
INTRO TO CS2

LECTURE 1-1A

JIM FIX, REED COLLEGE CS2-F20

LECTURE 1-1A: INTRO TO CS2

WELCOME TO CS2!
▸Today’s plan

•Go over the syllabus at https://jimfix.github.io/csci221

➡Topics, themes, goals, context, assignments

• Introduction to C programming

▸Tomorrow’s plan

• Lab 1: write some simple C programs

▸TO DOs: “Homework 0”

•Get a GitHub account.

• Install C++ and other tools.

COURSE TOPIC #1

Computing systems: from the ground, up

▸work at the bit level to represent data, numbers in binary

▸use transistors to build AND, OR, NOT gates

▸use logic, boolean algebra to devise circuits that process

▸add registers, memory, and a clock to have changeable state

▸devise instructions to control processor and memory state

▸structure instructions into “subroutines”: procedures and functions

▸structure memory as a “call stack” to manage subroutine execution

▸structure data with pointers, make linked structures

LECTURE 1-1A: INTRO TO CS2

A MEANDER THROUGH MY COMPUTING HISTORY

▸I started programming (in BASIC) around 1982 on my cousin's Apple II and
then my own Commodore 64:

LECTURE 1-1A: INTRO TO CS2

MY HISTORY

▸Both built on the 6502, a mid-70s processor

▸65536 bytes of memory (64KB)

▸8-bit architecture, 16-bit addresses

▸1MHz clock

▸~5000 nm features

▸16 mm^2 die

LECTURE 1-1A: INTRO TO CS2

REED’S COMPUTING HISTORY

▸Though there were computers that preceded it, Reed’s computer science
explorations started with its purchase of a DEC PDP 11/70

▸in 1977, ran Berkeley’s Unix, UCB’s version of Bell Labs Unix

▸Students sat at a bunch of terminal consoles in the basement of Eliot Hall, in
“the terminal ward.”

▸(Prof. Richard Crandall and students built a laser network transmitter to tie it
with computer terminals in the Physics building.)

LECTURE 1-1A: INTRO TO CS2

THE PDP 11/70

▸The PDP 11 was the development platform
for C and Unix at Bell Labs

▸16-bit architecture, 18-24 bit addresses

LECTURE 1-1A: INTRO TO CS2

MY (2013) LAPTOP

▸From 2013, based on an Intel Core i7

▸runs OSX 10.11.6, based on Mach OS

▸16 GB of memory, 2.8 GHz clock

▸64-bit architecture, 64-bit addresses

▸1.3 billion transistors

▸181 mm^2

▸22 nm feature size

▸2 cores

▸Picture: similar family, 8 core

LECTURE 1-1A: INTRO TO CS2

PROCESSOR PERFORMANCE SKYROCKETED OVER 40 YEARS

LECTURE 1-1A: INTRO TO CS2

PROCESSOR PERFORMANCE SKYROCKETED OVER 40 YEARS

We hit real
physical limits
here. Need new
techniques for
performance.

LECTURE 1-1A: INTRO TO CS2

PROCESSOR PERFORMANCE SKYROCKETED OVER 40 YEARS

We hit real
physical limits
here. Need new
techniques for
performance.

Parallelism;
concurrency;

 network/cloud
infrastructure.

LECTURE 1-1A: INTRO TO CS2

PARALLEL COMPUTATION: YESTERDAY AND TODAY

▸More of my history: programmed parallel computers in the late 80s

➡BBN Butterfly 64-node computer (Livermore)

➡MasPar MP-2 with 16384 4-bit processors

• These were kitchen appliance-sized machines and cost $1M+.

▸Today’s computers have several processors on a chip

➡normal to buy computer with a 4-core chip;
there are 16-64 core chips available for only 4-16x the price

➡graphics processors (GPUs) have 500-2000 “streaming” processors\

• So there are 80s supercomputers on a single chip, and under $15K!

LECTURE 1-1A: INTRO TO CS2

SYSTEMS FROM YESTERDAY -> TODAY

LECTURE 1-1A: INTRO TO CS2

COURSE TOPIC #1

Computing systems: from the ground, up

▸Through bits, transistors, gates, circuit components, instructions, subroutines,
structured data and code…

Regarding 70s/80s versus 2020 technology:

▸Yes, significant advances in transistor tech and fab, smaller transistor
components with more on a chip, lots of complex execution tricks, much
faster execution, ...

▸BUT despite all these advances, the details haven’t really changed,
at least not in principle, in 40+ years.

LECTURE 1-1A: INTRO TO CS2

IT’S STILL ALL UNDERSTANDABLE
LECTURE 1-1A: INTRO TO CS2

IT’S STILL ALL UNDERSTANDABLE
LECTURE 1-1A: INTRO TO CS2

IT’S STILL ALL UNDERSTANDABLE
LECTURE 1-1A: INTRO TO CS2

COURSE TOPIC #2

An introduction to systems-level programming:

▸machine-level programming of a MIPS 32-bit processor

▸low-level programming in C (w/ explicit pointers)

▸advanced programming in C++ (w/ its STL)

▸introduction to concurrency and network programming

▸a look at careful program resource management

LECTURE 1-1A: INTRO TO CS2

WHY “SYSTEMS-LEVEL” PROGRAMMING

▸Gain intuition for how applications and programs actually run.

➡ There are many beautiful engineering ideas.

▸Provide a framework for talking about performance, efficiency, costs, energy,
etc. and managing memory carefully.

➡ This lays the foundation for CSCI 389 and thus the systems electives.

▸Begin your transition from programmer to “meta-programmer.”

➡You can someday advance our tools and infrastructure, fix
vulnerabilities. Many vulnerabilities are from C, C++.

It can be a challenge, with tricky puzzles. It’s also rich, great fun!

LECTURE 1-1A: INTRO TO CS2

CS2’S PLACE WITHIN THE CS MAJOR

382
A&DS 387

CompComp

CS1

CS2

Networks
OSs

Architecture
Compilers

…

Graphics
AI&ML

Crypto
Adv Algs
Topics

389
Systems

MATH

CORE

ELECTIVES

key:

PLs
Security
Par&Con

LECTURE 1-1A: INTRO TO CS2

CS2’S PLACE WITHIN THE CS MAJOR

382
A&DS 387

CompComp

CS1

CS2

Networks
OSs

Architecture
Compilers

…

Graphics
AI&ML

Crypto
Adv Algs
Topics

389
Systems

MATH

CORE

ELECTIVES

key:

PLs
Security
Par&Con

“SYSTEMS” COURSES

LECTURE 1-1A: INTRO TO CS2

COURSE TOPIC #3

Object-oriented programming in modern C++

▸widely used industrial language

▸requires maturity and sophistication

▸many advanced features: access control, generics with templates, lambdas,
“smart" pointers, …

▸the STL, a rich library of classes

▸learn to develop larger projects with many components

▸an opportunity for apprenticeship

LECTURE 1-1A: INTRO TO CS2

SEMESTER SCHEDULE

▸Weeks 1-4: Intro to C programming; array- & pointer-based data structures

▸Weeks 5-6: Digital logic and processor circuit design

▸Weeks 7-8: MIPS 32-bit processor assembly programming

▸Weeks 9-12: Object-oriented programming in C++ and its STL

▸Weeks 13: multithreading and networking

▸See the syllabus at https://jimfix.github.io/csci221

LECTURE 1-1A: INTRO TO CS2

https://jimfix.github.io/csci221
https://jimfix.github.io/csci221

RESPONSIBILITIES
Programming assignments:

▸A weekly Tuesday lab exercise; short programming problems

•Attempt to complete before Wednesday’s lecture; can collaborate.

•Graded credit/no credit.

▸A weekly homework; a series of programming problems

•Complete before Tuesday’s lab on your own.

•Graded with feedback, plan to hold “code conferences.”

▸3 or 4 longer-term programming projects.

• Examples: parser and compiler; circuit simulator; text analysis.

Exams: two mid-term exams and a comprehensive final.

LECTURE 1-1A: INTRO TO CS2

LOGISTICS: A TYPICAL WEEK IN CS2

▸Monday: introduce a topic

▸Tuesday: exercise topic in a lab assignment; make an earnest attempt

▸Wednesday: continue that topic, driven by questions from lab exercises

▸Thursday: assign homework on topic; due the following Tuesday

▸Next Tuesday: homework due

▸Next Friday: get feedback on that homework

▸Every 3-4 weeks:

•Assign programming new project, due in ~2 weeks.

LECTURE 1-1A: INTRO TO CS2

TEXTS
▸Note: They are all optional. Can find similar references on the web.

▸Bjarne Stroustrup’s C++ texts

▸Lippman’s C++ Primer

▸A few other supplements: some systems texts (see the syllabus)

LECTURE 1-1A: INTRO TO CS2

YOUR TO-DO LIST

Please do the following:

▸Carefully read the syllabus at the course website.

▸Complete by Tuesday, 5pm:

•Get a GitHub account.

• Fill out a course form that I'll share by email tomorrow morning.

• I will add you to our CS2 GitHub classroom Tuesday night.

➡ Look for an email confirmation from me by Wednesday.

▸Attempt to install C++ and Unix tools on your computer.

➡ Look for the Install C++ link under Week 1 of the syllabus.

LECTURE 1-1A: INTRO TO CS2

INITIAL WEEK’S SUMMARY

Monday/Today: overview of the course and syllabus!

Tuesday: lab meeting/Zoom is cancelled; set up Git and C++ on your own.

Wednesday lecture: introduction to C programming

Thursday morning: C programming warm-up as Homework 1

Next Monday: Labor Day; no lecture

Next Tuesday lab: practice using Git; finish C warm-up

Your TO-DOs: Git account; return e-form; try C++ install

LECTURE 1-1A: INTRO TO CS2

