
ERROR HANDLING

LECTURE 12-2

JIM FIX, REED COLLEGE CSCI 121

▸Today: error handling
▸Homework 12: two exercise on both, due by the end of classes.
▸Project 4: a text-based role-playing game, due by the end of classes.
•Checkpoint of 15-20 points is due Friday!
▸Next Monday: second midterm exam. Topics covered:

➡ recursion
➡ object orientation
➡ inheritance
➡ higher-order functions
➡ linked lists

• I’ve posted a practice exam and its solutions.

COURSE INFO
LECTURE 12-2: ERROR HANDLING

▸Consider this simple script that gets an input and computes with it:
import math
x = int(input(“Enter a positive integer: “))
y = 100 // math.isqrt(x)  
print(“100 / sqrt(” + str(x) + “) is “ + str(y) + “.”)  

▸What could happen?

SIMPLE INPUT PROGRAM
LECTURE 12-2: ERROR HANDLING

▸Consider this simple script that gets an input and computes with it:
import math
x = int(input(“Enter a positive integer: “))
y = 100 // math.isqrt(x)  
print(“100 / sqrt(” + str(x) + “) is “ + str(y) + “.”)  

▸What could happen?

➡ They enter a positive integer, all is good.
$ python3 sample_input_script.py  
Enter a positive integer: 25
100 / sqrt(25) is 20.
$

SIMPLE INPUT PROGRAM
LECTURE 12-2: ERROR HANDLING

▸Consider this simple script that gets an input and computes with it:
import math
x = int(input(“Enter a positive integer: “))
y = 100 // math.isqrt(x)  
print(“100 / sqrt(” + str(x) + “) is “ + str(y) + “.”)  

▸What could happen?

➡ They enter zero, and so we divide by 0. ERROR!
$ python3 sample_input_script.py  
Enter a positive integer: 0
Traceback (most recent call last):
 File "simple_input_script.py", line 3, in <module>
 y = 100 // math.isqrt(x)
        ~~~~^^~~~~~~~~~~~~~~
ZeroDivisionError: integer division or modulo by zero
$

SIMPLE INPUT PROGRAM
LECTURE 12-2: ERROR HANDLING



▸Consider this simple script that gets an input and computes with it: 
import math
x = int(input(“Enter a positive integer: “))
y = 100 // math.isqrt(x)  
print(“100 / sqrt(” + str(x) + “) is “ + str(y) + “.”)  
  

▸What could happen? 

➡ They enter a negative integer which has no square root.  ERROR!
$ python3 sample_input_script.py  
Enter a positive integer: -25
Traceback (most recent call last):
  File "simple_input_script.py", line 3, in <module>
    y = 100 // math.isqrt(x)
               ^^^^^^^^^^^^^
ValueError: isqrt() argument must be nonnegative
$

SIMPLE INPUT PROGRAM
LECTURE 12-2: ERROR HANDLING



▸Consider this simple script that gets an input and computes with it: 
import math
x = int(input(“Enter a positive integer: “))
y = 100 // math.isqrt(x)  
print(“100 / sqrt(” + str(x) + “) is “ + str(y) + “.”)  
  

▸What could happen? 

➡ They enter something with a typo.  ERROR!
$ python3 sample_input_script.py  
Enter a positive integer: 25oops
Traceback (most recent call last):
  File "simple_input_script.py", line 2, in <module>
    x = int(input("Enter an integer: "))
        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ValueError: invalid literal for int() with base 10: '25oops'
$

SIMPLE INPUT PROGRAM
LECTURE 12-2: ERROR HANDLING



▸Consider this simple script that gets an input and computes with it: 
import math
x = int(input(“Enter a positive integer: “))
y = 100 // math.isqrt(x)  
print(“100 / sqrt(” + str(x) + “) is “ + str(y) + “.”)  

▸What could happen? 

➡ The entry leads to some error, the program halts (“crashes”). 

▸Can we write the code to anticipate and handle these errors? 

➡ One option: Hand-code input of x to do careful checks.

SIMPLE INPUT PROGRAM
LECTURE 12-2: ERROR HANDLING



▸Consider this simple script that gets an input and computes with it: 
import math
x = int(input(“Enter a positive integer: “))
y = 100 // math.isqrt(x)  
print(“100 / sqrt(” + str(x) + “) is “ + str(y) + “.”)  

▸What could happen? 

➡ The entry leads to some error, the program halts (“crashes”). 

▸Can we write the code to anticipate and handle these errors? 

➡ One option: Hand-code input of x to do careful checks. 

➡ An alternative: let errors happen, catch them and handle them.

SIMPLE INPUT PROGRAM
LECTURE 12-2: ERROR HANDLING



▸This code avoids the errors by checking and looping: 
while True:
    s = input(“Enter a positive integer: “)
    if isdigit(s) and int(s) > 0:
        x = int(s)
        break   
    print(“Bad entry. Please try again.”)

y = 100 // math.isqrt(x)
print(“100 / sqrt(” + str(x) + “) is “ + str(y) + “.”)  

 

CAREFULLY CHECKING OR PREVENTING AN ERROR
LECTURE 12-2: ERROR HANDLING



▸An alternative is to let errors happen. Use try block with except clause: 
while True:
    try:
        x = int(input(“Enter a positive integer: “))
        y = 100 // math.isqrt(x)
        break
    except:
        print(“Bad entry. Please try again.”)
 
print(“100 / sqrt(” + str(x) + “) is “ + str(y) + “.”)  

 

CATCHING ERRORS WITH TRY… EXCEPT
LECTURE 12-2: ERROR HANDLING



▸This loops using a try block with an except clause: 
while True:
    try:
        x = int(input(“Enter a positive integer: “))
        y = 100 // math.isqrt(x)
        break
    except:
        print(“Bad entry. Please try again.”)
 
print(“100 / sqrt(” + str(x) + “) is “ + str(y) + “.”)  
  

▸How does Python execute this? 

➡ It executes the lines in the try block.  

➡ If no error occurs, runs as normal (skipping the code under except). 

CATCHING ERRORS WITH TRY… EXCEPT
LECTURE 12-2: ERROR HANDLING



▸This loops using a try block with an except clause: 
while True:
    try:
        x = int(input(“Enter a positive integer: “))
        y = 100 // math.isqrt(x)
        break
    except:
        print(“Bad entry. Please try again.”)
 
print(“100 / sqrt(” + str(x) + “) is “ + str(y) + “.”)  
  

▸How does Python execute this? 

➡ If an error occurs within the try block, execution of it halts. 

➡ Python then jumps down to the lines in the except clause. 

CATCHING ERRORS WITH TRY… EXCEPT
LECTURE 12-2: ERROR HANDLING



▸This loops using a try block with an except clause: 
while True:
    try:
        x = int(input(“Enter a positive integer: “))
        y = 100 // math.isqrt(x)
        break
    except:
        print(“Bad entry. Please try again.”)
 
print(“100 / sqrt(” + str(x) + “) is “ + str(y) + “.”)  
  

▸So… code loops until input of x and calculation of y succeeds.

CATCHING ERRORS WITH TRY… EXCEPT
LECTURE 12-2: ERROR HANDLING



▸Python try… except gives us a different style of coding. 

▸Sometimes cleaner to let errors happen wherever within code’s inner layers, 
handle them in appropriate outside layers.

ERROR CHECKING
LECTURE 12-2: ERROR HANDLING



▸You handle specific errors in different ways: 
try:
    x = float(input(“Enter a number: “))
    y = 100 / x
except ValueError:
    print(“Bad entry.”)
except ZeroDivisionError:
    print(“Can’t divide by zero.”)

▸How does Python execute this? 

➡ It executes the lines in the try block.  

➡ If no error occurs, runs as normal (skipping the code under except).

HANDLING SPECIFIC ERRORS WITH EXCEPT CLAUSES
LECTURE 12-2: ERROR HANDLING



▸You handle specific errors in different ways: 
try:
    x = float(input(“Enter a number: “))
    y = 100 / x
except ValueError:
    print(“Bad entry.”)
except ZeroDivisionError:
    print(“Can’t divide by zero.”)

▸How does Python execute this? 

➡ If an error occurs within the try block, execution of it halts. 

➡ Python then jumps down to the except clauses. 

HANDLING SPECIFIC ERRORS WITH EXCEPT CLAUSES
LECTURE 12-2: ERROR HANDLING



▸You handle specific errors in different ways: 
try:
    x = float(input(“Enter a number: “))
    y = 100 / x
except ValueError:
    print(“Bad entry.”)
except ZeroDivisionError:
    print(“Can’t divide by zero.”)

▸How does Python execute this? 

➡ If an error occurs within the try block, execution of it halts. 

➡ Python then jumps down to the except clauses. 

➡ It executes the lines of the except clause that matches.

HANDLING SPECIFIC ERRORS WITH EXCEPT CLAUSES
LECTURE 12-2: ERROR HANDLING



▸You handle specific errors in different ways: 
try:
    x = float(input(“Enter a number: “))
    y = 100 / x
except ValueError:
    print(“Bad entry.”)
except ZeroDivisionError:
    print(“Can’t divide by zero.”)

▸How does Python execute this? 

➡ If an error occurs within the try block, execution of it halts. 

➡ Python then jumps down to the except clauses. 

➡ If none match, then the error is raised.

HANDLING SPECIFIC ERRORS WITH EXCEPT CLAUSES
LECTURE 12-2: ERROR HANDLING



▸You handle specific errors in different ways: 
try:
    x = float(input(“Enter a number: “))
    y = 100 / x
except (ValueError, ZeroDivisionError):
    print(“Something went wrong.”)

▸How does Python execute this? 

➡ If an error occurs within the try block, execution of it halts. 

➡ Python then jumps down to the except clauses. 

➡ You can mention several errors to match a single clause.

HANDLING SPECIFIC ERRORS WITH EXCEPT CLAUSES
LECTURE 12-2: ERROR HANDLING



▸You handle specific errors in different ways: 
try:
    x = float(input(“Enter a number: “))
    y = 100 / x
except ValueError:
    print(“Bad entry.”)
except ZeroDivisionError:
    print(“Can’t divide by zero.”)
except:
    print(“Something else happened.”)

▸How does Python execute this? 

➡ If an error occurs within the try block, execution of it halts. 

➡ Python then jumps down to the except clauses. 

➡ An except with no error matches every error.

HANDLING SPECIFIC ERRORS WITH EXCEPT CLAUSES
LECTURE 12-2: ERROR HANDLING



▸Code that catches all errors, handles them the same: 
… stuff that computes x, y, and z …
try:
    doSomethingWith(x,y,z)
except:
    print(“Something went wrong.”)

▸Generally it’s bad practice to hide errors with a “catchall” try…except. 

TAKING CARE WITH A CATCHALL EXCEPT
LECTURE 12-2: ERROR HANDLING



▸Code that catches all errors, handles them the same: 
… stuff that computes x, y, and z …
try:
    doSomethingWith(x,y,z)
except:
    print(x,y,z)
    raise

▸Generally it’s bad practice to hide errors with a “catchall” try…except. 

▸Can instead print debugging information, then re-raise the error

TAKING CARE WITH A CATCHALL EXCEPT
LECTURE 12-2: ERROR HANDLING



▸Code that catches all errors, handles them the same: 
… stuff that computes x, y, and z …
try:
    doSomethingWith(x,y,z)
except Exception as e:
    print(“Error ‘“ + str(e) + ”’ occurred!”)
   

▸Generally it’s bad practice to hide errors with a “catchall” try…except. 

▸Can instead print debugging information, then re-raise the error. 

▸Or you can at least report it and let the code keep stumbling along. 

➡ The code above sets e to the error raised.

TAKING CARE WITH A CATCHALL EXCEPT
LECTURE 12-2: ERROR HANDLING



▸Example with except…as:
… stuff that computes x, y, and z …
try:
    x = float(input(“Enter a number: “)
    y = 100.0 / x
except Exception as e:
    print(“Error ‘“ + str(e) + ”’ occurred!”)
   

USING EXCEPT…AS
LECTURE 12-2: ERROR HANDLING



▸Example with except…as:
… stuff that computes x, y, and z …
try:
    x = float(input(“Enter a number: “)
    y = 100.0 / x
except Exception as e:
    print(“Error ‘“ + str(e) + ”’ occurred!”)

$ python3 sample_except-as_script.py  
Enter a number: 0
Error 'float division by zero' occurred!
$
   

USING EXCEPT…AS
LECTURE 12-2: ERROR HANDLING



▸You can invent and raise your own errors. 
class BadStuffHappened(Exception):
    pass

def inputAndCompute():
    x = float(input(“Enter a number: “))
    y = 100.0 / x
except (ValueError, ZeroDivisionError):
    raise BadStuffHappened(“Bad stuff happened.”)

▸They can inherit from the built-in error class Exception.

INVENTING YOUR OWN ERRORS
LECTURE 12-2: ERROR HANDLING



▸Here is general error handler code: 

try:
    …code that might raise an error…

except SomeError1:
    …code to execute if SomeError1 occurs…

except SomeError2:
    …code to execute if SomeError2 occurs…

…

except:
    …code to execute if any other error occurs…

else:
    …code to execute if no error occurs…

finally:
    …code that runs last for all situations, error or not…  
 

GENERAL SYNTAX OF TRY… EXCEPT
LECTURE 12-2: ERROR HANDLING



▸Here is general error handler code: 

try:
    …code that might raise an error…

except SomeError1:
    …code to execute if SomeError1 occurs…

except SomeError2:
    …code to execute if SomeError2 occurs…

…

except:
    …code to execute if any other error occurs…

else:
    …code to execute if no error occurs…

finally:
    …code that runs last for all situations, error or not…  
 

GENERAL SYNTAX OF TRY… EXCEPT
LECTURE 12-2: ERROR HANDLING



▸Here is general error handler code: 

try:
    …code that might raise an error…

except SomeError1:
    …code to execute if SomeError1 occurs…

except SomeError2:
    …code to execute if SomeError2 occurs…

…

except:
    …code to execute if any other error occurs…

else:
    …code to execute if no error occurs…

finally:
    …code that runs last for all situations, error or not… 
 

GENERAL SYNTAX OF TRY… EXCEPT
LECTURE 12-2: ERROR HANDLING



▸Used to close a file object if something happens during its use. 
 
… compute x, y, z …
f = open(“to_write.txt”, “w”)
try:
    f.write(str(sqrt(x)))
    f.write(str(100 / y))
    f.write(str(f(z)))
finally:
    f.close()

EXAMPLE USE OF FINALLY
LECTURE 12-2: ERROR HANDLING



▸Used to close a file object if something happens during its use. 
 
… compute x, y, z …
f = open(“to_write.txt”, “w”)
try:
    f.write(str(sqrt(x)))
    f.write(str(100 / y))
    f.write(str(f(z)))
finally:
    f.close()

▸This closes the file if any error occurs within the try block. 

EXAMPLE USE OF FINALLY
LECTURE 12-2: ERROR HANDLING



▸Can also use a with statement: 

with open(“to_write.txt”, “w”) as f:
    f.write(str(sqrt(x)))
    f.write(str(100 / y))
    f.write(str(f(z)))

▸This also closes the file if any error occurs within the with block. 

WITH EXAMPLE
LECTURE 12-2: ERROR HANDLING



▸I’ve gotten into the habit of making assertions in my code.
…
assert(x > 0)
y = 100 // math.isqrt(x)
print(“100 / sqrt(” + str(x) + “) is “ + str(y) + “.”)  

▸This is considered good software practice, especially as you develop code. 

▸They raise an AssertionError, highlighting the place where the condition failed.  

▸For example: 
$ python3 sample_assert_script.py  
Enter a positive integer: 0
Traceback (most recent call last):
  File "simple_assert_script.py", line 2, in <module>
    assert(x > 0)
           ^^^^^
AssertionError
$ 

USING ASSERTIONS
LECTURE 12-2: ERROR HANDLING


