigned int has same length, but values are 0 up to 2^32-1

➡ long has twice the length, eight bytes wide

▸The type double is for floating-point values, i.e. "calculator values"

➡ it uses eight bytes, +/-2.3E-308 to +/-1.7E+308

➡ float is four bytes long, +/-1.2E-38 to +/-3.4E+38, less precision, use double  

▸NOTE: variable use must be consistent, can't mix the use. Strictly enforced.

LECTURE 01-2: INTRO TO C-LIKE C++

EXAMPLE: guess.cc
#include <iostream>
#include <ctime> // For time()
#include <cstdlib> // For srand() and rand()

int main() {
 srand(time(0));

 int number = (rand() % 100) + 1;
 std::cout << "I've chosen a number from 1 to 100. ";
 std::cout << "Try to guess what it is.\n";

 int guess;
 bool success = false;

 while (!success) {
 ... // keep getting guesses and reporting their success
 }

 std::cout << "Well done! ";
 std::cout << number << " was the number I chose.\n";
 return 0;
}

LECTURE 01-2: INTRO TO C-LIKE C++

while loop

EXAMPLE: guess.cc
#include <iostream>
#include <ctime> // For time()
#include <cstdlib> // For srand() and rand()

int main() {
 srand(time(0));

 int number = (rand() % 100) + 1;
 std::cout << "I've chosen a number from 1 to 100. ";
 std::cout << "Try to guess what it is.\n";

 int guess;
 bool success = false;

 while (!success) {
 ... // keep getting guesses and reporting their success
 }

 std::cout << "Well done! ";
 std::cout << number << " was the number I chose.\n";
 return 0;
}

LECTURE 01-2: INTRO TO C-LIKE C++

output statement

EXAMPLE: guess.cc
#include <iostream>
#include <ctime> // For time()
#include <cstdlib> // For srand() and rand()

int main() {
 srand(time(0));

 int number = (rand() % 100) + 1;
 std::cout << "I've chosen a number from 1 to 100. ";
 std::cout << "Try to guess what it is.\n";

 int guess;
 bool success = false;

 while (!success) {
 ... // keep getting guesses and reporting their success
 }

 std::cout << "Well done! ";
 std::cout << number << " was the number I chose.\n";
 return 0;
}

LECTURE 01-2: INTRO TO C-LIKE C++

"includes" list

EXAMPLE: guess.cc
#include <iostream>
#include <ctime> // For time()
#include <cstdlib> // For srand() and rand()

int main() {
 srand(time(0));

 int number = (rand() % 100) + 1;
 std::cout << "I've chosen a number from 1 to 100. ";
 std::cout << "Try to guess what it is.\n";

 int guess;
 bool success = false;

 while (!success) {
 ... // keep getting guesses and reporting their success
 }

 std::cout << "Well done! ";
 std::cout << number << " was the number I chose.\n";
 return 0;
}

LECTURE 01-2: INTRO TO C-LIKE C++

"includes" list

some uses of items defined in the includes

EXAMPLE: guess.cc
#include <iostream>
#include <ctime> // For time()
#include <cstdlib> // For srand() and rand()

int main() {
 srand(time(0));

 int number = (rand() % 100) + 1;
 std::cout << "I've chosen a number from 1 to 100. ";
 std::cout << "Try to guess what it is.\n";

 int guess;
 bool success = false;

 while (!success) {
 ... // keep getting guesses and reporting their success
 }

 std::cout << "Well done! ";
 std::cout << number << " was the number I chose.\n";
 return 0;
}

LECTURE 01-2: INTRO TO C-LIKE C++

EXAMPLE (CONT”D): THE LOOP BODY FOR guess.cc
 while (!success) {
 std::cin >> guess;
 if (guess < number) {
 std::cout << "That's too low. Try again.\n";
 } else if (guess > number) {
 std::cout << "That's too high. Try again.\n";
 } else {
 success = true;
 }
 }

LECTURE 01-2: INTRO TO C-LIKE C++

EXAMPLE (CONT”D): THE LOOP BODY FOR guess.cc
 while (!success) {
 std::cin >> guess;
 if (guess < number) {
 std::cout << "That's too low. Try again.\n";
 } else if (guess > number) {
 std::cout << "That's too high. Try again.\n";
 } else {
 success = true;
 }
 }

LECTURE 01-2: INTRO TO C-LIKE C++

conditional statement

EXAMPLE (CONT”D): THE LOOP BODY FOR guess.cc
 while (!success) {
 std::cin >> guess;
 if (guess < number) {
 std::cout << "That's too low. Try again.\n";
 } else if (guess > number) {
 std::cout << "That's too high. Try again.\n";
 } else {
 success = true;
 }
 }

LECTURE 01-2: INTRO TO C-LIKE C++

input statement

C VS. PYTHON SO FAR
▸A C program is a collection of program components

• It is not a line-by-line, top-to-bottom script.

• Instead, it is a series of declarations.

✦A declaration defines each component: a function, a new type, etc.

•Must have a main function defined amongst its components.

•main is the top-level description of what the program does.

▸C variables have to be explicitly defined before they get used.

• There needs to be a declaration of their type.

•A variable's use has to be uniform in type.

LECTURE 01-2: INTRO TO C-LIKE C++

C VS. PYTHON SO FAR (CONT’D)
▸A C program is not run by an interpreter; it is compiled instead.

•We use g++ -o pgm pgm.cc to make a program named pgm.

▸Whitespace (tabs, spacing, ends of lines) don't matter to C.

•Use braces {} and semicolons ; to structure code.

•We format carefully only for readability.

▸Comments are either

• embedded /* like this */ within a line, or they are

• at the end of a line // like this.

LECTURE 01-2: INTRO TO C-LIKE C++

GRAMMAR FOR C PROGRAMS: FUNCTIONS AND CODE BLOCKS
program ::= function-declarations main

main ::= int main(void) { block }

block ::= variable-declarations statements

statement ::=

variable-name = expression;

std::cin >> variable-name;

std::cout << expression;

conditional

loop

update;

return expression;

LECTURE 01-2: INTRO TO C-LIKE C++

GRAMMAR FOR C PROGRAMS: VARIABLE DECLARATIONS
statement ::=

variable-name = expression;  
...

variable-declaration ::=

type-name variable-name ;

type-name variable-name = expression ;

type-name variable-name { expression };  

type-name ::=

int | double | bool | char | std::string | ...

LECTURE 01-2: INTRO TO C-LIKE C++

GRAMMAR FOR CONDITIONALS, WHILE, UPDATES
conditional ::=

if (expression) { block }  
if (expression) { block } else { block }  
if (expression) { block } else if (expression) { block }

if (expression) { block } else if (expression) { block } else { block }  
…

loop ::=

while (expression) { block }

do { block } while (expression);

for (statement ; expression ; statement) { block }

update ::=

variable-name operation= expression ;

variable-name++; | variable-name--; | ++variable-name; | --variable-name;

LECTURE 01-2: INTRO TO C-LIKE C++

GRAMMAR FOR EXPRESSIONS
expression ::=

expression binary-operation expression

unary-operation expression

literal-value

variable-name  
…

binary-operation ::= + | - | * | / | % | && | || | < | == | > | <= | >= | !=

unary-operation ::= - | !

literal-value ::= 3 | 3.14159 | true | "hello" | 'c' | ...

variable-name ::= x | y0 | doThis | or_this | ...

LECTURE 01-2: INTRO TO C-LIKE C++

A FEW THINGS TO TRY

▸Install and run the Atom editor.

•Has a GitHub component (an Atom "plug-in").

•Has a collaboration component.

•Has a ssh/ftp component.

▸Try out the on-line C++ system on repl.it

➡ Link is https://repl.it/languages/cpp

▸Login to one of the "dumplings", CS-managed Linux machines:

ssh jimfix@gyoza.reed.edu

LECTURE 01-2: INTRO TO C-LIKE C++

UPCOMING COURSE WORK
▸Thursday/tomorrow: Will publish a Homework 01 on the web page.

➡ A few simple C++ program puzzles.

➡ Work from my examples, low-pressure assignment.

➡ Can use repl.it, Atom, dumpling, whatever works.

▸Next Tuesday: Lab 02 assignment

➡ Practice with Unix commands, Git, Unix editing and compilation.

➡ Will teach you how to obtain & submit assignments from GitHub.

▸Next Wednesday: continue with C++

➡ You can ask questions about Homework 01

➡ You can ask questions about submitting through GitHub

▸Next Thursday: Homework 01 due

LECTURE 01-2: INTRO TO C-LIKE C++

GRAMMAR for
expressions

statement ::= var-name = expression; | ...

expression ::=
 expression binary-op expression ;
 unary-op expression;
 (expression)
literal-value %
var-name %

binary-operation ::= arithmetic | comparison | logical
arithmetic ::= + | * | - | / | %
comparison ::= == | < | <= | > | >= | !=
logical ::= && | ||

GRAMMAR for
expressions

statement ::= var-name = expression; | ...

expression ::=
 expression binary-op expression ;
 unary-op expression;
 (expression)
literal-value %
var-name %

binary-op ::= arithmetic | comparison | logical
arithmetic ::= + | * | - | / | %
comparison ::= == | < | <= | > | >= | !=
logical ::= && | ||

GRAMMAR for
expressions

statement ::= var-name = expression; | ...

expression ::=
 expression binary-op expression ;
 unary-op expression;
 (expression)
literal-value %
var-name %

binary-op ::= arithmetic | comparison | logical
arithmetic ::= + | * | - | / | %
comparison ::= == | < | <= | > | >= | !=
logical ::= && | ||

GRAMMAR for
expressions

statement ::= var-name = expression; | ...

expression ::=
 expression binary-op expression ;
 unary-op expression;
 (expression)
literal-value %
var-name %

binary-op ::= arithmetic | comparison | logical
arithmetic ::= + | * | - | / | %
comparison ::= == | < | <= | > | >= | !=
logical ::= && | ||

GRAMMAR for
expressions

statement ::= var-name = expression; | ...

expression ::=
 expression binary-op expression ;
 unary-op expression;
 (expression)
literal-value %
var-name %

literal-value ::= 42 | 3.14 | true | "hello" | 'A'| ...
 
unary-op ::= - | !

GRAMMAR for a C
program

program ::= includes defs main
main ::= int main(void) { block }

block ::= statements

statement ::=
var-name = expression;
var-dec g
std::cout << outs ;
std::cin >> var-name ;
return expression ;
conditional %
loop %
update %

Example: guess.cc
#include <iostream>
#include <ctime> // For time()
#include <cstdlib> // For srand() and rand()

int main() {

 srand(time(0));

 int number = (rand() % 100) + 1;

 std::cout << "I've chosen a number from 1 to 100. ";
 std::cout << "Try to guess what it is.\n";

 int guess;
 bool success = false;

 while (!success) {
 ... // keep getting guesses and reporting their success
 }

 std::cout << "Well done! ";
 std::cout << number << " was the number I chose.\n";

 return 0;
}

Example: guess.cc loop
 while (!success) {
 std::cin >> guess;
 if (guess < number) {
 std::cout << "That's too low. Try again.\n";
 } else if (guess > number) {
 std::cout << "That's too high. Try again.\n";
 } else {
 success = true;
 }
 }

Example: guess.cc
#include <iostream>
#include <ctime> // For time()
#include <cstdlib> // For srand() and rand()

int main() {

 srand(time(0));

 int number = (rand() % 100) + 1;

 std::cout << "I've chosen a number from 1 to 100. ";
 std::cout << "Try to guess what it is.\n";

 int guess;
 bool success = false;

 while (!success) {
 ... // keep getting guesses and reporting their success
 }

 std::cout << "Well done! ";
 std::cout << number << " was the number I chose.\n";

 return 0;
}

Example: guess.cc loop
 while (!success) {
 std::cin >> guess;
 if (guess < number) {
 std::cout << "That's too low. Try again.\n";
 } else if (guess > number) {
 std::cout << "That's too high. Try again.\n";
 } else {
 success = true;
 }
 }

If and If-Else
Statements• Just like in Python, you can use conditional statements to perform

execution of code blocks, driven by certain checks. 

• There is an "if" statement
if(condition-to-test) {

statements-to-execute-if-true
}  

• There is an "if-else" statement
if(condition-to-test) {

statements-to-execute-if-true
} else {

statements-to-execute-if-false
}

• Note: no semicolon after the brace for these "compound"
statements.

"Cascading" if
statements

• They can end with just an "if"
if(condition-to-test) {

statements-to-execute-if-true
} else if (some-other-test) {

statements-to-execute-for-this-test
} else if... 

} else if (...) {
statements

}  

• They can end with an "else"
if(condition-to-test) {

statements-to-execute-if-true
} else if... 

} else {
statements

}

Loops!
• Just like in Python, you can use loops to perform iteration, i.e.

repeated execution of a block of code until some condition no
longer holds. 

• There is an "while" statement
while(condition-to-test) {

statements-to-execute-when-true
}  

• There is also a "do-while" statement!!!!
do {

statements-to-execute-once-and-continue-by-test-
below

} while(condition-to-test);

countUp.cc using while
#include <iostream>

int main() {

 int top;
 std::cout << "Enter the ending count: ";
 std::cin >> top;

 int count = 0;
 while (count <= top) {
 std::cout << count << "\n";
 count = count++;
 }
 std::cout << "Woo!\n";

 return 0;
}

countDown.cc using
while

#include <iostream>

int main() {

 int top;
 std::cout << "Enter the starting count: ";
 std::cin >> top;

 int count = top;
 while (count > 0) {
 std::cout << count << "\n";
 count = count--;
 }
 std::cout << "Woo!\n";

 return 0;
}

More C-like using for
#include <iostream>

int main() {

 int top;
 std::cout << "Enter the ending count: ";
 std::cin >> top;

 for (int count = 0; count <= top; count++) {
 std::cout << count << "\n";
 }
 std::cout << "Woo!\n";

 return 0;
}

More C-like using for
#include <iostream>

int main() {

 int top;
 std::cout << "Enter the starting count: ";
 std::cin >> top;

 for (int count = top; count > 0; count--) {
 std::cout << count << "\n";
 }
 std::cout << "Woo!\n";

 return 0;
}

"for" loop
• Anytime you have a loop like this

initial-statement
while(condition-to-test) {

statements-to-execute-when-true
update-statement

}  

• You can write it like below

for(initial-statement ; condition-to-test; update-statement) {
statements-to-execute-when-true

}
 

GRAMMAR for a C
program

program ::= fundefs main

main ::= int main(void) { block }

block ::= vardefs statements

statement ::=
variable = expression ;
update ;
std::cout << outs ;
std::cin >> in ;
return expression ;
conditional
loop

GRAMMAR for C
statements

conditional ::=
if (expression) {block}
if (expression) {block} else {block}
if (expression) {block} else if (expression) {block}
if (expression) {block} else if (expression) {block} else
{block}
...

loop ::=
while (expression) {block}
do {block} while (expression);
for (statement;expression;statement) {block}

update ::=
 variable operation = expression ;
 variable ++;
 variable --;

Example: guess.cc
#include <iostream>
#include <ctime> // For time()
#include <cstdlib> // For srand() and rand()

int main() {

 srand(time(0));

 int number = (rand() % 100) + 1;

 std::cout << "I've chosen a number from 1 to 100. ";
 std::cout << "Try to guess what it is.\n";

 int guess;
 bool success = false;

 while (!success) {
 ... // keep getting guesses and reporting their success
 }

 std::cout << "Well done! ";
 std::cout << number << " was the number I chose.\n";

 return 0;
}

Example: guess.cc loop
 while (!success) {
 std::cin >> guess;
 if (guess < number) {
 std::cout << "That's too low. Try again.\n";
 } else if (guess > number) {
 std::cout << "That's too high. Try again.\n";
 } else {
 success = true;
 }
 }

Code with style!
You should start getting in the habit of

...Using comments either /*as blocks*/ or //at line ends

...Indenting nicely to make code readable.

...Using good function/variable names

• in camelCaseForm or snake_case_form

...Breaking your code up into meaningful procedures and
functions.

See my guessGame.c for an example, including top comments.

Coming up...
• I will post a Homework 01 for you to accept and start.

• TAs can help you install XCode or Ubuntu/WSL pn
your machine.

• Next week:

➡ procedures and functions

➡ strings, conversions, more on I/O (?)

➡ structs and arrays

➡ some general hackery (with & and *)

