INTRO TO CS2

LECTURE 1-1A

JIM FIX, REED COLLEGE CS2-F20

WELCOME TO CS2!

Today's plan

- Go over the syllabus at https://jimfix.github.io/csci221
 - Topics, themes, goals, context, assignments
- Introduction to C programming

Tomorrow's plan

- Lab 1: write some simple C programs
- TO DOs: "Homework O"
 - Get a GitHub account.
 - Install C++ and other tools.

COURSE TOPIC #1

Computing systems: from the ground, up

- work at the bit level to represent data, numbers in binary
- use transistors to build AND, OR, NOT gates
- use logic, boolean algebra to devise circuits that process
- add registers, memory, and a clock to have changeable state
- devise instructions to control processor and memory state
- structure instructions into "subroutines": procedures and functions
- structure memory as a "call stack" to manage subroutine execution
- structure data with pointers, make linked structures

A MEANDER THROUGH MY COMPUTING HISTORY

I started programming (in BASIC) around 1982 on my cousin's Apple II and then my own Commodore 64:

MY HISTORY

Both built on the 6502, a mid-70s processor

- ▶65536 bytes of memory (64KB)
- ▶ 8-bit architecture, 16-bit addresses
- ▶1MHz clock
- ►~5000 nm features
- ▶16 mm^2 die

REED'S COMPUTING HISTORY

- Though there were computers that preceded it, Reed's computer science explorations started with its purchase of a DEC PDP 11/70
- ▶ in 1977, ran Berkeley's Unix, UCB's version of Bell Labs Unix
- Students sat at a bunch of terminal consoles in the basement of Eliot Hall, in "the terminal ward."
- (Prof. Richard Crandall and students built a laser network transmitter to tie it with computer terminals in the Physics building.)

THE PDP 11/70

The PDP 11 was the development platform for C and Unix at Bell Labs

16-bit architecture, 18-24 bit addresses

MY (2013) LAPTOP

From 2013, based on an Intel Core i7
runs OSX 10.11.6, based on Mach OS
16 GB of memory, 2.8 GHz clock
64-bit architecture, 64-bit addresses
1.3 billion transistors
181 mm^2
22 nm feature size

2 cores

Picture: similar family, 8 core

PROCESSOR PERFORMANCE SKYROCKETED OVER 40 YEARS

PROCESSOR PERFORMANCE SKYROCKETED OVER 40 YEARS

PROCESSOR PERFORMANCE SKYROCKETED OVER 40 YEARS

PARALLEL COMPUTATION: YESTERDAY AND TODAY

More of my history: programmed parallel computers in the late 80s

- BBN Butterfly 64-node computer (Livermore)
- → MasPar MP-2 with 16384 4-bit processors
- These were kitchen appliance-sized machines and cost \$1M+.

Today's computers have several processors on a chip

- normal to buy computer with a 4-core chip;
 - there are 16-64 core chips available for only 4-16x the price
- →graphics processors (GPUs) have 500-2000 "streaming" processors\

• So there are 80s supercomputers on a single chip, and under \$15K!

SYSTEMS FROM YESTERDAY -> TODAY

COURSE TOPIC #1

Computing systems: from the ground, up

Through bits, transistors, gates, circuit components, instructions, subroutines, structured data and code...

Regarding 70s/80s versus 2020 technology:

Yes, significant advances in transistor tech and fab, smaller transistor components with more on a chip, lots of complex execution tricks, much faster execution, ...

BUT despite all these advances, the details haven't really changed, at least not in principle, in 40+ years.

IT'S STILL ALL UNDERSTANDABLE

IT'S STILL ALL UNDERSTANDABLE

IT'S STILL ALL UNDERSTANDABLE

	G ema G ++ G ++ Orac G itH G GitH G CSC M I	Inbo: Q R	eec	C Reed	Make G	Com	GitH	🕽 GitH 🕻	pdp'	∰ C++	😫 (X	+	
\leftarrow	→ C										7	¥ 🕕 🗘	
Ē	COMPILER EXPLORER Add • More •	s	Site	is being upo	dated ×					Share	Other -	Policies -	
C++ source #1 ×					MIPS gcc 5.4 (Editor #1, Compiler #1) C++ X								
A۰	■ Save/Load + Add new ▼ ♥ Vim 🔑 CppInsights	C++	•	N	MIPS gcc 5.4 Compiler options								
1	<pre>// Type your code here, or load an example. #include <stdio.h></stdio.h></pre>			A-									
3									\checkmark			\checkmark	
4	<pre>int main(int argc, char **argv) {</pre>			11010	./a.out	.LX0:	lib.f:	.text	//	\s+	Intel	Demangle	
5				E Libraries	s - + Ad	ld new '	• 🛱 Ado	d tool 🔻					
6	<pre>int f;</pre>			25									
7	<pre>printf("Enter a temperature in degrees fahrenheit: ");</pre>			26		lw	\$2,28(\$1	Fp)				t III.	
8	scant("%0", &t);			27		nop							
10	$rint c = (r - 32) \cdot 5 / 5,$ $rint f("That is %d degrees celsius.\n".c):$			28		addiu	\$3,\$2,-3	32					
11				29		move	\$2,\$3					a spen-	
12	return 0;			30		s11	\$2,\$2,2						
13	}		П	31		addu	\$3,\$2,\$3	3			~ ~		
				32		11	\$2,9	-		#			
				33		bne	\$2,\$0,11	r N					
				35		brook	ې د د د ر ه د 7	2					
				36	1:	UICAK	'						
				37		mfhi	\$2						
				38		mflo	\$2						
				39		SW	\$2,24(\$1	Fp)					
				40		lw	\$5,24(\$1	Fp)					
				41		lui	\$2,%hi(\$	LC2)					
				42		addiu	\$4,\$2,%]	lo(\$LC2)					
				13		451	nnintf						
				C Out	put (0/ <mark>0</mark>)	MIPS gcc	5.4 i - 99	94ms (5490B)					
pdp11-70-front.jpg ^ Pdp11-70.jpg ^ MasPar_GSFC.jpg ^ Haswell-E_8corjpg ^ S											Show All X		

COURSE TOPIC #2

An introduction to systems-level programming:

- machine-level programming of a MIPS 32-bit processor
- Iow-level programming in C (w/ explicit pointers)
- advanced programming in C++ (w/ its STL)
- Introduction to concurrency and network programming
- a look at careful program resource management

WHY "SYSTEMS-LEVEL" PROGRAMMING

Gain intuition for how applications and programs actually run.

- There are many beautiful engineering ideas.
- Provide a framework for talking about performance, efficiency, costs, energy, etc. and managing memory carefully.
 - → This lays the foundation for CSCI 389 and thus the systems electives.

Begin your transition from programmer to "meta-programmer."

➡You can someday advance our tools and infrastructure, fix vulnerabilities. Many vulnerabilities are from C, C++.

It can be a challenge, with tricky puzzles. It's also rich, great fun!

CS2'S PLACE WITHIN THE CS MAJOR

CS2'S PLACE WITHIN THE CS MAJOR

COURSE TOPIC #3

Object-oriented programming in *modern* C++

- widely used industrial language
- requires maturity and sophistication
- many advanced features: access control, generics with templates, lambdas, "smart" pointers, ...
- the STL, a rich library of classes
- learn to develop larger projects with many components
- an opportunity for apprenticeship

SEMESTER SCHEDULE

Weeks 1-4: Intro to C programming; array- & pointer-based data structures
Weeks 5-6: Digital logic and processor circuit design
Weeks 7-8: MIPS 32-bit processor assembly programming
Weeks 9-12: Object-oriented programming in C++ and its STL
Weeks 13: multithreading and networking

See the syllabus at https://jimfix.github.io/csci221

RESPONSIBILITIES

Programming assignments:

- A weekly Tuesday lab exercise; short programming problems
 - Attempt to complete before Wednesday's lecture; can collaborate.
 - Graded credit/no credit.
- A weekly homework; a series of programming problems
 - Complete before Tuesday's lab on your own.
 - Graded with feedback, plan to hold "code conferences."
- ▶ 3 or 4 longer-term programming projects.
 - Examples: parser and compiler; circuit simulator; text analysis.
- **Exams:** two mid-term exams and a comprehensive final.

LOGISTICS: A TYPICAL WEEK IN CS2

- Monday: introduce a topic
- **Tuesday:** exercise topic in a lab assignment; make an earnest attempt
- Wednesday: continue that topic, driven by questions from lab exercises
- Thursday: assign homework on topic; due the following Tuesday
- Next Tuesday: homework due
- Next Friday: get feedback on that homework
- Every 3-4 weeks:
 - Assign programming new project, due in ~2 weeks.

TEXTS

Note: They are all optional. Can find similar references on the web.

Bjarne Stroustrup's C++ texts

Lippman's C++ Primer

A few other supplements: some systems texts (see the syllabus)

YOUR TO-DO LIST

Please do the following:

Carefully read the syllabus at the course website.

- Complete by Tuesday, 5pm:
 - Get a GitHub account.
 - Fill out a course form that I'll share by email tomorrow morning.
 - I will add you to our CS2 GitHub classroom Tuesday night.
 - Look for an email confirmation from me by Wednesday.

Attempt to install C++ and Unix tools on your computer.

→ Look for the Install C++ link under Week 1 of the syllabus.

INITIAL WEEK'S SUMMARY

Monday/Today: overview of the course and syllabus! Tuesday: lab meeting/Zoom is *cancelled*; set up Git and C++ on your own. Wednesday lecture: introduction to C programming Thursday morning: C programming warm-up as Homework 1 Next Monday: Labor Day; *no lecture* Next Tuesday lab: practice using Git; finish C warm-up

Your **TO-DOs:** Git account; return e-form; try C++ install