
CSCI 121:  
Frames & Environments Part II 

Nesting Requires Parents



Returning function objects
Suppose a function object is returned: 

    def make_adder(by_how_much):  
        return (lambda x: x + by_how_much)

    add1 = make_adder(1)  
    add5 = make_adder(5)

➡ The function object “remembers” its local frame. 

➡ This is called its parent frame. 

➡ A function object is a “closure.” This is the description of 
its code along with info about its parent frame. 

closure = code + context



Parent frames
When a def is executed at the top level, that function’s 
function parent frame is the global frame. 

When a def is executed locally, that function’s parent 
frame is that active local frame. 

That active frame is the context in which that def is 
executed. 

A reference to that parent frame is stored with the 
function object. 

That def code + parent frame reference = the closure.



Parent frames
Let’s revisit how Python seeks the global frame… 
a = 3
b = 4
def sum_sqrs(x,y):
    a = sqr(x)
    b = sqr(y)
    return a + b
sqr = lambda x: x * x
def report():
    s = “The sum of the squares “
    print(s + str(a) + “ “ + str(b) + “ are:”)
    r = sum_sqrs(a,b)
    print(r)
report()
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➡ The def of sum_sqrs occurs in 
the global context. 

➡ This is sum_sqrs‘ parent 
frame.
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➡ The local frame for this call to 
report uses report’s parent 
frame.
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➡ Since a is unknown within the 
local frame, Python checks the 
parent frame.
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Suppose a function object is returned: 
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