
LAST DETAILS;
OH, AND QUICKSORT

LECTURE 13-1

JIM FIX, REED COLLEGE CSCI 121

▸Today: our last lecture(!!!)
•Because of lab timing, I never finished covering sorting algorithms.
➡ We will (quickly) look at quick sort.

•Also, I want to give a quick overview of the CS major.
•And then I want to reserve time for course evaluations.
▸Project 4:
• The completed project is due Friday, May 2nd, 11:59pm.
➡ Please, please, please make a list of mods, with points, tallying a total.

• I will run upstairs after lecture to field questions in my office.
▸Final Exam:

➡ Thursday, May 15th, 1-4pm, Library 204 (here).

COURSE INFO
LECTURE 13-1: SORTING

Details:
➡ Thursday, May 15th, 1-4pm, Library 204.

▸Closed book, closed note, closed computer
▸Written answers, similar to quizzes and midterms
▸3 hours long
▸Usually 8-10 quiz-length questions; about two midterms
▸Comprehensive; covers all the material (see next slide).

Preparation:
▸I will post a practice exam during reading week.
▸I will post my solutions to these by the end of reading week.

FINAL EXAM
LECTURE 13-1: SORTING

▸scripting with input and print
▸variables and assignment
▸integer arithmetic, % and //, integer comparisons, boolean connectives
▸strings and string operations
▸conditional statements and loops
▸function definitions
▸printing versus returning, the None value
▸lists and dictionaries
▸object-orientation and inheritance
▸linked lists and binary search trees
▸sorting and searching, efficiency and running time
▸higher-order functions and lambda
▸recursive functions
▸file I/O and error handling

COURSE TOPICS
LECTURE 13-1: SORTING

▸CSCI 221 : CS Fundamentals II
• low level computer details
➡ digital logic and circuits
➡ processor machine language
➡ program memory layout: registers, stack, heap
➡ pointers/addresses

• "industrial" level programming in C/C++
➡ object-oriented language with "template" classes
➡ sophisticated memory management
➡ rich, complicated "standard template" library

•more coding: short programs and larger projects
•more experience using programmer tools: Unix, git, debuggers, profilers

NEXT COURSES
LECTURE 13-1: SORTING

▸MATH/CSCI 382 : Algorithms & Data Structures
• careful, mathematical treatment of coding
• runtime analysis; revisit sorting and searching
• lots of nifty data structures
• lots of nifty algorithms and their applications:
➡ network/graph analysis

▸Requires MATH 112: Intro to Analysis
➡ teaches you to make careful mathematical arguments

▸Requires MATH 113: Discrete Structures
➡ teaches you "computer science" mathematics
➡ develops problem-solving skills
➡ more mathematical proofs, different than MATH 112

NEXT COURSES (CONT'D)
LECTURE 13-1: SORTING

THE CS MAJOR AT A GLANCE

▸Three entry points: CS1, CS2

▸Three core requirements: A & DS, "Comp Comp", Systems

▸Four or more advanced electives from a rotating menu.

•ML, PLs, CG, Security, Arch, Networks, Crypto, Topics in ..., Ethics & PP, ...

CS MAJOR

THE CS MAJOR AT A GLANCE

▸Three entry points: CS1, CS2

▸Three core requirements: A & DS, "Comp Comp", Systems

▸Four or more advanced electives from a rotating menu including

•ML, PLs, CG, Security, Arch, Networks, Crypto, Topics in ..., Ethics & PP, ...

CS1

CS2

CSCI

CS MAJOR

THE CS MAJOR AT A GLANCE

▸Three entry points: CS1, CS2

▸Three core requirements: A & DS, "Comp Comp", Systems

▸Four or more advanced electives from a rotating menu including

•ML, PLs, CG, Security, Arch, Networks, Crypto, Topics in ..., Ethics & PP, ...

CS1

CS2

ALGORITHMS
COMP2 SYSTEMS

CSCI

CS MAJOR

THE CS MAJOR AT A GLANCE

▸Three entry points: CS1, CS1+, CS2

▸Three core requirements: A & DS, "Comp Comp", Systems

▸Four or more advanced electives from a rotating menu including

•ML, PLs, CG, Security, Arch, Networks, Crypto, Topics in ..., Ethics & PP, ...

CS1

CS2

ALGORITHMS
COMP2 SYSTEMS

CRYPTO
THEORY
...

PL
P&C
SECURITY

NETWORKS
ADV ARCH
OS
...

ML
CG

CSCI

ETHICS&PP
FAIRNESS

CS MAJOR

THE CS MAJOR AT A GLANCE

▸Three entry points: CS1, CS1+, CS2

▸Three core requirements: A & DS, "Comp Comp", Systems

▸Four or more advanced electives from a rotating menu including

•ML, PLs, CG, Security, Arch, Networks, Crypto, Topics in ..., Ethics & PP, ...

CS1

CS2DISCRETE

CALCULUS
ANALYSIS
LINEAR

ALGORITHMS
COMP2 SYSTEMS

CRYPTO
THEORY
...

PL
AI
P&C

NETWORKS
ADV ARCH
OS
...

ML
CG

MATH CSCI

ETHICS & PP▸MATH plays a critical role.

CS MAJOR

▸A sorting algorithm that partitions then recursively sorts.
def quicksort(someList):
 if len(someList) == 0:
 # It's already sorted! BASE CASE.
 return []
 else:
 smaller,pivot,larger = partition(someList)
 smallerSorted = quicksort(smaller)
 largerSorted = quicksort(larger)
 return smallerSorted + [pivot] + largerSorted

QUICKSORT
LECTURE 13-1: SORTING

▸Here is the code for partitioning a list:
def partition(someList):
 smallers = []
 pivot = someList[0] # pick some value from the list
 largers = []
 for x in someList[1:]:
 if x <= pivot:
 smallers.append(x)
 else:
 largers.append(x)
 return smallers, pivot, largers

PARTITIONING A LIST "AROUND" A PIVOT VALUE
LECTURE 13-1: SORTING

▸Here is the code for partitioning a list:
def partition(someList):
 smallers = []
 pivot = someList[0] # pick some value from the list
 largers = []
 for x in someList[1:]:
 if x <= pivot:
 smallers.append(x)
 else:
 largers.append(x)
 return smallers, pivot, largers

▸This always picks the left element as the pivot. Other pivot choices:

• Find the median.

•Pick a random element.

•Choose the median of the left, middle, and right.

PARTITIONING A LIST "AROUND" A PIVOT VALUE
LECTURE 13-1: SORTING

▸Here is the code for partitioning a list:
def partition(someList):
 smallers = []
 pivot = someList[0] # pick some value from the list
 largers = []
 for x in someList[1:]:
 if x <= pivot:
 smallers.append(x)
 else:
 largers.append(x)
 return smallers, pivot, largers

▸This always picks the left element as the pivot. Other pivot choices:

• Find the median. Ideal, but expensive.

•Pick a random element. Good, but has some overhead.

•Choose the median of the left, middle, and right. Usually good enough.

PARTITION
LECTURE 13-1: SORTING

ANIMATION OF QUICKSORT
LECTURE 13-1: SORTING

A BAD CASE FOR QUICKSORT
LECTURE 13-1: SORTING

PROBALISTIC ANALYSIS OF QUICKSORT
LECTURE 13-1: SORTING

CAN WE DO BETTER THAN THETA(N LOG(N))?
LECTURE 13-1: SORTING

▸Sorting a list makes information retrieval faster:
• can use binary search to check membership in O(log2(n)) time.

▸"First try" sorting algorithms typically sort in quadratic time.
•bubble sort, insertion sort, selection sort, etc.
• They essentially (in the worst case) compare every item to every other.
• This means they might perform 1 + 2 + 3 + ... + (n-1) comparisons.
➡ That sum is n (n-1) / 2 and so that leads to Θ(n2) comparisons.

▸Faster sorts use recursion:
•Merge sort sorts in Θ(n log2(n)) time.
•Quick sort typically sorts in Θ(n log2(n)) time.

✦With bad pivot choices, can take Θ(n2) time. Can be avoided with randomness.
•Can’t do better than Θ(n log2(n)) time if comparison-based.

SORTING AND SEARCHING SUMMARY
LECTURE 13-1: SORTING

COURSE EVALUATIONS
LECTURE 13-1: SORTING

FACULTY EVALUATION INSTRUCTIONS

• Step 1: Open up this course on Moodle

• Step 2: Click on “Course Evaluations” link (under the ‘General’
category at the top of the page)

• A new Moodle page opens that looks like this:

Step 3: Click top link to fill out a survey and provide
feedback. (Survey results go to me and the college,

feedback only goes to me.)

Step 4: Click bottom link to give
feedback to the Committee on
Advancement and Tenure (I do

not see this.)

