(SCI121:
Frames & Environments Part ||
Nesting Requires Parents

Returning function objects

Suppose a function object is returned:

def make adder (by how much):
return (lambda x: x + by how much)

addl = make_ adder (1)
add5 = make_adder(5)

= The function object “remembers”its local frame.
= This is called its parent frame.

= A function object is a “closure. This is the description of
its code along with info about its parent frame.

closure = code + context

Parent frames

When a def is executed at the top level, that function’s
function parent frame is the global frame.

When a def is executed locally, that function’s parent
frame is that active local frame.

That active frame is the context in which that def is
executed.

A reference to that parent frame is stored with the
function object.

That def code + parent frame reference = the closure.

Parent frames

Let’s revisit how Python seeks the global frame...
= 3

a
g,
def sum sqrs(x,y):

a = sqr(x)

b = sqr(y)

return a + b
sgr = lambda x: x * x
def report():

s = “The sum of the squares “

print(s + str(a) + “ “ + str(b) + “ are:")
r = sum_sqrs(a,b)

print(r)

report ()

#0 <global>

Pare S

Let’s revisit how Python se

3

4
sum_sqrs(x,y):
a = sqr(x)

b = sqr(y)

return a + b
= lambda x: x * x
report ():
s = “The sum of t
print(s + str(a)
r = sum_sqrs(a,b)
print (r)

report ()

#0 <global>

Pare S
e e —

Let’s revisit how Python se

3
4
sum_sqrs(x,y):
a = sqr(x)
b = sqr(y)
return a + b
= lambda x: x * x
report ():
s = “The sum of t
print(s + str(a)
r = sum_sqrs(a,b)
print (r)

report ()

| #0 | <global>

a

Paren L
sum sqrs n fn sumsqrs
Let’s revisit how Python see e...

a=3
b = 4 :
def sum_sqrs(x,y): = The def of sum_ sqrs occurs in
a = sqr(x) the global context.
b = sqr(y) = This is sum sqrs’ parent

» return a + b :
. % x rame.

sgr = lambda x:
def report():

s = “The sum of the squares “

print(s + str(a) + ¢ “ + str(b) + Y are:")
r = sum_sqrs(a,b)

print(r)

report ()

#0 <global>

a
Pare N:
Let’s revisit how Python se Sums:z .

3
4

sum_sqgrs(x,y):
a = sqr(x)
b = sqr(y)

return a + b
= lambda x: x * x
report ():
s = “The sum of t
print(s + str(a)
r = sum_sqgrs(a,b)
print(r)

report ()

#0 <global>
a
Pare N
sum sqgrs n
Let’s revisit how Python se .l o—
3 report E

4

sum_sqgrs(x,y):
a = sqr(x)
b = sqr(y)

return a + b
= lambda x: x * x
report ():
s = “The sum of t
print(s + str(a)
r = sum_sqrs(a,b)
print(r)

report ()

#0 <global>

2 El

Parer S
sum_sqrs n fn sum sqrs #0

Let’s revisit how Python se¢ %2 O—F i <lambda>
a =3 reporta fn report

b =4

def sum sqrs(x,y):
a = sqr(x)
b = sqr(y)
return a + b

sqr = lambda x: x * x :
q X = The local frame for this call to
def report():

-s = #“The sum of thi report USes report’s parent
print(s + str(a) + frame.
r = sum_sqrs(a,b)

print(r)
report ()

#0 <global>

a

b

sum sqrs n

sar =
report E

~report)l

3 “The...” |

Parer:

Let’s revisit how Python see

a=3
b =4
def sum sqrs(x,y):
a = sqr(x)
b = sqr(y)
return a + b
sgr = lambda x: x * x
def report():

fn sum sqgrs #0
fn <lambda> #0
fn report #0

s = “The suy the squares “
-print(s + s + “ “ + str(b) + “ are:"”)
r = sum_sqrs(d,b)
print(r)
report ()

 #0 <global> |

Paren » O
, o ST @— > fn sum sqrs #0
Let’s revisit how Python seea > in <lambda> 10
a =3 BERLNA] &> fn report 40

sar
b =4

def sum sqrs(x,y):
a = sqr(x)
b = sqr(y)
return a + b = Since a is unknown within the
sqr = lambda x: x * x§ |5cal frame, Python checks the

def report():
< P T}(l; s «n Parentframe.
-print(s + s + “ “ + str(b) + “ are:”)

r = sum_sqrs(d,b)
print(r)
report ()

Emmer——
1 - .
Paren 1
T — . @——p fn sum sqrs #0
| > fn <lambda> #0
fn report #0

def sum sqrs(x,y):

a = sqr(x)

b = sqr(y)

return a + b
sgr = lambda x: x * x
def report():

s = “The suy the squares “

-print(s + s + “ “ + str(b) + “ are:”)

r = sum_sqrs(d,b)
print (r)
report ()

#0 <global>

a

b

sum sqrs n

sar =
report E

~report)l

3 “The...” |

Parer:

Let’s revisit how Python see

a=3
b =4
def sum sqrs(x,y):
a = sqr(x)
b = sqr(y)
return a + b
sgr = lambda x: x * x
def report():

s = “The sum of the squares “
i + “ “ + str(b) + “ are:")

fn sum sqgrs #0
fn <lambda> #0
fn report #0

report ()

s <global> |

fn sum sqrs #0
fn <lambda> #0
fn report #0

def sum sqrs(x,y):
a = sqr(x)
b = sqr(y)
return a + b
sgr = lambda x: x * x
def report():
s = “The sum of the squares “
] r(a) + “ “ + str(b) + “ are:")

report ()

ﬂi‘ sum_sqrs(x,y):
a = sqr(x)

#0 <global>

2 El

b g

Parer:
sum sqrs [

Let’s revisit how Python se¢ . 0—
a =3 report [

b =4

fn sum sqrs #0
fn <lambda> #0
fn report #0

b = sqr(y)

return a + b e 2umosqrs)
sqr = lambda x: x * x x ENE
def report(): v

s = “The sum of the
print(s + str(a) 4
r = sum_sqrs(a,b)
print(r)

report ()

“ are:")

#0 <global>

a
b !
sum sqgrs n
sar =
report E

Parer:

Let’s revisit how Python see

fn sum sqgrs #0
fn <lambda> #0
fn report #0

return a + b [#2 sum_sqrs)|
sqr = lambda x: x * X |
def report():

s = “The sum of the
print(s + str(a) +
r = sum_sqgrs(a,b)
print(r)

report ()

‘ “ are: ")

%0 <global> |

Paren

b g

fn sum sqgrs #0
fn <lambda> #0
fn report #0

return a + b #2 sum_sqrs Y

sqr = lambda x: x * x x EN

def report(): y F
s = “The sum of the
print(s + str(a) +
r = sum_sqrs(a,b)
print(r)

report ()

“ are:")

#0 <global>

2 El

b g

Parer:
sum sqrs [

Let’s revisit how Python se¢ . 0—
a =3 report [

b =4

def sum sqrs(x,y):
a = sqr(x)
b = sqr(y)

return a + b e 2umosqrs)
Abda X: X * X = BN
def report(): v
s = “The sum of the
print(s + str(a) 4
r = sum_sqrs(a,b) #3 <lambda> #0)

print(r) x

report ()

fn sum sqrs #0
fn <lambda> #0
fn report #0

“ are:")

sEemEy 2 T S9r(x)
b = sqr(y)

#0 <global>

2 El

b g

Parer:
sum sqrs [

Let’s revisit how Python see . 0—
a =3 report E
b =4

def sum sqrs(x,y):

fn sum sqrs #0
fn <lambda> #0
fn report #0

return a + b e 2umosqrs)

sqr = lambda x: x * x x ENE
def report(): v
s = “The sum of the a EN
print(s + str(a) 4
r = sum_sqrs(a,b) #3 <lambda> #0)
print (r) x ENNN

report ()

“ are:")

return a + b #2
bda x: x * x

#0 <global>

2 El

b g

Parer:
sum sqrs [

Let’s revisit how Python se¢ . 0—
a =3 report E
b =4
def sum sqrs(x,y):
a = sqr(x)
b = sqr(y)

fn sum sqrs #0
fn <lambda> #0
fn report #0

def report():
s = “The sum of the

print(s + str(a) +
r = sum_sqrs(a,b) #3 <lambda> #0)

print(r) x ENNN

3
report () #4 <lambda>
X

#0 <global>

2 El

b g

Parer:
sum sqrs [

Let’s revisit how Python se¢ . 0—

a =3 report E

b =4

def sum sqrs(x,y):
a = sqr(x)

fn sum sqrs #0
fn <lambda> #0
fn report #0

TEEEy D C ST W)
return a + b e 2umosqrs)

sqr = lambda x: x * x x ENE
v Z
= EI

def report():
s = “The sum of the
print(s + str(a) +

N 16
r = sum_sqrs(a,b) FEREREETT G
S
report () #4 <lambda>

“ are:")

#0 <global>

2 El
b g

Parer:
sum sqrs [

Let’s revisit how Python se¢ . 0—
a =3 report [

b =4
def sum sqrs(x,y):
a = sqr(x)
b = sqr(y)
return a + b
sgr = lambda x: x * x
def report():
s = “The sum of the e
print(s + str(a) 4 >

16
mmmml) ¢ = sum_sqrs(a,b) EEEERTTTTESG
X K]

print(r) 3

report () #4 <lambda>
> & 4

fn sum sqrs #0
fn <lambda> #0
fn report #0

#2 sum_sqrs D
b 3

Y E

“ are:")

#0 <global>

2 El
b g

Parer:
sum sqrs [

Let’s revisit how Python se¢ . 0—
a =3 report [

b =4

def sum sqrs(x,y):
a = sqr(x)
b = sqr(y)
return a + b

fn sum sqrs #0
fn <lambda> #0
fn report #0

#2 sum_sqrs D

sqr = lambda x: x * X x B
def report(): Y R
s = “The sum of the e

b

print(s + str(a) + 16 “ are:")
r = sum_sqrs(a,b) #3 <lambda> #0)
X K]

print(r) 3

»report() #4 <lambda>)
X K

Returning function objects

Suppose a function object is returned:

def make adder (by how much):
return (lambda x: x + by how much)

addl = make_ adder (1)
add5 = make_adder(5)

= The function object “remembers”its local frame.
= This is called its parent frame.

= A function object is a “closure. This is the description of
its code along with info about its parent frame.

closure = code + context

