Computer Science Fundamentals II
Practice Final Exam

Fall 2020

This document contains an example of the number, kind, and mix of problems that you
should expect on this semester’s final exam held on December 15, 1-5pm.

Several problems have you write MIPS assembly code. Here is a summary of relevant
parts of its instruction set:

MIPS32 coding guide:
1i $RD, value
1w $RD, ($RS)
sw $RS, ($RD)
add $RD, $RS1, $RS2,
sub $RD, $RS1, $RS2,
addi $RD, $RS, value
andi $RD, $RS, value
s11 $RD, $RS, positions
srl $RD, $RS, positions
sra $RD, $RS, positions
move $RD, $RS
jal label
jr $RT
b label
blt $RS1, $RS2, label
bltz $RS, label
gt, le, ge, eq, ne

—loads an immediate value into a register.

—loads a word from memory at an address specified in a register.
—stores register’s word into memory at an address specified in a register.
—add two registers, storing the sum in another.

—subtract two registers, storing the difference in a third.

—add a value to a register, storing the sum in another.

—compute the bitwise AND of a register with a value.

—shift a register’s bits left, storing the result in another.

—shift a register’s bits right, storing the result in another.

—same, but preserves the sign bit.

—copy a register’s value to another.

—jump to a labelled line, saving the return address.

—jump to a line according to a register.

—jump to a labelled line.

—jump to a labelled line if one register’s value is less than another.
—jump to a labelled line if a register’s value is less than zero.
—other conditions than 1t

The registers you can access are named $v0-v1, $a0-a3, $t0-t9, $s0-s7, $sp, $fp, and $ra.

1. Letrgp_q:---

gl

r1 : ro be the bits of a k-bit register that stores the two’s comple-

ment encoding of some integer. Assume that k is an even number.

(a) Suppose I tell you that the first k£ /2 bits are 0. What does that tell you about the
integer value held by that register? What'’s the range of possible values it could
hold? If it helps, tell me your answer assuming & is 8. This would mean that
the leftmost 4 bits are 0000.

(b)

Suppose I tell you that the first k/2 bits are 1. What does that tell you about the

integer value held by that register? What'’s the range of possible values it could
hold? If it helps, tell me your answer assuming & is 8. This would mean that
the leftmost 4 bits are 1111.

Suppose k£ = 8 and suppose that the register holds a value in the range -4 to

3, inclusive. (That is, it’s not smaller than -4 and it’s not larger than 3.) Give a
boolean expression on the bits 7; for the condition that the register’s value is in
that range. That expression should use only AND, OR, and NOT.

2. Consider the circuit for a “3-MUX”". This circuit has three input “lines” /1, {3, and {3
along with a two ”select” inputs s; and sg. If s1 : 59 are 01, then the circuit should
output ¢;. If s1 : 59 are 10, then the circuit should output ¢5. If s1 : 59 are 11, then the
circuit should output ¢3. If the select lines are both 0, it should just output a 0.

Give the boolean expression for a 3-MUX circuit’s output behavior. In devising that
formula ask yourself the question "What are the conditions that make the circuit
output a 1?” Do not build a 32-row truth table.

3. Consider building the next state logic for a finite state machine that processes a se-
quence of 1s and 0Os. Its input bit is named b, and its state bits are named s; and so.
State bit s; is set to 0 if the machine has seen a sequence with an even number of 1s.
s1 is set to 1 if the machine has seen a sequence with an odd number of 1s. State bit
s¢ is set to 0 if the machine has seen a sequence with an even number of Os. sq is set
to 1 if the machine has seen a sequence with an odd number of Os.

Thus, initially, the machine is in the state 00 because it has seen no 1s and no 0s.
And, after the machine has seen the sequence of bits 01101, then the machine is in
state 10 because it has seen three 1s (an odd number) and two 0Os (an even number)..
Processing 01101 it goes through the state transitions

00301511501 %005 10

Devise the truth table for the next state logic for this machine. When faced with the
next input bit b when in state s; : so, the machine transitions to state s} : s;. Give
the boolean expression for s} and s{, in terms of b, s1, and so.

4. Write a snippet of MIPS32 assembly that scans through an array of 32-bit integers
that start at the memory address stored in register a0. It can assume that the length
of the array, that is, the number of items in that array, is stored in register al. By the
end of the code, the register vO should be set to 1 if the last item in the array equals
the sum of all the other items in the array. It should be set to 0 otherwise.

5. The Collatz sequence for n > 0 is defined as follows: when n is even, the next number
in the sequence is n/2. When n is odd, the next number in the sequence is 3n + 1.
The sequence ends when the number is 1. The numbers 13, 40, 20, 10, 5, 16, 8,4, 2,1
demonstrate that the Collatz sequence for 13 is length 10. Here is Python code that
computes the length of an integer’s Collatz sequence:

def collatzLength (n):

length =1
while n > 1:
if n%2 == 0:
n=n//2
else:

n = 3*n+1
length = length + 1
return length
v = int (input ())
vlen = collatzLength (v)
print (vlen)

Write MIPS code that behaves the same as this Python program. This should include
a section of MIPS code labelled as collatzLength that is a function that takes an
integer argument and returns an integer result. Have main call that function with
an input and print the result. Recall that the calling conventions have you pass the
argument in register a0 and return the result in v0. Since the call is a leaf call, and
nothing from main needs to be preserved, you need not save anything onto the stack
frame.

Recall that getting an integer input is system call 1 and printing an integer is system
call 5. (You do not need to print a newline character after output of the Collatz
sequence length.)

. Below we invent a C++ class Vehicle. Vehicles drive around on a flat surface with
a series of straight-line paths. They have a position that’s specified by = and y coor-
dinates, a size of gas tank (in gallons), a current amount of gas, and a fuel efficiency
(in miles per gallon). Their constructor takes these four pieces of information. The
instance variables should not be accessible to any clients of the class or to any
methods of its derived subclasses.

Vehicles support four methods:

* setPosition: this puts a vehicle at a new location by setting its = and y co-
ordinates to ones specified as arguments to the method. This method should
not be accessible to clients but should be accessible to the methods of derived
subclasses.

* distanceTo: This computes and returns the Euclidean distance from the Ve-
hicle’s position to a position given as coordinates to the method. This method
should not be be accessible to any client code or to methods of derived sub-
classes. Recall that the distance between two positions (z1,y1) and (x2, y2) is
given by the formula:

V(@2 —21)? + (12 — y1)?
You can call the C++ function std: : sqrt to compute the square root here.

* gasRemaining: Returns the amount of gas remaining in the fuel tank. This
should be accessible to clients.

* driveTo: this places a vehicle at a new location by setting its and y coordi-
nates to ones specified to the method. But it should only do that if the amount
of gas in the gas tank allows it to make that trip. It should return true if it
makes the trip and false if it does not. This should be accessible to clients
and methods of derived subclasses.

(a) Give the class definition of Vehicle. In that definition, mark any instance
variables as const and mark any methods as const appropriately. You need
not mark any method arguments as const.

(b) Give the implementation of each method, separately from the class definition.
They should employ other methods when appropriate.

7. Consider the following C++ definition of a struct that serves as a linked list node for
a sequence of digits:

struct DigitNode {
int digit;
struct DigitNodex next;

}i

Consider the following class specification:

class DigitSequence {
private:

DigitNodex digits;
public:

DigitSequence (void) ;

void increment (void) ;
void decrement (void)

4

"DigitSequence (void) ;

}i

It is meant to represent a sequence of digits of a non-negative integer as a linked

list.

The first node referenced by the pointer digits contains the least significant

digit. The last node contains the most significant digit. The number 537 would
be represented as a linked list with three nodes, the first containing 7, the second
containing 3, and the last containing 5. Here is a picture of the representation of 537:

A‘ui*s m\
E,

ph
N\

Note that the single-digit integers 0 through 9 have just one linked list node with
that single digit.

Write each of the four methods according to the specs below.

The first method DigitSequence is the constructor. It should build a linked list
containing the single digit 0.

The second method increment is a method that adds one to the number coded
by the digit sequence. If that number happens to contain a sequence of 9 digits,
for example 9999, then increment will have to change all the 9s to 0Os and then
allocate and link a new node containing the digit 1 to the end of the linked list.

The third method decrement subtracts one from the number coded by the digit
sequence, if the number is greater than 0. If it is 0, nothing is changed. If
the digit sequence encodes a positive power of 10, for example 10000, then
decrement will have to change all the Os to 9s and remove the node at the end
containing the digit 1. It should delete that node.

The fourth method "DigitSequence is the destructor. It should give all the
nodes that it has allocated back to the heap using delete.

4

8. For the code below, give the output of the program when it runs. The code may
have bugs that make it crash. When that happens, indicate what caused the crash.

#include <iostream>
finclude <string>

class A {
public:

int num;

std::string name;

void print () { std::cout << name << ":" << num << std::endl; }
}i

void funcl (Ax px) {

px—>num = 3;

void func2 (A x) {
x.num = 21;
x.print () ;

int main (void) {

Ax pa = new A{ 108, "Nick" };
Ax paz2 = pa;
A a = *xpa;

pa->print ();
paz->print () ;
a.print () ;

paz2->name = "Erika";
pa->print () ;
paz2->print () ;
a.print () ;

funcl (pa) ;
pa->print () ;
paz2->print () ;
a.print () ;

func?2 (xpa) ;
pa—->print ();
paz2->print () ;
a.print () ;

delete pa;
delete pa2;

9. For this problem, you will write several C++ functions named sort 3 that each have
access to three values, rearranging them to be the minimum, the median, and max-
imum. For example of their use, suppose we have the start of a body of C++ code
with these three declarations:

int 1 = 13;
int jJ
int k

([
o« U1
~ o~

If after these lines sort 3 is called appropriately in a single line of code, the resulting
values of i, j, and k should be 5, 8, and 13, respectively.

(a) Write a first version of sort 3 that uses the C++ feature of passing arguments
by reference to do its work. Give the code for calling this sort3 to modify i,
3, and k.

(b) Write a second version of sort3 that expects the addresses of the variables
i, j, and k and then does the appropriate work on the contents of memory
referenced by these three pointers to sort them in order. Give the code for
calling this sort 3 to modify i, j, and k.

(c) For a third version of sort 3, we invent a struct type called Triple. Define the
function sort 3 that takes a Triple and rearranges the three values. Give the
call to sort3, passing it an appropriately Triple to do that work on i, j, and
k. When it returns they should be 5, 8, and 13, respectively. Give the definition
of the struct Triple required to make this all work.

