Nested function parenting

What happens when this script is executed?

def make_ adder (byhowmuch):
def this add(x):
return x + byhowmuch
return this add

addl = make_ adder (1)
add5 = make adder (5)
print (add1(100))
print (add5(200))

Nested fun

What happens when this

def make adder (byhowm
def this add(x):
return x + by
return this add

addl = make_ adder (1)
add5 = make adder(5)

print (addl1(100))
print (add5(200))

#0 <global>

make adder n

Nested funcimmerem 110

make adder n fn make adder #0

What happens when this &¢

ﬂ make adder (byhowmu .
def this add(x): Ko HEalt im0
return x + byh&atiiill
return this add

addl = make_ adder (1)
add5 = make adder (5)
print (add1(100))
print (add5(200))

INQ

fn make adder #0

def make adder (byhowmuch
def this add(x):

‘ return x + byho
return this add

addl = make_ adder (1)
add5 = make_ adder (5)
print (add1(100))
print (add5(200))

fn this add #1

INQ

fn make adder #0

def make adder (byhowmuch
def this add(x):

‘ return x + byho
return this add

addl = make adder (1) = A new this_add functio

add5 = make_adder(5) object is constructed during

print (add1(100)))
print (add5(200)) this call.

Nested funce M iNG

fn make adder #0

‘ return x + byho
return this add

addl = make adder (1) = A new this_add function

add5 = make_adder(5) object is constructed during
print(add1(100)) this call.

print (add5(200)) i o
= The def is executed within the
context of frame #1.

fn this add #1

def make adder (byhowmuch

def this add(x):

‘ return x + byho
return this add

addl = make_ adder (1)
add5 = make_ adder (5)
print (addl1(100))
print (add5(200))

INQ

fn make adder #0

fn thisadd‘ #1

= Anew this add function
object is constructed during
this call.

= The def is executed within the
context of frame #1.

= That new function’s parent
frame is set to #1.

INQ

fn make adder #0

def make adder (byhowmuch
def this add(x):

‘ return x + byho
return this add

addl = make adder (1) = A new this_add function

add5 = make_adder(5) object is constructed during
print(add1(100)) this call.

print (add5(200)) i o
= The defis executed within the

context of frame #1.
= That new function’s parent
frame is set to #1.

fn this add #1

INQ

fn make adder #0

def make adder (byhowmuch
def this add(x):
return x + byho

return this add

addl = make_ adder (1)
»addS = make adder (5)

print (add1(100))

print (add5(200))

> fn this add #1

INQ

fn make adder #0

ﬂmake_adder (byhowmuch
def this add(x):

return x + byho

return this add

> fn this add #1

addl = make_ adder (1) 42 make_adder ¢
add5 = make_ adder (5) b i aimch
print (add1(100))
print (add5(200))

- return this add

INQ

fn make adder #0

def make adder (byhowmuch
def this add(x):
return x + byho

> fn this add #1

addl = make adder (1)

#2 make_adder ¢
add5 = make_ adder (5)

wyhowmuch

print (addl1(100)) .
f .
print (add5(200)) SECRCCEY @——> fn this add #2

= A second this add function
object is constructed during
this call with parameter 5.

= The def is executed within the
context of frame #2.

INQ

fn make adder #0

def make adder (byhowmuch
def this add(x):

‘ return x + byho
return this add

addl = make_ adder (1)

#2 make_adder ¢
add5 = make_ adder (5) > fn——
fn this add ‘ #2

> fn this add #1

print (addl1(100)) .
print (add5 (200)) this add I

= The second this add function
object’s parent frame is #2.

INQ

fn make adder #0

def make adder (byhowmuch
def this add(x):
return x + byho
return this add

> fn this add #1

addl = make_ adder (1) 42 make_adder ¢

»addS = make_adder (5) E e ch

print (addl1(100)) . |
f #2
print (add5(200)) this add [l m s nURY EERELE

def make adder (byhowmucH

def this add(x):
return x + byho
return this add

addl = make_ adder (1)
»addS = make_adder (5)
print (add1(100))

print (add5(200))

INQ

fn make adder #0

> fn this add #1

#0 Make_adder

#0)

byhowmuch
this add n

fn this add #2

= Now the top-level code has
access to two different adding
functions add1 and adds.

= Each is a different closure.

INQ

def this_add(x);
return x +{byho
return thi s_addi

addl = make_adder(1) 42 make_adder ¢

add5 = make_adder(5) Bl et e

print (addl1(100)) .
f .
print (add5(200)) this add [l m s nURY EERELE

> in this add

#3 this.add @

= KT

fn make adder #0

#1

#2

def make adder (byhowmucH

def this add(x)
return x +
return this add

addl = make_ adder (1)
add5 = make_ adder (5)
print (add1(100))
print (add5(200))

INQ

fn make adder #0

> fn this add #1

make_adder)

byhowmuch

this add [l fn this add #2

#3 this.add @

3100

= We run add1 in the context of
#3, whose parent is #1.

INQ

fn make adder #0
addl = make_ adder (1) make_adder

> fn thisadd‘ #1
add5 = make_ adder (5) R eench

print (addl1(100)) . |
f 2
print (add5(200)) SYCRCEY @—m) fn this add #

def make adder (byhowmuch
def this add(x):
return x +

return this add

#3

= We run add1 in the context of
#3, whose parent is #1.

return this add

g

fn make adder #0

> this add #

addl = make_ adder (1)
add5 = make_ adder (5)
print (add1(100))
print (add5(200))

make_adder)

byhowmuch

TEC) @b fn this add #2

this_add &

3100

= We resolve byhowmuch by its
value when add1 was built.

INQ

def make adder (byhowmuch
def this add(x):

return x + byho

return this add

—> fn this add

addl = make_ adder (1) 42 make_adder ¢

add5 = make_ adder (5) E e ch

print (addl1(100)) . |
f
print (add5(200)) this add e <L TERELE
this_add @

3100

fn make adder #0

#1

#2

INQ

fn make adder #0

def make adder (byhowmu
def this add(x):

return x + byhc¢

return this add

> fn this add #1

addl = make adder (1) 42 make_adder)

add5 = make adder(5) byhowmuch
print (add1(100)) this add o fn this add #2

»print (add5 (200))
#3 this_.add @

Output to the console: x
101 #a this_add @

205 x

Following the parent chain

When a name is accessed in a statement:

= Python checks the active local frame.

= If not there, Python checks its parent frame.

= If not there, Python checks its parent’s parent frame.

= Etc.

= Eventually this could hit the global frame, raise an error.

This is the execution environment of that statement.

Frames can get complicated.

What happens when this script is executed?

apply2 = (lambda f: (lambda x: f(£f(x))))

def make adder (byhowmuch):
return (lambda x: x + byhowmuch)

addl = make_ adder (1)
add5 = make_ adder(5)
this = apply2(addl)
that = apply2(addb)
this (1000)

that (1000)

Environment Example

Show this code’s execution with an environment diagram:

def thing maker(a,b,c):

x = 35+b

c = c+l

def thing(v,w):
print (x)
print(a)

u = v*b + w
return u
x = x - 30
return thing

thingA = thing maker(3,4,5)
r = thingA(10,11)
print(r)

