
ALGORITHM EFFICIENCY

LECTURE 12-1

JIM FIX, REED COLLEGE CSCI 121

▸Talk today!!
•

DEPARTMENT INFO
LECTURE 12-1: BSTS AND EFFICIENCY

▸Talk today!!
•

DEPARTMENT INFO
LECTURE 12-1: BSTS AND EFFICIENCY

▸Binary search trees are a way of keeping track of a sorted collection.

▸Here, we are using them as an ordered dictionary.

▸For our dictionaries, there is at most one entry per key.

▸The link structure sorts the entries; maintains a sorted order.

• The keys are usually organized alphabetically when strings.

• The keys are usually sorted smaller/larger if numbers.

▸(Generally, in binary search trees, keys might appear more than once; have
multiple entries.)

▸(Generally, in binary search trees, the nodes might only contain keys
without associated values.)

BINARY SEARCH TREES
LECTURE 12-1: BSTS AND EFFICIENCY

▸Operations:

➡ Searching for an entry by key.

➡ Adding or updating an entry, ordered according to key, storing the
value.

➡ Removing an entry.

➡ Visiting all the entries in sorted order.

▸The first three operations rely on a search.

➡ This works from the root, moving left or right.

A BST CLASS
LECTURE 12-1: BSTS AND EFFICIENCY

SEARCHING FOR AN ENTRY IN A BST
class BSTNode:
 def __init__(self,k,v):
 self.key = k
 self.value = v
 self.left = None
 self.right = None

class BSTree:
 def __init__(self):
 self.root = None

 def contains(self,k):
 curr = self.root
 while curr is not None:
 if k == curr.key:
 return True
 if k < curr.key:
 curr = curr.left  
 if k > curr.key:
 curr = curr.right
 return False

•

"dog": 5

•

•

•

"abe":17

•

•

"bob":22

•

•

"cat": 3

•
•

"pig": 8

•

•

"mia":12

•

•

"xao":33

•

 root

•

"bzz":22

•

LECTURE 12-1: BSTS AND EFFICIENCY

ADDING AN ENTRY TO A BST
class BSTree:
 ...
 def update(self,k,v):
 parent = None
 curr = self.root
 while curr is not None:
 parent = curr
 if k == curr.key:
 curr.value = v
 return
 if k < curr.key:
 curr = curr.left  
 if k > curr.key:
 curr = curr.right
 newNode = BSTNode(k,v)
 if parent is None:
 self.root = newNode
 elif k < prnt:
 parent.left = newNode
 else:
 parent.right = newNode

•

"dog": 5

•

•

•

"abe":17

•

•

"bob":22

•

•

"cat": 3

•
•

"pig": 8

•

•

"mia":12

•

•

"xao":33

•

 root

•

"bzz":22

•

LECTURE 12-1: BSTS AND EFFICIENCY

▸Operations:

➡ Searching for an entry by key.

➡ Adding or updating an entry, ordered according to key, storing the value.

➡ Removing an entry.

➡ Visiting all the entries in sorted order.

▸The first three operations rely on a search.

➡ This works from the root, moving left or right.

▸The last is in-order traversal. It is a recursive. Example: printing all the entries

➡ You print all of the entries left of the root entry.

➡ Then you print the root entry.

➡ And then you print all of the entries right of the root entry.

A BST CLASS
LECTURE 12-1: BSTS AND EFFICIENCY

TRAVERSING A BST
def printBST(node):
 if node is not None:
 printBst(node.left)
 entry = str(k)+":"+str(v)
 print(entry,end=' ')

class BSTree:
 ...
 def output(self):
 printBST(self.root)
 print()

>>> t.print()
abe:17 bob:22 bzz:22 cat:3 dog:5
mia:12 pig:8 xao:33
>>>

•

"dog": 5

•

•

•

"abe":17

•

•

"bob":22

•

•

"cat": 3

•
•

"pig": 8

•

•

"mia":12

•

•

"xao":33

•

 root

•

"bzz":22

•

LECTURE 12-1: BSTS AND EFFICIENCY

▸Look at BSTree.py

A TOUR OF THE BST CLASS CODE
LECTURE 12-1: BSTS AND EFFICIENCY

▸As you become a more sophisticated programmer, you'll be driven to write
good code. Some measures of "goodness":
• Is it correct?
• Is it readable?
• Is it maintainable?
•And sometimes writing efficient code is important, too.

WRITING BETTER CODE
LECTURE 12-1: ALGORITHM EFFICIENCY

▸Efficient code is code that uses fewer resources when run. Examples:
➡ It makes fewer calculations and/or takes fewer steps.
➡ It uses less memory with its data structures.

▸For both of these, a program will typically compute its answer faster.
• It runs faster.

▸Today we'll focus on running time.

EFFICIENT CODE
LECTURE 12-1: ALGORITHM EFFICIENCY

▸Suppose you have two programs that compute the same result:
➡ program A and program B.

•Q: How do we determine which one is faster?
•A: Run the code on typical inputs, measure the time it takes.

>>> import timeit  
>>> i = 'import pow2’  
>>> s = 'pow2.pow2(20)'  
>>> timeit.timeit(stmt=s,setup=i,number=100) 
0.0002275099977850914
 

▸This will time 100 evaluations of pow2(20) then report the elapsed time
in seconds.

MEASURING RUNNING TIME
LECTURE 12-1: ALGORITHM EFFICIENCY

▸Suppose you have two programs that compute the same result:
➡ program A and program B.

▸But maybe...
• You don’t have an exact sense of the typical inputs.
• The size of typical inputs increases over the lifetime of the algorithms’ use.
• The size and typicality of inputs might vary widely, depending on the

application of the algorithm.
• The computer might get upgraded in some near future. Or the programs

might be rewritten for some unknown system.

MEASURING RUNNING TIME
LECTURE 12-1: ALGORITHM EFFICIENCY

▸Suppose you have two programs that compute the same result:
➡ program A and program B.

▸But maybe...
• You don’t have an exact sense of the typical inputs.
• The size of typical inputs increases over the lifetime of the algorithms’ use.
• The size and typicality of inputs might vary widely, depending on the

application of the algorithm.
• The computer might get upgraded in some near future. Or the programs

might be rewritten for some unknown system.

▸We then also work to estimate running times.
➡ We use running time analysis.

MEASURING RUNNING TIME
LECTURE 12-1: ALGORITHM EFFICIENCY

▸Typical major concerns of running time estimation:

•How does the running time scale (roughly) with input complexity?
E.g. searching for an item in a list of size n
✦We will estimate "limiting" or asymptotic running time.

• For a particular input sizer, what are the trickiest inputs the code will face?
E.g. the search might have to scan the whole list.
✦We sometimes give bounds on the worst cases.

RUNNING TIME ANALYSIS
LECTURE 12-1: ALGORITHM EFFICIENCY

▸Typical lesser concerns of running time estimation:
• E.g. Something that runs 11% faster on one machine over another.
• E.g. Program A runs a little slower on small inputs well on large inputs

(0.2sec versus 0.15sec for Program B), even though Program A runs
must faster on large inputs (20sec versus 1000sec for Program B).

RUNNING TIME ANALYSIS
LECTURE 12-1: ALGORITHM EFFICIENCY

▸Let’s formalize some of these ideas:
➡ Two algorithms’ running times are asymptotically equal

if, for large inputs, which algorithm is faster depends
on the relative speed of their executing computers.

▸Example scenario:
• Suppose algorithm A takes n3 - 4n2 steps on an n-bit input.
• Suppose algorithm B takes 10n3+15steps on an n-bit input.
➡ If A and B run on the same computer, A runs faster.
➡ If B runs on a 100x speedier machine, it beats A on large inputs.

ASYMPTOTIC EQUIVALENCE
LECTURE 12-1: ALGORITHM EFFICIENCY

▸Let’s formalize some of these ideas:
➡ Two algorithms’ running times are asymptotically equal

if, for large inputs, which algorithm is faster depends
on the relative speed of their executing computers.

▸We define Θ(g(n)), the set of functions asymptotically equal to g, with:

Definition: f (n) is in the set Θ(g(n)) whenever there exist positive
constants L and U, and a positive constant m where

L g(n) ≤ f (n) ≤ U g(n)
for all n ≥ m.

ASYMPTOTIC EFFICIENCY
LECTURE 12-1: ALGORITHM EFFICIENCY

Definition: f (n) is in the class Θ(g(n)) whenever there exist positive
constants L and U, and a positive constant m where

L g(n) ≤ f (n) ≤ U g(n)
for all n ≥ m.

Examples:
n3 - 4n2 is in the class Θ(10n3+15)
10n3+15 is in the class Θ(n3 - 4n2)
n3 - 4n2 is in the class Θ(n3)
10n3+15 is in the class Θ(n3)
NOTE: All these functions grow as cubic functions of n.

BIG THETA
LECTURE 12-1: ALGORITHM EFFICIENCY

Definition: f (n) is in the class Θ(g(n)) whenever there exist positive
constants L and U, and a positive constant m where

L g(n) ≤ f (n) ≤ U g(n)
for all n ≥ m.

Examples from the last lecture:
Searching... an entire list of length n takes Θ(n) time.
...a balanced BST of size n to discover that a key is missing is Θ(log2(n)) time.
A nested pair of loops that sum the products i*j takes Θ(n2) time.
Computing pow2(n) using repeated squaring takes Θ(log2(n)) time.
Computing pow2(n) by multiplying 2 of n times takes Θ(n) time.
Computing pow2(n) by summing 1s takes Θ(2n) time.

BIG THETA
LECTURE 12-1: ALGORITHM EFFICIENCY

Definition: f (n) is in the class O(g(n)) whenever there are positive U and m
such that

0 ≤ f (n) ≤ U g(n)
for all n ≥ m.

Examples:
n3 - 4n2 is in the class O(10n3+15)
10n3+15 is in the class O(n3 - 4n2)
n2 is in the class O(n3)
100000n+987987987 is in the class O(n)

▸We use "big Oh" to say “asymptotically grows no faster than…”

BIG OH
LECTURE 12-1: ALGORITHM EFFICIENCY

Definition: f (n) is in the class O(g(n)) whenever there are positive U and m
such that

0 ≤ f (n) ≤ U g(n)
for all n ≥ m.

Examples:
Searching a list of length n takes O(n) time.
Searching a balanced BST of size n takes O(log2(n)) time.
Searching a BST of size n takes O(n) time.

▸We use "big Oh" to say “asymptotically grows no faster than…”

BIG OH
LECTURE 12-1: ALGORITHM EFFICIENCY

A CASE STUDY: SEARCHING A LIST
LECTURE 12-1: ALGORITHM EFFICIENCY

def search(item, someList):  
 i, n = 0, len(someList)  
 while i < n:  
 if someList[i] == item: return True  
 i += 1  
 return False

SEARCHING A LIST
LECTURE 12-1: ALGORITHM EFFICIENCY

Can we do better if a list is sorted?

▸Suppose that
someList[0] ≤ someList[1] ≤ … ≤ someList[n-1]

SEARCHING A SORTED LIST
LECTURE 12-1: ALGORITHM EFFICIENCY

def binarySearch(item,someList):  
 left, right = 0, len(someList)-1  
 while left <= right:  
 middle = (left + right) // 2  
 if item == someList[middle]:  
 return True  
 elif item < someList[middle]:  
 right = middle-1  
 else:  
 left = middle+1  
 return False

SEARCHING A SORTED LIST
LECTURE 12-1: ALGORITHM EFFICIENCY

def binarySearch(item,someList):  
 left, right = 0, len(someList)-1  
 while left <= right:  
 middle = (left + right) // 2  
 if item == someList[middle]:  
 return True  
 elif item < someList[middle]:  
 right = middle-1  
 else:  
 left = middle+1  
 return False  

▸With each someList[middle] check, we eliminate half the
undetermined list items from consideration.

▸This means we inspect the list O(log2 (n)) times.

SEARCHING A SORTED LIST
LECTURE 12-1: ALGORITHM EFFICIENCY

ANOTHER CASE STUDY: SORTING A LIST
LECTURE 12-1: ALGORITHM EFFICIENCY

▸With bubble sort we make several left-to-right scans over the list.

•We swap out-of-order values at neighboring locations

• This “bubbles up” larger values so they “rise” to the right.

def bubbleSort(aList):  
 n = len(aList)  
 for scan in range(1,n):  
 i = 0  
 while i < n - scan:  
 if aList[i+1] < aList[i]: # Out of order? Swap! 
 aList[i],aList[i+1] = aList[i+1],aList[i]  
 i += 1

BUBBLE SORT
LECTURE 12-1: ALGORITHM EFFICIENCY

▸With bubble sort we make several left-to-right scans over the list.

•We swap out-of-order values at neighboring locations

• This “bubbles up” larger values so they “rise” to the right.

def bubbleSort(aList):  
 n = len(aList)  
 for scan in range(1,n):  
 i = 0  
 while i < n - scan:  
 if aList[i+1] < aList[i]: #swap?  
 aList[i],aList[i+1] = aList[i+1],aList[i]  
 i += 1  

▸This means we only need to make n -1 scans.

BUBBLE SORT
LECTURE 12-1: ALGORITHM EFFICIENCY

▸With bubble sort we make several left-to-right scans over the list.

•We swap out-of-order values at neighboring locations

• This “bubbles up” larger values so they “rise” to the right.

def bubbleSort(aList):  
 n = len(aList)  
 for scan in range(1,n):  
 i = 0  
 while i < n - scan:  
 if aList[i+1] < aList[i]: #swap?  
 aList[i],aList[i+1] = aList[i+1],aList[i]  
 i += 1  

▸This means we only need to make n -1 scans.

▸This means we can stop the scan earlier for later passes.

BUBBLE SORT
LECTURE 12-1: ALGORITHM EFFICIENCY

▸What is the running time of bubble sort?
def bubbleSort(aList):  
 n = len(aList)  
 for scan in range(1,n):  
 i = 0  
 while i < n - scan:  
 if aList[i+1] < aList[i]:  
 aList[i],aList[i+1] = aList[i+1],aList[i] 
 i += 1

The if statement runs n - 1 times on the first scan, then n - 2 times on the
second scan, then n - 3 times on the third scan, …

BUBBLE SORT ANALYSIS
LECTURE 12-1: ALGORITHM EFFICIENCY

▸What is the running time of bubble sort?
def bubbleSort(aList):  
 n = len(aList)  
 for scan in range(1,n):  
 i = 0  
 while i < n - scan:  
 if aList[i+1] < aList[i]:  
 aList[i],aList[i+1] = aList[i+1],aList[i] 
 i += 1

The if statement runs n - 1 times on the first scan, then n - 2 times on the
second scan, then n - 3 times on the third scan, …

➡ The total number of swaps is
n (n - 1) / 2 = (n - 1) + (n - 2) + … + 3 + 2 + 1

▸Its running time scales quadratically with n.

BUBBLE SORT ANALYSIS
LECTURE 12-1: ALGORITHM EFFICIENCY

▸In running time analysis use asymptotic notation to describe efficiency.

•We use Big Theta for asymptotic equivalence.

•We use Big Oh for asymptotic guarantees, i.e. upper bounds.

▸Two classic searching and sorting algorithms:

•Binary search is a logarithmic time algorithm. It works on sorted lists.

•Bubble sort is a quadratic time algorithm. It sorts a list.

▸Can we sort faster than in quadratic time?

SUMMARY
LECTURE 12-1: ALGORITHM EFFICIENCY

