BINARY
SEARCH TREES

LECTURE 11-1

JIM FIX, REED COLLEGE CSCI 121

LECTURE 11-1: SEARCH TREES

COURSE INFO

» Project 4:
» Just posted! Check it out. Many checkpoints w/ final version due 12/13.
* Two options:
= adventure: a text-based role-playing game
= arcade: an 80s-style video game
* You can work with a partner if you like.
o Write a game (brief) proposal due Friday by 11:59pm.

LECTURE 11-1: SEARCH TREES

DEPARTMENT INFO
»Talk today!!

DEPARTMEN

REED COLLEGE
COMPUTER SCIENCE DEPARTMENT
JOB TALK

ALEXA VANHATTUM

Cornell University

Compilers are foundational—applications can only be as
efficient and religble as the underlying compiler stack that
translates their logic to machine code. But compiler
expertise is a finite resource, and engineers may have to
choose whether to prioritize adding aptimizations for
efficiency or validating the compiler features they already
nave for reliability. In this talk, I'll show how my work pushes
nast this tension between performance and correctness by
applying practical formal methods. I'll describe our
Diospyros compiler far an energy-efficient embeddea
system, which uses automated reasoning over equalities to
aroduce fast code with less manual programming effort. |
will then show how our Kani verifier for Rust leverages
compiler invariants to speed up carrectness checks for low-
level systems code. Finally, I'll address my ongoing work
toward verifying machine code generation in & popular
oroduction compiler infrastructure and outline my goals for
raising the level of abstraction in building efficient and
reliable compilers for computer systems.

MONDAY, NOVEMBER 14, 2022
4:40PM
ELIOT 314

Formal Methods For Efficient, Reliable Systems Programming

LECTURE 11-1: SEARCH TREES

A (BINARY) TREE NODE CLASS

GLOBAL FRAME
class BSTNode:
def init_ (self ,k,v): W 4
self.key =
self.value
self.left = None
self.right None
>>> w = BSTNode("bob", 22)
>>> x = BSTNode("abe",17)
>>> y = BSTNode("dog",5)
>>>
key|"abe"| value| 17 key|"bob" | value| 22 key|"dog"| value
left | @ | right| @ left | @ | right| @ left | @® | right

LECTURE 11-1: SEARCH TREES

A (BINARY) TREE NODE CLASS

class BSTNode:
def init_ (self ,k,v):

self.key

self.value

None
None

self.left =
self.right
>>> w = BSTNode("bob", 22)
>>> x = BSTNode("abe",17)
>>> y = BSTNode('"dog",5)
>>>
key|"abe"| value| 17
left | @ | right| @

GLOBAL FRAME
w > Y
key|"bob" | value| 22
left | @ | right| @
key|"dog"| value
left | @ | right

LECTURE 11-1: SEARCH TREES

A (BINARY) TREE NODE CLASS

class BSTNode:

def init_(self,k,v):

self.key = k
self.value = v

self.left = None
self.right = None
>>> w = BSTNode("abe", 22)
>>> x = BSTNode("bob",17)
>>> y = BSTNode("dog",5)
>>>
key|"abe"| value| 17
left | @ | right| @

GLOBAL FRAME
w > Y
key|"bob" | value| 22
left | @ | right| @
key|"dog"| value
left | @ | right

LECTURE 11-1: SEARCH TREES

A (BINARY) TREE NODE CLASS

class BSTNode:
def init_ (self ,k,v):

>>> W
>>> x
>>> vy
>>> w.left = x

>>> w.right = y

self.key = k
self.value = v
self.left = None
self.right = None

BSTNode ("'bob",22)
BSTNode ("abe",17)
BSTNode ("dog",5)

>>>
key|"abe"| value| 17
left | @ | right| @

GLOBAL FRAME
w > Y
key|"bob" | value| 22
left right
key|"dog"| value
left | @ | right

LECTURE 11-1: SEARCH TREES

A (BINARY) TREE NODE CLASS

class BSTNode:
def init_(self,k,v):

>>>
>>>
>>>
>>>
>>>
>>>

S S X g

.left = x
.right =y

self.key = k
self.value = v
self.left = None
self.right = None

BSTNode ("'bob",22)
BSTNode ("abe",17)

GLOBAL FRAME

w

X

"bob" :22

BSTNode ("dog",5)

abe

17

"dog" :

LECTURE 11-1: SEARCH TREES

A (BINARY) TREE NODE CLASS

class BSTNode:
def init_(self,k,v):

>>>
>>>
>>>
>>>
>>>
>>>
>>>

.left = x
.right =y

self.key = k
self.value = v
self.left = None
self.right = None

BSTNode ("'bob",22)
BSTNode ("abe",17)

GLOBAL FRAME

w

X

"bob" :22

BSTNode ("dog",5)

abe

17

BSTNode("cat", 3)

cat

LECTURE 11-1: SEARCH TREES

A (BINARY) TREE NODE CLASS

class BSTNode:
def init_(self,k,v):

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

< N S s & ¥ oS

.left = x
.right =y

self.key = k
self.value = v
self.left = None
self.right = None

BSTNode ("'bob",22)
BSTNode ("abe",17)

GLOBAL FRAME

w

X

"bob" :22

BSTNode ("dog",5)

abe

17

BSTNode("cat", 3)

.left = z

Ildog

cat

LECTURE 11-1: SEARCH TREES

A (BINARY) TREE NODE CLASS

class BSTNode:
def init_(self,k,v):

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

N S S OX S

.left = x
.right =y

self.key = k
self.value = v
self.left = None
self.right = None

BSTNode ("bob" ,22)
BSTNode ("abe" ,17)

GLOBAL FRAME

w

X

"bob" :22

BSTNode ("dog",5)

abe

17

BSTNode("cat", 3)

.left = z

lldog

cat

LECTURE 11-1: SEARCH TREES

A BINARY SEARCH TREE

root I

dog :

LECTURE 11-1: SEARCH TREES

ANOTHER BINARY SEARCH TREE

root H

lldogll: 5
rF‘ ©

"bob" :22
"abe" :17 "cat": 3

© 0o © ©o

LECTURE 11-1: SEARCH TREES

AND YET ANOTHER BINARY SEARCH TREE

root H

lldogll: 5

o

"abe" :17 3

© 0o ©

LECTURE 11-1: SEARCH TREES

PROPERTIES OF A BINARY SEARCH TREE

root
% SEARCH PATH TO KEY x

k : v

i

CONTAINS KEYS THAT FOLLOW x

T PRECEDE x

LECTURE 11-1: SEARCH TREES

SEARCHING FOR AN ENTRY IN A BST

class BSTNode:

def init_(self,k,v):

self.key = k
self.value = v
self.left = None
self.right = None

def search(root,k):
curr = root

while curr is not None:

if k == curr.key:

return curr.value

if k < curr.key:

curr = curr.left

if k > curr.key:

curr = curr.right

return None

root t‘

"bob":22

"abe":17

"cat" :

"bzz":22

BINARY SEARCH TREES

Binary search trees are a way of keeping track of a sorted collection.
Here, we are using them as an ordered dictionary.
For our dictionaries, there is at most one entry per key.
The link structure sorts the entries; maintains a sorted order.
The keys are usually organized alphabetically when strings.
The keys are usually sorted smaller/larger if numbers.

(Generally, in binary search trees, keys might appear more than once; have
multiple entries.)

(Generally, in binary search trees, the nodes might only contain keys
without associated values.)

A BST CLASS

Operations:
Adding an entry, ordered according to key.
Searching for an entry by key.
Removing an entry.
Visiting/traversing all the entries in sorted order.
The first three operations rely on a search.
This works from the root, moving left or right.
An is a recursive method. Example: printing all the entries

You print all of the entries left of the root entry.

Then you print the root entry.

And then you print all of the entries right of the root entry.

LECTURE 11-1: SEARCH TREES

A TOUR OF THE BST CLASS CODE

»Look at BSTree.py

