ALGORITHM EFFICIENCY

LECTURE 12-1

JIM FIX, REED COLLEGE CSCI 121

LECTURE 12-1: BSTS AND EFFICIENCY

DEPARTMENT INFO
»Talk today!!

REED COLLEGE
COMPUTER SCIENCE DEPARTMENT
JOB TALK

DEPARTM

JENNA WISE

Carnegie Mellon University

Gradual Verification: Assuring Program Correctness Incrementally

While software is becoming more ubiquitous in our everyday lives, sc are
unintended bugs. 'n response, stalic veriflicat on techniques were introduced
prove or disprove the absence af bugs in cade. llnfn'tun.'n:'l)', current
tachniques burden users by requiring them to write nductively complete
specificetiors involving many extraneous details. 10 overcome this limitation,
introduce the idea of gradual verification, which handles complete, partial, o
missing specifications by soundly combining sratic ana dynamic checking. As a
result, gracual verification al'ows users to specify and verify only the properties
and compenents of their system that they care about and increase the scope ¢t
verification gradually—which is poorly supported by existing tcols.

In this presentaticn, | outline the formal foundations of gracual verification “or
recursive heap data structures (like lists, trees, and graphs), and the designcl a
gracual verifier derived rom my formal work, called Gradual C0O. Gradual €0 i
implementzd on top of the Viper static verifier and supports the C0
programming language—which is a safer, smaller subset of C taught at CMU.
Additionelly, | present the results of quantitatively evaluating Gradual C0's static
and dynamic performance characterisrics for thousands of partial specificarians.
Gradual CO cn average decreases run-time overhead by 50-S0% compared to
dynamic verification alone anc scurces ¢f overheac correspond to predictions in
prior work. Qualitatively, Gradual CC exnibits earlier error detection for incorrect
spacificatons than static verification. | end with my planned new lines of work 'n

gracual verification and its applicaticn te other formal metheds.

MONDAY, NOVEMBER 21, 2022
4:40PM
ELIOT 314

BINARY SEARCH TREES

Binary search trees are a way of keeping track of a sorted collection.
Here, we are using them as an ordered dictionary.
For our dictionaries, there is at most one entry per key.
The link structure sorts the entries; maintains a sorted order.
The keys are usually organized alphabetically when strings.
The keys are usually sorted smaller/larger if numbers.

(Generally, in binary search trees, keys might appear more than once; have
multiple entries.)

(Generally, in binary search trees, the nodes might only contain keys
without associated values.)

A BST CLASS

Operations:
Searching for an entry by key.

Adding or updating an entry, ordered according to key, storing the
value.

Removing an entry.
Visiting all the entries in sorted order.
The first three operations rely on a search.

This works from the root, moving left or right.

LECTURE 12-1: BSTS AND EFFICIENCY

SEARCHING FOR AN ENTRY IN A BST

root
class BSTNode:
def init_ (self,k,v):

self.key = k

self.value = v

self.left = None
self.right = None

"bob":22

class BSTree:
def init_(self):
self.root = None

def contains(self,k): "abe":17

"cat" :

curr = self.root 00
while curr is not None:
if k == curr.key:
return True "bzz" 122

if k < curr.key:

curr = curr.left
if k > curr.key:
curr = curr.right
return False

LECTURE 12-1: BSTS AND EFFICIENCY

ADDING AN ENTRY T0 A BST

class BSTree:
def update(self, k,v):
parent = None
curr = self.root
while curr is not None:
parent = curr
if k == curr.key:
curr.value = v
return
if k < curr.key:
curr = curr.left
if k > curr.key:
curr = curr.right
newNode = BSTNode(k, V)
if parent is None:
self.root = newNode
elif k < prnt:
parent.left = newNode
else:
parent.right = newNode

root t‘

"bob":22

"abe":17

"cat" :

"bzz":22

A BST CLASS

Operations:
Searching for an entry by key.
Adding or updating an entry, ordered according to key, storing the value.
Removing an entry.
Visiting all the entries in sorted order.
The first three operations rely on a search.
This works from the root, moving left or right.
The lastis in-order traversal. It is a recursive. Example: printing all the entries

You print all of the entries left of the root entry.

Then you print the root entry.

And then you print all of the entries right of the root entry.

LECTURE 12-1: BSTS AND EFFICIENCY

TRAVERSING A BST

def printBST(node):
if node is not None:
printBst (node.left)
entry = str(k)+":"+str(v)
print (entry,end="' ')

class BSTree:

def output(self):

root t‘

"bob":22

printBST (self.root)
print ()

"abe":17

>>> t.print ()

abe:17 bob:22 bzz:22 cat:3 dog:5
mia:12 pig:8 xao:33

>>>

llcatll :

"xao0":33
(o

llpig":

"bzz":22

Q-

LECTURE 12-1: BSTS AND EFFICIENCY

A TOUR OF THE BST CLASS CODE

»Look at BSTree.py

WRITING BETTER CODE

As you become a more sophisticated programmer, you'll be driven to write
good code. Some measures of "goodness":

Is it correct?

Is it readable?

ls it maintainable?

And sometimes writing efficient code is important, too.

EFFICIENT CODE

Efficient code is code that uses fewer resources when run. Examples:
It makes fewer calculations and/or takes fewer steps.
It uses less memory with its data structures.
For both of these, a program will typically compute its answer faster.
It runs faster.

Today we'll focus on running time.

LECTURE 12-1: ALGORITHM EFFICIENCY

MEASURING RUNNING TIME

»Suppose you have two programs that compute the same result:
= program A and program B.
* Q: How do we determine which one is faster?
* A: Run the code on typical inputs, measure the time it takes.

>>> import timeit

>>> i = 'import pow2’

>>> s = 'pow2.pow2(20)'

>>> timeit.timeit (stmt=s,setup=i,number=100)
0.0002275099977850914

» This will time 100 evaluations of pow2 (20) then report the elapsed time
in seconds.

MEASURING RUNNING TIME

Suppose you have two programs that compute the same result:
program A and

But maybe...
You don't have an exact sense of the typical inputs.
The size of typical inputs increases over the lifetime of the algorithms' use.
The size and typicality of inputs might vary widely, depending on the
application of the algorithm.
The computer might get upgraded in some near future. Or the programs
might be rewritten for some unknown system.

MEASURING RUNNING TIME

Suppose you have two programs that compute the same result:
program A and

But maybe...
You don't have an exact sense of the typical inputs.
The size of typical inputs increases over the lifetime of the algorithms' use.
The size and typicality of inputs might vary widely, depending on the
application of the algorithm.
The computer might get upgraded in some near future. Or the programs
might be rewritten for some unknown system.

We then also work to estimate running times.
We use running time analysis.

RUNNING TIME ANALYSIS

Typical major concerns of running time estimation:

How does the running time scale (roughly) with input complexity?
E.g. searching for an itemin a list of size n
We will estimate "limiting" or asymptotic running time.

For a particular input sizer, what are the trickiest inputs the code will face?
E.g. the search might have to scan the whole list.
We sometimes give bounds on the worst cases.

RUNNING TIME ANALYSIS

Typical lesser concerns of running time estimation:
E.g. Something that runs 11% faster on one machine over another.
E.g. Program A runs a little slower on small inputs well on large inputs
(0.2sec versus 0.15sec for), even though Program A runs
must faster on large inputs (20sec versus 1000sec for).

LECTURE 12-1: ALGORITHM EFFICIENCY

ASYMPTOTIC EQUIVALENCE

» Let's formalize some of these ideas:
= Two algorithms' running times are asymptotically equal
if, for large inputs, which algorithm is faster depends
on the relative speed of their executing computers.

» Example scenario:
* Suppose algorithm A takes n3- 4n? steps on an n-bit input.
* Suppose algorithm B takes 10n3+15steps on an n-bit input.
= |t Aand B run on the same computer, A runs faster.
= |f B runs on a 100x speedier machine, it beats A on large inputs.

ASYMPTOTIC EFFICIENCY

Let's formalize some of these ideas:
Two algorithms' running times are asymptotically equal
if, for large inputs, which algorithm is faster depends
on the relative speed of their executing computers.

We define O(g(n)), the set of functions asymptotically equal to g, with:

Definition: f(n)is in the set ©(g(n)) whenever there exist positive
constants L and U, and a positive constant m where

Lg(n)<1f(n)< Ug(n)
forall n = m.

BIG THETA

Definition: f(n)is in the class ©(g(n)) whenever there exist positive
constants L and U, and a positive constant m where

L g(n) < f(n) < Ug(n)
forall n = m.

Examples:

n3-4n2isin the class @(10n3+15)

10n3+15 isin the class ©(n3- 4n?)

n3-4n2isin the class O(n3)

10n3+15 is in the class O(n3)

NOTE: All these functions grow as cubic functions of n.

BIG THETA

Definition: f (n) is in the class O(g(n)) whenever there exist positive
constants L and U, and a positive constant m where

L g(n) < f(n) < Ug(n)
forall n = m.

Examples from the last lecture:

Searching... an entire list of length n takes ©(n) time.
..a balanced BST of size n to discover that a key is missing is ©(log,(n)) time.
A nested pair of loops that sum the products i*j takes ©(n?) time.
Computing pow2 (n) using repeated squaring takes ©(logy(n)) time.
Computing pow2 (n) by multiplying 2 of n times takes @(n) time.
Computing pow2 (n) by summing Ts takes ©(2n) time.

BIG OH

Definition: f (n) is in the class O(g(n)) whenever there are positive U and m
such that

0<f(n)<Ug(n)
forall n = m.

Examples:
n3-4n2isin the class 0(10n3+15)
10n3+15is in the class O(n3- 4n?)

nZis in the class O(n3)
100000n+987987987 is in the class O(n)

We use "big Oh" to say “asymptotically grows no faster than..."

BIG OH

Definition: f (n) is in the class O(g(n)) whenever there are positive U and m
such that

0<f(n)<Ug(n)
forall n = m.

Examples:

Searching a list of length n takes O(n) time.

Searching a balanced BST of size n takes O(logz(n)) time.
Searching a BST of size n takes O(n) time.

We use "big Oh" to say “asymptotically grows no faster than..."

LECTURE 12-1: ALGORITHM EFFICIENCY

A CASE STUDY: SEARCHING A LIST

LECTURE 12-1: ALGORITHM EFFICIENCY

SEARCHING A LIST

def search(item, somelist):
i, n = 0, len(somelList)
while i1 < n:
if somelList[1] == item: return True
i+=1
return False

LECTURE 12-1: ALGORITHM EFFICIENCY

SEARCHING A SORTED LIST

Can we do better if a list is sorted?

»Suppose that
someList[0] = someList[l] = .. = someList[n-1]

LECTURE 12-1: ALGORITHM EFFICIENCY

SEARCHING A SORTED LIST

def binarySearch(item,someList):
left, right = 0, len(somelList)-1
while left <= right:
middle (left + right) // 2
if item == someList[middle]:
return True
elif item < somelList[middle]:
right = middle-1
else:
left = middle+l
return False

LECTURE 12-1: ALGORITHM EFFICIENCY

SEARCHING A SORTED LIST

def binarySearch(item, someList):
left, right = 0, len(someList)-1
while left <= right:
middle = (left + right) // 2
if item == somelList[middle]:
return True
elif item < someList[middle]:
right = middle-1
else:
left = middle+l
return False

»With each someList [middle] check, we eliminate half the
undetermined list items from consideration.

»This means we inspect the list O(log, (n)) times.

LECTURE 12-1: ALGORITHM EFFICIENCY

ANOTHER CASE STUDY: SORTING A LIST

BUBBLE SORT

With bubble sort we make several left-to-right scans over the list.

We swap out-of-order values at neighboring locations

This “bubbles up” larger values so they “rise” to the right.

def bubbleSort (alList):
n = len(aList)
for scan in range(l,n):
i=0
while i < n - scan:

if aList[i+1l] < aList[i]:

aList[i],aList[i+1]
i+=1

aList[i+1l],aList[1i]

LECTURE 12-1: ALGORITHM EFFICIENCY

BUBBLE SORT

»With bubble sort we make several left-to-right scans over the list.

* We swap out-of-order values at neighboring locations

* This "bubbles up” larger values so they "rise” to the right.

def bubbleSort(alList):
n = len(aList) R
for scan in’range(l,n):Y)
=0 ———
while i < n - scan:
if aList[i+1l] < aList[i]: #swap?
aList[i],aList[i+1] = aList[i+1l],aList[1i]
i+=1

»This means we only need to make n -1 scans.

LECTURE 12-1: ALGORITHM EFFICIENCY

BUBBLE SORT

»With bubble sort we make several left-to-right scans over the list.

* We swap out-of-order values at neighboring locations

* This "bubbles up” larger values so they "rise” to the right.

def bubbleSort(alList):
n = len(aLisE) | o
for scan if range(l,n):)

i=0 —
while i € n - scan:)
if aLiE“”'<'aList[i]: #swap?
aList[i],aList[i+1] = aList[i+1l],aList[i]
i+=1

»This means we only need to make n -1 scans.

»This means we can stop the scan earlier for later passes.

LECTURE 12-1: ALGORITHM EFFICIENCY

BUBBLE SORT ANALYSIS

»What is the running time of bubble sort?

def bubbleSort(aList):
n = len(aList)
for scan in range(l,n):
i=0
while i < n - scan:
if aList[i+l] < aList[i]:
aList[i],aList[i+1] = aList[i+l],aList[1]
i+=1

The if statement runs n - 1 times on the first scan, then n - 2 times on the
second scan, then n - 3 times on the third scan, ...

LECTURE 12-1: ALGORITHM EFFICIENCY

BUBBLE SORT ANALYSIS

»What is the running time of bubble sort?

def bubbleSort (alList):
n = len(aList)
for scan in range(l,n):
i=0
while i < n - scan:
if aList[i+l1l] < aList[i]:
aList[1],aList[i1i+1] = aList[i+l],aList[1]
i+=1

The if statement runs n - 1 times on the first scan, then n - 2 times on the
second scan, then n - 3 times on the third scan, ...
= The total number of swaps is
nin-1)/2=n-1)+n-2)+...+3+2+1
» Its running time scales quadratically with n.

SUMMARY

In running time analysis use asymptotic notation to describe efficiency.
We use Big Theta for asymptotic equivalence.

We use Big Oh for asymptotic guarantees, i.e. upper bounds.

Two classic searching and sorting algorithms:
Binary search is a logarithmic time algorithm. It works on sorted lists.
Bubble sort is a quadratic time algorithm. It sorts a list.

Can we sort faster than in quadratic time?

