
LAST DETAILS;
SORTING

LECTURE 13-1

JIM FIX, REED COLLEGE CSCI 121

▸Tomorrow: no lab meeting; Reed follows a Thursday schedule.
▸Wednesday: no lecture; Reed follows a Friday schedule.
▸Today: our last lecture(!!!)

➡ Because we missed last Monday, we will finish our discussion of
algorithmic efficiency by looking at a few sorting algorithms.

▸Project 4:
➡ completed project due Tuesday, December 13th.

▸Final Exam:
➡ Thursday, December 15th, 1-5pm.

▸Review Session:
➡ Tuesday, December 13th. Room and time TBD.

COURSE INFO
LECTURE 13-1: SORTING

Details:
➡ Thursday, December 15th, 1-4pm.

▸closed book, closed note, closed computer
▸written answers, similar to quizzes
▸4 hours long but designed to be 3 hours in length.
▸usually 8-10 quiz-length questions
▸comprehensive; covers all the material (see next slide)

Preparation:
➡ review session Tuesday, December 13th, Room and time TBD.

▸I will post a practice exam by the end of this week.
▸I will post my solutions to these next Monday.
▸I can review them in next Tuesday's review session

FINAL EXAM
LECTURE 13-1: SORTING

▸scripting with input and print
▸variables and assignment
▸integer arithmetic, boolean connectives, integer comparisons
▸strings and string operations
▸integer division using% and //
▸printing versus returning, the None value
▸conditional statements and loops
▸function definitions
▸lists and dictionaries
▸object-orientation and inheritance
▸linked lists and binary search trees
▸sorting and searching
▸higher-order functions and lambda
▸recursive functions

COURSE TOPICS
LECTURE 13-1: SORTING

▸CSCI 221 : CS Fundamentals II
• low level computer details
➡ digital logic and circuits
➡ processor machine language
➡ program memory layout: registers, stack, heap
➡ pointers/addresses

• "industrial" level programming in C/C++
➡ object-oriented language with "template" classes
➡ sophisticated memory management
➡ rich, complicated "standard template" library

•more coding: short programs and larger projects
•more experience using programmer tools: Unix, git, debuggers, profilers

NEXT COURSES
LECTURE 13-1: SORTING

▸MATH/CSCI 382 : Algorithms & Data Structures
• careful, mathematical treatment of coding
• runtime analysis; revisit sorting and searching
• lots of nifty data structures
• lots of nifty algorithms and their applications:
➡ network/graph analysis

▸Requires MATH 112: Intro to Analysis
➡ teaches you to make careful mathematical arguments

▸Requires MATH 113: Discrete Structures
➡ teaches you "computer science" mathematics
➡ develops problem-solving skills
➡ more mathematical proofs, different than MATH 112

NEXT COURSES (CONT'D)
LECTURE 13-1: SORTING

THE CS MAJOR AT A GLANCE

▸Three entry points: CS1, CS1+, CS2

▸Three core requirements: A & DS, "Comp Comp", Systems

▸Four or more advanced electives from a rotating menu.

•OSs, AI, CG, ML, PLs, Networks, Crypto, Topics in ..., Ethics & PP, ...

CS INFO SESSION

THE CS MAJOR AT A GLANCE

▸Three entry points: CS1, CS1+, CS2

▸Three core requirements: A & DS, "Comp Comp", Systems

▸Four or more advanced electives from a rotating menu including

•OSs, AI, CG, ML, PLs, Networks, Crypto, Topics in ..., Ethics & PP, ...

CS1 OR 1+

CS2

CSCI

CS INFO SESSION

THE CS MAJOR AT A GLANCE

▸Three entry points: CS1, CS1+, CS2

▸Three core requirements: A & DS, "Comp Comp", Systems

▸Four or more advanced electives from a rotating menu including

•OSs, AI, CG, ML, PLs, Networks, Crypto, Topics in ..., Ethics & PP, ...

CS1

CS2

ALGORITHMS
COMP2 SYSTEMS

CSCI

CS INFO SESSION

THE CS MAJOR AT A GLANCE

▸Three entry points: CS1, CS1+, CS2

▸Three core requirements: A & DS, "Comp Comp", Systems

▸Four or more advanced electives from a rotating menu including

•OSs, AI, CG, ML, PLs, Networks, Crypto, Topics in ..., Ethics & PP, ...

CS1

CS2

ALGORITHMS
COMP2 SYSTEMS

CRYPTO
THEORY
...

PL
AI
P&C

NETWORKS
ADV ARCH
OS
...

ML
CG

CSCI

ETHICS &
PP

CS INFO SESSION

THE CS MAJOR AT A GLANCE

▸Three entry points: CS1, CS1+, CS2

▸Three core requirements: A & DS, "Comp Comp", Systems

▸Four or more advanced electives from a rotating menu including

•OSs, AI, CG, ML, PLs, Networks, Crypto, Topics in ..., Ethics & PP, ...

CS1

CS2DISCRETE

CALCULUS
ANALYSIS
LINEAR

ALGORITHMS
COMP2 SYSTEMS

CRYPTO
THEORY
...

PL
AI
P&C

NETWORKS
ADV ARCH
OS
...

ML
CG

MATH CSCI

ETHICS & PP▸MATH plays a critical role.

CS INFO SESSION

RECALL: SELECTION SORT
LECTURE 13-1: SORTING

CASE STUDY: BUBBLE SORT
LECTURE 13-1: SORTING

▸With bubble sort we make several left-to-right scans over the list.

•We swap out-of-order values at neighboring locations

• This “bubbles up” larger values so they “rise” to the right.

def bubbleSort(aList):  
 n = len(aList)  
 for scan in range(1,n):  
 i = 0  
 while i < n - scan:  
 if aList[i+1] < aList[i]: # Out of order? Swap! 
 aList[i],aList[i+1] = aList[i+1],aList[i]  
 i += 1

BUBBLE SORT
LECTURE 13-1: SORTING

▸With bubble sort we make several left-to-right scans over the list.

•We swap out-of-order values at neighboring locations

• This “bubbles up” larger values so they “rise” to the right.

def bubbleSort(aList):  
 n = len(aList)  
 for scan in range(1,n):  
 i = 0  
 while i < n - scan:  
 if aList[i+1] < aList[i]: #swap?  
 aList[i],aList[i+1] = aList[i+1],aList[i]  
 i += 1  

▸This means we only need to make n -1 scans.

BUBBLE SORT
LECTURE 13-1: SORTING

▸With bubble sort we make several left-to-right scans over the list.

•We swap out-of-order values at neighboring locations

• This “bubbles up” larger values so they “rise” to the right.

def bubbleSort(aList):  
 n = len(aList)  
 for scan in range(1,n):  
 i = 0  
 while i < n - scan:  
 if aList[i+1] < aList[i]: #swap?  
 aList[i],aList[i+1] = aList[i+1],aList[i]  
 i += 1  

▸This means we only need to make n -1 scans.

▸This means we can stop the scan earlier for later passes.

BUBBLE SORT
LECTURE 13-1: SORTING

▸What is the running time of bubble sort?
def bubbleSort(aList):  
 n = len(aList)  
 for scan in range(1,n):  
 i = 0  
 while i < n - scan:  
 if aList[i+1] < aList[i]:  
 aList[i],aList[i+1] = aList[i+1],aList[i] 
 i += 1

The if statement runs n - 1 times on the first scan, then n - 2 times on the
second scan, then n - 3 times on the third scan, …

BUBBLE SORT ANALYSIS
LECTURE 13-1: SORTING

▸What is the running time of bubble sort?
def bubbleSort(aList):  
 n = len(aList)  
 for scan in range(1,n):  
 i = 0  
 while i < n - scan:  
 if aList[i+1] < aList[i]:  
 aList[i],aList[i+1] = aList[i+1],aList[i] 
 i += 1

The if statement runs n - 1 times on the first scan, then n - 2 times on the
second scan, then n - 3 times on the third scan, …

➡ The total number of swaps is
n (n - 1) / 2 = (n - 1) + (n - 2) + … + 3 + 2 + 1

▸Its running time scales quadratically with n.

BUBBLE SORT ANALYSIS
LECTURE 13-1: SORTING

▸Suppose we have two sorted lists, how do we combine their data into one?

MERGING SORTED LISTS
LECTURE 13-1: SORTING

▸Here is a procedure that "merges" two sorted lists into one:
def merge(list1, list2):  
 list = []
 index1 = 0
 index2 = 0
 n = len(list1) + len(list2)  
 for index in range(n):  
 if list1[index1] <= list2[index2]:
 list.append(list1[index1])
 index1 += 1
 else:
 list.append(list2[index2])
 index2 += 1
 return list

MERGE
LECTURE 13-1: SORTING

▸Here is a procedure that "merges" two sorted lists into one:
def merge(list1, list2):  
 list = []
 index1 = 0
 index2 = 0
 n = len(list1) + len(list2)  
 for index in range(n):  
 if list1[index1] <= list2[index2]:
 list.append(list1[index1])
 index1 += 1
 else:
 list.append(list2[index2])
 index2 += 1
 return list  

▸WHOOPS! we might have exhausted list1 or list2

➡ index1 could be len(list1) or index2 could be len(list2)
...This leads to a list indexing error!

BAD MERGE
LECTURE 13-1: SORTING

▸Here is a procedure that "merges" two sorted lists into one:
def merge(list1, list2):  
 list = []
 index1 = 0
 index2 = 0
 n = len(list1) + len(list2)  
 for index in range(n):  
 if index2 >= len(list2):
 list.append(list1[index1])
 index1 += 1
 elif index1 >= len(list1):
 list.append(list2[index2])
 index2 += 1
 elif list1[index1] <= list2[index2]:
 list.append(list1[index1])
 index1 += 1
 else:
 list.append(list2[index2])
 index2 += 1
 return list

MERGE (FIXED)
LECTURE 13-1: SORTING

▸Can we use this as part of a sorting algorithm?

A RECURSIVE SORTING ALGORITHM
LECTURE 13-1: SORTING

▸A recursive sorting algorithm that uses merge.
def mergeSort(someList):
 if len(someList) <= 1:
 # It's already sorted! BASE CASE.
 return someList
 else:
 # It's larger and needs more work. RECURSIVE CASE.
 n = len(someList)
 # Split into two halves.  
 list1 = someList[:n//2]
 list2 = someList[n//2:]
 # Sort each half.
 sorted1 = mergeSort(list1)
 sorted2 = mergeSort(list2)
 # Combine them with merge.
 return merge(sorted1, sorted2)

MERGESORT
LECTURE 13-1: SORTING

▸A recursive sorting algorithm that uses merge.
def mergeSort(someList):
 if len(someList) <= 1:
 # It's already sorted! BASE CASE.
 return someList
 else:
 # It's larger and needs more work. RECURSIVE CASE.
 n = len(someList)
 # Split into two halves.  
 list1 = someList[:n//2]
 list2 = someList[n//2:]
 # Sort each half.
 sorted1 = mergeSort(list1)
 sorted2 = mergeSort(list2)
 # Combine them with merge.
 return merge(sorted1, sorted2)

MERGESORT
LECTURE 13-1: SORTING

RUNNING TIME OF MERGESORT?
LECTURE 13-1: SORTING

▸A sorting algorithm that partitions then recursively sorts.
def quickSort(someList):
 if len(someList) == 0:
 # It's already sorted! BASE CASE.
 return []
 else:
 smaller,pivot,larger = partition(someList)
 smallerSorted = quickSort(smaller)
 largerSorted = quickSort(larger)
 return smallerSorted + [pivot] + largerSorted

QUICKSORT
LECTURE 13-1: SORTING

▸Here is the code for partitioning a list:
def partition(someList):
 smallers = []
 pivot = someList[0] # pick some value from the list
 largers = []
 for x in someList[1:]:
 if x <= pivot:
 smallers.append(x)
 else:
 largers.append(x)
 return smallers, pivot, largers

PARTITIONING A LIST "AROUND" A PIVOT VALUE
LECTURE 13-1: SORTING

▸Here is the code for partitioning a list:
def partition(someList):
 smallers = []
 pivot = someList[0] # pick some value from the list
 largers = []
 for x in someList[1:]:
 if x <= pivot:
 smallers.append(x)
 else:
 largers.append(x)
 return smallers, pivot, largers

▸This always picks the left element as the pivot. Other pivot choices:

• Find the median.

•Pick a random element.

•Choose the median of the left, middle, and right.

PARTITIONING A LIST "AROUND" A PIVOT VALUE
LECTURE 13-1: SORTING

▸Here is the code for partitioning a list:
def partition(someList):
 smallers = []
 pivot = someList[0] # pick some value from the list
 largers = []
 for x in someList[1:]:
 if x <= pivot:
 smallers.append(x)
 else:
 largers.append(x)
 return smallers, pivot, largers

▸This always picks the left element as the pivot. Other pivot choices:

• Find the median. Ideal, but expensive.

•Pick a random element. Good, but has some overhead.

•Choose the median of the left, middle, and right. Usually good enough.

PARTITION
LECTURE 13-1: SORTING

RUNNING TIME OF QUICKSORT?
LECTURE 13-1: SORTING

BAD CASE FOR QUICKSORT
LECTURE 13-1: SORTING

TYPICAL/RANDOM CASE FOR QUICKSORT
LECTURE 13-1: SORTING

▸Sorting a list makes information retrieval faster:
• can use binary search to check membership in O(log2(n)) time.

▸"First try" sorting algorithms typically sort in quadratic time.
•bubble sort, insertion sort, selection sort, etc.
• They essentially (in the worst case) compare every item to every other.
• This means they might perform 1 + 2 + 3 + ... + (n-1) comparisons.
➡ That sum is n (n-1) / 2 and so that leads to Θ(n2) comparisons.

▸Faster sorts use recursion:
•Merge sort sorts in Θ(n log2(n)) time.
•Quick sort typically sorts in Θ(n log2(n)) time.

✦With pad pivot choices, can take Θ(n2) time. Can be avoided with randomness.

SORTING AND SEARCHING SUMMARY
LECTURE 13-1: SORTING

