LAST DETAILS;
SORTING

LECTURE 13-1

JIM FIX, REED COLLEGE CSCI 121

COURSE INFO

Tomorrow: no lab meeting; Reed follows a Thursday schedule.
Wednesday: no lecture; Reed follows a Friday schedule.
Today: our last lecture(!!!)
Because we missed last Monday, we will finish our discussion of
algorithmic efficiency by looking at a few sorting algorithms.
Project 4:
completed project due Tuesday, December 13th.
Final Exam:
Thursday, December 15th, 1-5pm.
Review Session:
Tuesday, December 13th. Room and time TBD.

FINAL EXAM

Details:
Thursday, December 15th, 1-4pm.
closed book, closed note, closed computer
written answers, similar to quizzes
4 hours long but designed to be 3 hours in length.
usually 8-10 quiz-length questions
comprehensive; covers all the material (see next slide)

Preparation:
review session Tuesday, December 13th, Room and time TBD.

will post a practice exam by the end of this week.

will post my solutions to these next Monday.

can review them in next Tuesday's review session

COURSE TOPICS

scripting with input and print
variables and assignment

integer arithmetic, boolean connectives, integer comparisons
strings and string operations

integer division using% and //

printing versus returning, the None value
conditional statements and loops

function definitions

lists and dictionaries

object-orientation and inheritance

linked lists and binary search trees

sorting and searching

higher-order functions and 1ambda
recursive functions

NEXT COURSES

CSClI 221 : CS Fundamentals Ii
low level computer details
digital logic and circuits
processor machine language
program memory layout: registers, stack, heap
pointers/addresses
"industrial" level programming in C/C++
object-oriented language with "template" classes
sophisticated memory management
rich, complicated "standard template" library
more coding: short programs and larger projects
more experience using programmer tools: Unix, git, debuggers, profilers

NEXT COURSES (CONT'D)

MATH/CSCI 382 : Algorithms & Data Structures
careful, mathematical treatment of coding
runtime analysis; revisit sorting and searching
lots of nifty data structures
lots of nifty algorithms and their applications:
network/graph analysis
Requires MATH 112: Intro to Analysis
teaches you to make careful mathematical arguments
Requires MATH 113: Discrete Structures
teaches you "computer science” mathematics
develops problem-solving skills
more mathematical proofs, different than MATH 112

CS INFO SESSION

THE pS MAJOR AT A GLANCE
r

|| Geitnce ||
o Leeture -

e ————

R < il 3™ d
<t . Lot ~ \ 3 ul = k -
e s W '.?-_*R"' Y oy ! R

¥ _)
———
FIC N 2 g —_— i i -
. el
= = — L P

»Three entry points: C51, CS1+, CS2

»Three core requirements: A & DS, "Comp Comp”, Systems

» Four or more advanced electives from a rotating menu.
e 0Ss, Al, CG, ML, PLs, Networks, Crypto, Topics in ..., Ethics & PP, ...

CS INFO SESSION

CS10R 1+ |

THE CS MAJOR AT A GLANCE

" | 'x ;./ L:‘l ! jr._ LLLL :
. : Geicnee
e * ~ Leeture

T " £ vaa . o ,'

: ; ’x{ R pe o

: R . P Ly T i &
QT *‘ o

J
' e e —
- = ——— et . E — — T
{ o ieaedl
1 - » .

»Three entry points: €51, CS1+, €S2

»Three core requirements: A & DS, "Comp Comp", Systems

» Four or more advanced electives from a rotating menu including
* 0Ss, Al, CG, ML, PLs, Networks, Crypto, Topics in ..., Ethics & PP, ...

CS INFO SESSION

THE CS MAJOR AT A GLANCE

1y “ L.'"luf;.-.,LJ

e | Gtifllfc

 ALGORITHMS |
COMP2 |

| SYSTEMS |

31 , . ki e — T i
| [— VST ——

ﬁhree entry poits: CS1, S1 +, CS2
»Three core requirements: A & DS, "Comp Comp", Systems

» Four or more advanced electives from a rotating menu including
* 0Ss, Al, CG, ML, PLs, Networks, Crypto, Topics in ..., Ethics & PP, ...

CS INFO SESSION

THE CS MAJOR AT A GLANCE

g C OpIpLILer

Geicnce

ALGORITHMS

SYSTEMS

.- e = e— COMP?

Three entry pois: CS1, CS1+, CS2

Three core requirements: A & DS, "Cc

, H B NETWoRK |
THEORY S8~ B ADVARCH |

frec o

Four or more advanced electives
0Ss, Al, CG, ML, PLs, Networks, Cryf

CS INFO SESSION

CALCULUS |
ANALYSIS |
LNEAR |

THE CS MAJOR AT A GLANCE

| oiscree B Mcs
| | - COHILILEL _ |

Gcience

;_;: A ‘
il v b Vs B ciabe ¥ 4

ALGORITHMS SYSTEMS

-

e — cone
Three entry points: CS1, CS1+, CS2
Three core requirements: A & DS, " A
: CRYPTO R PL NETWORKS
Four or more advanced electives fro THEORY Al ADV ARCH

P&C 0
0Ss, Al, CG, ML, PLs, Networks, Cr

MATH plays a critical role.

LECTURE 13-1: SORTING

RECALL: SELECTION SORT

LECTURE 13-1: SORTING

CASE STUDY: BUBBLE SORT

BUBBLE SORT

With bubble sort we make several left-to-right scans over the list.

We swap out-of-order values at neighboring locations

This “bubbles up” larger values so they “rise” to the right.

def bubbleSort (alList):
n = len(aList)
for scan in range(l,n):
i=0
while i < n - scan:

if aList[i+1l] < aList[i]:

aList[i],aList[i+1]
i+=1

aList[i+1l],aList[1i]

BUBBLE SORT

With bubble sort we make several left-to-right scans over the list.

We swap out-of-order values at neighboring locations

This “bubbles up” larger values so they “rise” to the right.

def bubbleSort(alList):
n = len(aList) | .
for scan in“range(1l,n):)
i=0 —m——
while i < n - scan:

if aList[i+1l] < aList[i]: #swap?
aList[i],aList[i+1] = aList[i+1l],aList[i]

i+=1

This means we only need to make n -1 scans.

LECTURE 13-1: SORTING

BUBBLE SORT

»With bubble sort we make several left-to-right scans over the list.

* We swap out-of-order values at neighboring locations

* This "bubbles up” larger values so they "rise” to the right.

def bubbleSort(alList):
n = len(aLisE) | o
for scan if range(l,n):)

i=0 ————
while i € n - scan:)
if aLisETYIFIT < alList[i]: #swap?
aList[i],aList[i+1] = aList[i+1l],aList[i]
i+=1

»This means we only need to make n -1 scans.

»This means we can stop the scan earlier for later passes.

LECTURE 13-1: SORTING

BUBBLE SORT ANALYSIS

»What is the running time of bubble sort?

def bubbleSort (alList):
n = len(aList)
for scan in range(l,n):
i=0
while i < n - scan:
if aList[i+l] < aList[i]:
aList[1],aList[i1i+1] = aList[i+l],aList[1]
i+=1

The if statement runs n - 1 times on the first scan, then n - 2 times on the
second scan, then n - 3 times on the third scan, ...

LECTURE 13-1: SORTING

BUBBLE SORT ANALYSIS

»What is the running time of bubble sort?

def bubbleSort (alList):
n = len(aList)
for scan in range(l,n):
i=0
while i < n - scan:
if aList[i+l1l] < aList[i]:
aList[1],aList[i1i+1] = aList[i+l],aList[1]
i+=1

The if statement runs n - 1 times on the first scan, then n - 2 times on the
second scan, then n - 3 times on the third scan, ...
= The total number of swaps is
nin-1)/2=n-1)+n-2)+...+3+2+1
» Its running time scales quadratically with n.

MERGING SORTED LISTS

Suppose we have two sorted lists, how do we combine their data into one?

LECTURE 13-1: SORTING

MERGE

»Here is a procedure that "merges" two sorted lists into one:
def merge(listl, list2):

list = []
indexl = 0
index2 = 0

n = len(listl) + len(list2)
for index in range(n):
if listl[indexl] <= list2[index2]:
list.append(listl[indexl])
indexl += 1
else:
list.append(list2[index2])
index2 += 1
return list

LECTURE 13-1: SORTING

BAD MERGE

»Here is a procedure that "merges" two sorted lists into one:
def merge(listl, list2):

list = []
indexl = 0
index2 = 0

n = len(listl) + len(list2)
for index in range(n):
if listl[indexl] <= list2[index2]:

list.append(listl[index1])
indexl += 1
else:

list.append(list2[index2])
index2 += 1
return list

» WHOOPS! we might have exhausted 1ist1l orlist2

= indexl1 couldbe len(listl) orindex2 couldbe len(list2)
...This leads to a list indexing error!

LECTURE 13-1: SORTING

MERGE (FIXED)

»Here is a procedure that "merges” two sorted lists into one:
def merge(listl, list2):

list = []
indexl = 0
index2 = 0

n = len(listl) + len(list2)
for index in range(n):
if index2 >= len(list2):
list.append(listl[indexl])
indexl += 1
elif indexl >= len(listl):
list.append(list2[index2])
index2 += 1
elif listl[indexl] <= list2[index2]:
list.append(listl[index1])
indexl += 1
else:
list.append(list2[index2])
index2 += 1
return list

LECTURE 13-1: SORTING

A RECURSIVE SORTING ALGORITHM

»Can we use this as part of a sorting algorithm?

LECTURE 13-1: SORTING

MERGESORT

» A recursive sorting algorithm that uses merge.

def mergeSort (someList):

if len(someList) <= 1:
It's already sorted! BASE CASE.
return someList

else:
It's larger and needs more work. RECURSIVE CASE.
n = len(someList)
Split into two halves.
listl = someList[:n//2]
list2 = someList[n//2:]
Sort each half.
sortedl = mergeSort(listl)
sorted2 = mergeSort(list2)
Combine them with merge.
return merge(sortedl, sorted2)

LECTURE 13-1: SORTING

MERGESORT

» A recursive sorting algorithm that uses merge.

def mergeSort (someList):

if len(someList) <= 1:
It's already sorted! BASE CASE.
return someList

else:
It's larger and needs more work. RECURSIVE CASE.
n = len(someList)
Split into two halves.
listl = someList[:n//2]
list2 = someList[n//2:]
Sort each half.
sortedl = mergeSort(listl)
sorted2 = mergeSort(list2)
Combine them with merge.
return merge(sortedl, sorted2)

LECTURE 13-1: SORTING

RUNNING TIME OF MERGESORT?

LECTURE 13-1: SORTING

QUICKSORT

» A sorting algorithm that partitions then recursively sorts.

def quickSort (someList):

if len(somelList) ==
It's already sorted! BASE CASE.
return []

else:
smaller,pivot,larger = partition(someList)
smallerSorted = quickSort(smaller)
largerSorted = quickSort (larger)
return smallerSorted + [pivot] + largerSorted

LECTURE 13-1: SORTING

PARTITIONING A LIST "ARGUND" A PIVOT VALUE

»Here is the code for partitioning a list:

def partition(somelist):

smallers = []
pivot = someList[0] #picksome value from the list
largers = []

for x in somelList[1l:]:
if x <= pivot:
smallers.append(x)
else:

largers.append(x)
return smallers, pivot, largers

LECTURE 13-1: SORTING

PARTITIONING A LIST "AROUND" A PIVOT VALUE

»Here is the code for partitioning a list:

def partition(somelist):

smallers = []
pivot = someList[0] #pick some value from the list
largers = []

for x in somelList[1l:]:
if x <= pivot:
smallers.append(x)
else:

largers.append(x)
return smallers, pivot, largers

» This always picks the left element as the pivot. Other pivot choices:
* Find the median.

* Pick a random element.

* Choose the median of the left, middle, and right.

LECTURE 13-1: SORTING

PARTITION

»Here is the code for partitioning a list:

def partition(somelist):

smallers = []
pivot = someList[0] # pick some value from the list
largers = []

for x in somelList[1l:]:
if x <= pivot:
smallers.append(x)
else:

largers.append(x)
return smallers, pivot, largers

» This always picks the left element as the pivot. Other pivot choices:
* Find the median. Ideal, but expensive.

* Pick a random element. Good, but has some overhead.

» Choose the median of the left, middle, and right. Usually good enough.

LECTURE 13-1: SORTING

RUNNING TIME OF QUICKSORT?

LECTURE 13-1: SORTING

BAD CASE FOR QUICKSORT

LECTURE 13-1: SORTING

TYPICAL/RANDOM CASE FOR QUICKSORT

SORTING AND SEARCHING SUMMARY

Sorting a list makes information retrieval faster:
can use binary search to check membership in O(log,(n)) time.

"First try" sorting algorithms typically sort in quadratic time.
bubble sort, insertion sort, selection sort, etc.
They essentially (in the worst case) compare every item to every other.
This means they might perform 1+ 2 + 3 + ... + (n-1) comparisons.
That sumis n (n-1)/ 2 and so that leads to ©(n2) comparisons.

Faster sorts use recursion:
Merge sort sorts in ©(n loga(n)) time.
Quick sort typically sorts in ©(n logy(n)) time.
With pad pivot choices, can take ©(n2) time. Can be avoided with randomness.

