ERROR HANDLING

LECTURE 12-2

JIM FIX, REED COLLEGE CSCI 121



COURSE INFO

Today: error handling
Homework 12: two exercise on both, due by the end of classes.

Project 4: a text-based role-playing game, due by the end of classes.
Checkpoint of 15-20 points is due Friday!
Next Monday: second midterm exam. Topics covered:
recursion
object orientation
inheritance
higher-order functions
linked lists

I've posted a practice exam and its solutions.



LECTURE 12-2: ERROR HANDLING

SIMPLE INPUT PROGRAM

» Consider this simple script that gets an input and computes with it:

import math

x = int(input (“Enter a positive integer: “))

y = 100 // math.isqrt(x)

print (“100 / sqrt(” + str(x) + “) is “ + str(y) + “.")

»What could happen?



LECTURE 12-2: ERROR HANDLING

SIMPLE INPUT PROGRAM

» Consider this simple script that gets an input and computes with it:

import math

x = int(input (“Enter a positive integer: “))

y = 100 // math.isqrt(x)

print (“100 / sqrt(” + str(x) + “) is “ + str(y) + “.")

»What could happen?

= They enter a positive integer, all is good.

$ python3 sample input script.py
Enter a positive integer: 25

100 / sqrt(25) is 20.

S



LECTURE 12-2: ERROR HANDLING

SIMPLE INPUT PROGRAM

» Consider this simple script that gets an input and computes with it:

import math

x = int(input (“Enter a positive integer: “))

y = 100 // math.isqrt(x)

print (“100 / sqrt(” + str(x) + “) is “ + str(y) + “.")

»What could happen?
= They enter zero, and so we divide by 0. ERROR!

$ python3 sample input script.py
Enter a positive integer: O
Traceback (most recent call last):
File "simple input script.py’', line 3, in <module>
y = 100 // math.isqrt (x)

e a— R (Y CRnY (P (R (R (RnY (Y (R (RnP (P (Rwd (R (o

ZeroDivisionError: integer division or modulo by zero

$



LECTURE 12-2: ERROR HANDLING

SIMPLE INPUT PROGRAM

» Consider this simple script that gets an input and computes with it:

import math

x = int(input (“Enter a positive integer: “))

y = 100 // math.isqrt(x)

print (“100 / sqrt(” + str(x) + “) is “ + str(y) + “.")

»What could happen?
= They enter a negative integer which has no square root. ERROR!

$ python3 sample input script.py
Enter a positive integer: -25
Traceback (most recent call last):
File "simple input script.py’', line 3, in <module>
y = 100 // math.isqrt (x)

AAAAAAAAAAAANAN

ValueError: isqrt() argument must be nonnegative

$



LECTURE 12-2: ERROR HANDLING

SIMPLE INPUT PROGRAM

» Consider this simple script that gets an input and computes with it:

import math
x = int(input (“Enter a positive integer: “))

y = 100 // math.isqrt(x)
print (“100 / sqrt(” + str(x) + “) is “ + str(y) + “.")

»What could happen?
= They enter something with a typo. ERROR!

$ python3 sample input script.py
Enter a positive integer: 25o00ps
Traceback (most recent call last):
File "simple input script.py’', line 2, in <module>
X = int(input ("Enter an integer: "))

ValueError: invalid literal for int() with base 10: '2500ps’

$



SIMPLE INPUT PROGRAM

Consider this simple script that gets an input and computes with it:

import math

x = int(input (“Enter a positive integer: “))

y = 100 // math.isqrt(x)

print (“100 / sqrt(” + str(x) + “) is “ + str(y) + “.")

What could happen?
The entry leads to some error, the program halts (“crashes”).
Can we write the code to anticipate and handle these errors?

One option: Hand-code input of x to do careful checks.



SIMPLE INPUT PROGRAM

Consider this simple script that gets an input and computes with it:

import math

x = int(input (“Enter a positive integer: “))

y = 100 // math.isqrt(x)

print (“100 / sqrt(” + str(x) + “) is “ + str(y) + “.")

What could happen?
The entry leads to some error, the program halts (“crashes”).
Can we write the code to anticipate and handle these errors?
One option: Hand-code input of x to do careful checks.

An alternative: let errors happen, catch them and handle them.



LECTURE 12-2: ERROR HANDLING

CAREFULLY CHECKING OR PREVENTING AN ERROR

»This code avoids the errors by checking and looping:

while True:
s = input(“Enter a positive integer: *“)
if isdigit(s) and int(s) > O:
X = int(s)
break
print (“Bad entry. Please try again.”)

y = 100 // math.isqrt (x)
print (“100 / sqrt(” + str(x) + “) is “ + str(y) + “.")



LECTURE 12-2: ERROR HANDLING

CATCHING ERRORS WITH TRY ... EXCEPT

»An alternative is to let errors happen. Use try block with except clause:

while True:

try:
x = int(input (“Enter a positive integer: “))
y = 100 // math.isqrt (x)
break

except:

print (“Bad entry. Please try again.”)

print (“100 / sqrt(” + str(x) + “) is “ + str(y) + “.")



LECTURE 12-2: ERROR HANDLING

CATCHING ERRORS WITH TRY ... EXCEPT

»This loops using a try block with an except clause:

while True:

try:
x = int(input (“Enter a positive integer: “))
y = 100 // math.isqrt(x)
break
except:
print (“Bad entry. Please try again.”)
print (“100 / sqrt(” + str(x) + “) is “ + str(y) + “.")

»How does Python execute this?
= |t executes the lines in the txy block.

= |t no error occurs, runs as normal (skipping the code under except).



CATCHING ERRORS WITH TRY ... EXCEPT

This loops using a try block with an except clause:

while True:
try:
x = int(input (“Enter a positive integer: “))
y = 100 // math.isqrt(x)
break
except:
print (“Bad entry. Please try again.”)

print (“100 / sqrt(” + str(x) + “) is “ + str(y) + “.")

How does Python execute this?
If an error occurs within the try block, execution of it halts.

Python then jumps down to the lines in the except clause.



LECTURE 12-2: ERROR HANDLING

CATCHING ERRORS WITH TRY ... EXCEPT

»This loops using a try block with an except clause:

while True:

try:
x = int(input (“Enter a positive integer: “))
y = 100 // math.isqrt (x)
break
except:
print (“Bad entry. Please try again.”)
print (“100 / sqrt(” + str(x) + “) is “ + str(y) + “.")

»So... code loops until input of x and calculation of y succeeds.



ERROR CHECKING

Python try... except gives us a different style of coding.

Sometimes cleaner to let errors happen wherever within code’s inner layers,
handle them in appropriate outside layers.



HANDLING SPECIFIC ERRORS WITH EXCEPT CLAUSES

You handle specific errors in different ways:

try:
X float (input (“Enter a number: *“))
y 100 / x
except ValueError:
print (“Bad entry.”)
except ZeroDivisionError:
print (“Can’t divide by zero.”)

How does Python execute this?
It executes the lines in the txy block.

If no error occurs, runs as normal (skipping the code under except).



HANDLING SPECIFIC ERRORS WITH EXCEPT CLAUSES

You handle specific errors in different ways:

try:
X float (input (“Enter a number: *“))
y 100 / x
except ValueError:
print (“Bad entry.”)
except ZeroDivisionError:
print (“Can’t divide by zero.”)

How does Python execute this?
If an error occurs within the try block, execution of it halts.

Python then jumps down to the except clauses.



HANDLING SPECIFIC ERRORS WITH EXCEPT CLAUSES

You handle specific errors in different ways:

try:
X float (input (“Enter a number: *“))
y 100 / x
except ValueError:
print (“Bad entry.”)
except ZeroDivisionError:
print (“Can’t divide by zero.”)

How does Python execute this?
If an error occurs within the try block, execution of it halts.
Python then jumps down to the except clauses.

It executes the lines of the except clause that matches.



HANDLING SPECIFIC ERRORS WITH EXCEPT CLAUSES

You handle specific errors in different ways:

try:
X float (input (“Enter a number: *“))
y 100 / x
except ValueError:
print (“Bad entry.”)
except ZeroDivisionError:
print (“Can’t divide by zero.”)

How does Python execute this?
If an error occurs within the try block, execution of it halts.

Python then jumps down to the except clauses.

If none match, then the error is raised.



HANDLING SPECIFIC ERRORS WITH EXCEPT CLAUSES

You handle specific errors in different ways:

try:
X float (input (“Enter a number: “))
y 100 / x

except (ValueError, ZeroDivisionError):
print (“Something went wrong.”)

How does Python execute this?
If an error occurs within the try block, execution of it halts.
Python then jumps down to the except clauses.

You can mention several errors to match a single clause.



HANDLING SPECIFIC ERRORS WITH EXCEPT CLAUSES

You handle specific errors in different ways:

try:
X float (input (“Enter a number: *“))
y 100 / x
except ValueError:
print (“Bad entry.”)
except ZeroDivisionError:
print (“Can’t divide by zero.”)
except:
print (“Something else happened.”)

How does Python execute this?
If an error occurs within the try block, execution of it halts.
Python then jumps down to the except clauses.

An except with no error matches every error.



LECTURE 12-2: ERROR HANDLING

TAKING CARE WITH A CATCHALL EXCEPT

» Code that catches all errors, handles them the same:

.. stuff that computes x, y, and z ..
try:

doSomethingWith(x,y,2z)
except:

print (“Something went wrong.”)

»Generally it's bad practice to hide errors with a “catchall” try...except.



TAKING CARE WITH A CATCHALL EXCEPT

Code that catches all errors, handles them the same:

.. stuff that computes x, y, and z ..
try:

doSomethingWith(x,y,2z)
except:

print(x,y,z)

raise

Generally it's bad practice to hide errors wit

Can instead print debugging information, t

1 a “catchall” try...except.

nen re-raise the error



TAKING CARE WITH A CATCHALL EXCEPT

Code that catches all errors, handles them the same:

.. stuff that computes x, y, and z ..
try:
doSomethingWith(x,y,2z)
except Exception as e:
print (“Error ‘“ + str(e) + "’ occurred!”)

Generally it's bad practice to hide errors with a “catchall” try...except.

Can instead print debugging information, then re-raise the error.
Oryou can at least report it and let the code keep stumbling along.

The code above sets e to the error raised.



LECTURE 12-2: ERROR HANDLING

USING EXCEPT. . .AS

»Example with except...as:

. stuff that computes x, y, and z ..
try:
x = float(input (“Enter a number: “)
y = 100.0 / x
except Exception as e:
print (“Error ‘“ + str(e) + "’ occurred!”)



LECTURE 12-2: ERROR HANDLING

USING EXCEPT. . .AS

»Example with except...as:

. stuff that computes x, y, and z ..
try:
x = float(input (“Enter a number: “)
y = 100.0 / x
except Exception as e:
print (“Error ‘“ + str(e) + "’ occurred!”)

$ python3 sample except-as script.py
Enter a number: 0
Error 'float division by zero' occurred!

$



LECTURE 12-2: ERROR HANDLING

INVENTING YOUR OWN ERRORS

»You can invent and raise your own errors.

class BadStuffHappened (Exception):
pass

def inputAndCompute():
X float (input (“Enter a number: *“))
Y 100.0 / x
except (ValueError, ZeroDivisionError):
raise BadStuffHappened(“Bad stuff happened.”)

»They can inherit from the built-in error class Exception.



LECTURE 12-2: ERROR HANDLING

GENERAL SYNTAX OF TRY... EXCEPT

»Here is general error handler code:

try:
..code that might raise an error..

except SomeErrorl:
.code to execute i1if SomeErrorl occurs..

except SomeError2:
..code to execute i1if SomeError2 occurs...

except:
..code to execute if any other error occurs..

else:
.code to execute if no error occurs..

finally:
..code that runs last for all situations, error or not..



LECTURE 12-2: ERROR HANDLING

GENERAL SYNTAX OF TRY... EXCEPT

»Here is general error handler code:

try:
..code that might raise an error..

except SomeErrorl:
.code to execute i1if SomeErrorl occurs..

except SomeError2:
..code to execute i1if SomeError2 occurs...

except:
..code to execute if any other error occurs..

else:
..code to execute if no error occurs..

finally:
..code that runs last for all situations, error or not..



LECTURE 12-2: ERROR HANDLING

GENERAL SYNTAX OF TRY... EXCEPT

»Here is general error handler code:

try:
..code that might raise an error..

except SomeErrorl:
.code to execute i1if SomeErrorl occurs..

except SomeError2:
..code to execute i1if SomeError2 occurs...

except:
..code to execute if any other error occurs..

else:
.code to execute if no error occurs..

finally:
..code that runs last for all situations, error or not..



LECTURE 12-2: ERROR HANDLING

EXAMPLE USE OF FINALLY

»Used to close a file object if something happens during its use.

.. compute x, y, 2z ..
f = open(“to_write.txt”, “w”)
try:
f.write(str(sqrt(x)))
f.write(str (100 / vy))
f.write(str(£f(z)))
finally:
f.close()



LECTURE 12-2: ERROR HANDLING

EXAMPLE USE OF FINALLY

»Used to close a file object if something happens during its use.

.. compute X, Yy, 2 ..
f = open(“to _write.txt”, “w”)
try:
f.write(str(sqrt(x)))
f.write(str (100 / vy))
f.write(str(£f(z)))
finally:
f.close()

»This closes the file if any error occurs within the £ ry block.



LECTURE 12-2: ERROR HANDLING

WITH EXAMPLE

»Can also use awith statement:

with open(“to write.txt”, “w”) as f:
f.write(str(sqrt(x)))
f.write(str (100 / y))
f.write(str(£(z)))

»This also closes the file if any error occurs within the with block.



LECTURE 12-2: ERROR HANDLING

USING ASSERTIONS

»I've gotten into the habit of making assertions in my code.

assert(x > 0)
y = 100 // math.isqrt(x)
print(”100 / Sqrt(" + str(x) + ll) is u 4 Str(Y) + ll.’l)

»This is considered good software practice, especially as you develop code.

»They raise an AssertionError, highlighting the place where the condition failed.

> For example:

$ python3 sample assert script.py
Enter a positive integer: O
Traceback (most recent call last):
File "simple assert script.py’', line 2, in <module>
assert(x > 0)

AAAANAN

AssertionError

$



