
Computer Science Fundamentals II

Practice MIDTERM #1

Spring 2020

You will have fifty minutes to complete an exam like this. There are five problems on six pages.
You’ll be asked to write your answers on blank paper that I will provide. Examining the entire
practice exam questions now, I’d say that the exam is collectively harder than an exam I would
normally give, but hopefully they will serve as good practice as each of the problems is like
something I’d expect you to be able to answer on an exam. I’d expect anyone to complete at
least four of these problems in 50 minutes.

You are not to use any resources while completing Friday’s exam. Complete each problem
to the best of your ability. Each problem requests that you devise a program or a fragment of
a program’s code in C++. You should do your best to produce working code—syntactically
correct and runnable—that meets the specification of the problem.

If for some reason you forget some aspect of C++ syntax, your best option is to alert us
to that fact (e.g. ”I can’t remember the operator for integer division in C++; I am using ’//’
to mean that.”) letting us know what you had intended. You may find it useful to include
explanation of your code, or comments, but it’s not necessary that you do so.

You are welcome to write additional functions or other supporting pieces of code that get
used by the code we ask you to write, should you feel the need to do so.

1. Write a C++ function primes that takes a positive integer n and gives back the pointer
of an array of n integers allocated on the heap. That array should hold the first n prime
numbers. The algorithm you use should check primeness by relying on the list of primes
it has generated so far. For example, when fed 6 and if primes has filled the array with
2, 3, 5, 7 so far, then it should determine that 8, 9, and 10 are not prime by only checking
amongst those numbers as possible divisors. When that call completes it should return
the vector with the sequence 2, 3, 5, 7, 11, 13. The function should begin its work by
allocating the array and putting the value 2 in the 0th item of the array. It should then
loop to fill out the remaining n-1 items in the array.

2. The admissions, registrar, and alumni offices are working on new database code, written
in C++, and so they’ve enlisted CS2 students. Give the definition of a struct ReedStudent
that has four pieces of information

• nameTag: a string representing the way that student should be addressed. This string
is normally their common name, such as "Jim Fix".

• status: a string representing their status, one of "first year", "sophomore",
"junior", "senior", or "graduate".

• year: an integer year of school (like, say, 2019) for tracking their progress in Reed’s
courses. This will be the year they arrived if they are a first year, and the year they
last completed a spring semester if they have higher status.

• isTransfer: a boolean of whether or not they were a transfer student.

Using this definition, define a function with the following C++ declaration

ReedStudent attendOneYear(ReedStudent s) { ... }

It should return a ReedStudent struct with some changes to s as follows:

• The returned struct should have an increased status by one year (e.g. a junior be-
comes a senior), unless they are already a graduate. They graduate if they are a
senior.

• It should increase their year by 1, regardless of their status. (Alumni can still attend
classes after they’ve graduated, and so the registrar would like to keep tracking this.)

• Their nameTag should stay the same, unless they are graduating. If they are graduat-
ing then a string should be appended to nameTag, and this is described below.

Changing their name tag: If they graduate with attendOneYear, then their graduating
class year should be appended to their nameTag string. For example, if they graduate
this coming year—that is, they switch from "senior" to "graduate" when their year
changes from 2019 to 2020—then the string appended should be ", B.A. ’20". As
another example, had I been a senior at Reed last year, I would graduate with a call to
attendOneYear, and then my nameTag would read "Jim Fix, B.A. ’19".

To do this appending of the graduation date, you’ll need to call std::to_string to
convert an integer to a string. In using this, it’s okay to assume that their graduation
year is between 2010 and 2099. That is to say: you can assume that the tens digit of their
graduation year is not 0.

3. Draw the stack and heap for the following C program just before it returns 0:

int main() {
int x = 6;
int* y = &x;
int* z = new int[1];
y[0] = 10;
z[0] = x;
x++;
return 0;

}

4. Below are definitions of two C++ structs to define a linked list data structure, one that
stores a collection of integers.

struct node {
int data;
struct node* next;

};

struct {
node* first;

}

Here is a picture of a list of type (llist∗) storing the sequence 〈10, 37, 5〉.

next
data 10list

next
data 37

next
data 5

Recall the design of linked lists, specifically how to navigate their structure. For example,
the value of list->first->data is 10, the value of list->first->next->data is 37,
and the value of list->first->next->next->data is 5. Furthermore, the pointer value
of list->first->next->next->next is equal to nullptr. If instead the list was empty,
then list->first would be nullptr.

Write the C++ code for a function void reverse(LList ∗ list). It should restructure the
nodes of the linked list it is given so that the nodes are linked in an order that is the
reverse of their order before reverse was called. The code should not modify the data

field of the nodes, nor should it allocate any new nodes, nor an array, nor any other
data structure. It can just traverse the list and change each of the next fields of the nodes.

If reverse was called with the linked list depicted above, it would have this structure
upon the function’s return:

next
data 5list

next
data 37

next
data 10

5. A matrix is a two-dimensional array of floating point values. It has a number of rows and
a number of columns. Below left is a picture of a 3 × 4 matrix. A transpose is a flip of a
matrix along its top-left to bottom-right diagonal. The right picture gives the transpose of
the matrix to the left. The rows become the columns, and vice versa.

0.1

0.1

0.4

0.1

0.5

0.6

0.4

0.6

0.8

0.3

0.5

0.7

Fig. A matrix with 3 rows and 4 columns.

0.1 0.1 0.4

0.1 0.5 0.6

0.4 0.6 0.8

0.3 0.5 0.7

Fig. The transpose of that matrix.

Below is the definition of two C++ structs to define a matrix:
struct matrixRow {

double *col;
};

struct matrix {
matrixRow *row;
int rows;
int cols;

};

A matrix struct knows its number of rows and its number of cols. It also has a pointer
row to an array of matrixRow structs. Each matrixRow struct has a pointer col to an array
of double values. The picture at the bottom left of this page shows a matrix struct ∗ m
laid out in heap memory. Note that, for that pictured example, m->row[0].col[3] holds the
value 0.3. The picture at the bottom right of this page shows the transpose of the matrix.
For it, mt->row[3].col[0] holds the value 0.3 instead.

Write a C++ function matrix ∗ transpose(matrix ∗ m) that creates a new matrix object
with a new array of rows, and where each row is a new array of doubles. It should return
a pointer to this new matrix, and that matrix should be the transpose of the matrix m.

0.1 0.1 0.4 0.3

0.1 0.5 0.6 0.5

0.4 0.6 0.8 0.7

row

rows 3

m

cols 4

col
col
col

[0] [1] [2] [3]

[0] [1] [2] [3]

[0] [1] [2] [3]
[0]

[1]

[2]

Fig. A matrix ∗ m.

row

rows 4

mt

cols 3

col
col
col

[0] [1] [2]

[0] [1] [2]

[0] [1] [2]

[3]

[0]

[1]

[2]

col

0.1 0.1 0.4

0.1 0.5 0.6

0.4 0.6 0.8

[0] [1] [2]

0.3 0.5 0.7

Fig. A matrix ∗ mt = transpose(m).

