
CSCI 121:  
Frames & Environments Part II

Nesting Requires Parents

Returning function objects
Suppose a function object is returned:

 def make_adder(by_how_much):  
 return (lambda x: x + by_how_much)

 add1 = make_adder(1)  
 add5 = make_adder(5)

➡ The function object “remembers” its local frame.

➡ This is called its parent frame.

➡ A function object is a “closure.” This is the description of
its code along with info about its parent frame.

closure = code + context

Parent frames
When a def is executed at the top level, that function’s
function parent frame is the global frame.

When a def is executed locally, that function’s parent
frame is that active local frame.

That active frame is the context in which that def is
executed.

A reference to that parent frame is stored with the
function object.

That def code + parent frame reference = the closure.

Parent frames
Let’s revisit how Python seeks the global frame…
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

Parent frames
Let’s revisit how Python seeks the global frame…
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

#0

Parent frames
Let’s revisit how Python seeks the global frame…
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs fn sum_sqrs

#0

#0

Parent frames
Let’s revisit how Python seeks the global frame…
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs fn sum_sqrs

#0

#0

➡ The def of sum_sqrs occurs in
the global context.

➡ This is sum_sqrs‘ parent
frame.

Parent frames
Let’s revisit how Python seeks the global frame…
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

fn sum_sqrs
fn <lambda>

#0

#0
#0

Parent frames
Let’s revisit how Python seeks the global frame…
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

#0

#0
#0

#0

Parent frames
Let’s revisit how Python seeks the global frame…
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

#0

#1

#0
#0

#0

#0

➡ The local frame for this call to
report uses report’s parent
frame.

Parent frames
Let’s revisit how Python seeks the global frame…
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

#0

#1 ????

#0
#0

#0

#0

Parent frames
Let’s revisit how Python seeks the global frame…
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

#0

#1

#0
#0

#0

#0

➡ Since a is unknown within the
local frame, Python checks the
parent frame.

Parent frames
Let’s revisit how Python seeks the global frame…
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

#0

#1

!!!!!!

#0
#0

#0

#0

Parent frames
Let’s revisit how Python seeks the global frame…
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

#0

#1 ????

#0
#0

#0

#0

Parent frames
Let’s revisit how Python seeks the global frame…
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

#0

#1

!!! #0
#0

#0

#0

Parent frames
Let’s revisit how Python seeks the global frame…
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

sum_sqrs
x 3

y 4

#0

#1

#2

#0
#0

#0

#0

#0

Parent frames
Let’s revisit how Python seeks the global frame…
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

sum_sqrs
x 3

y 4

#0

#1

#2 ????

#0
#0

#0

#0

#0

Parent frames
Let’s revisit how Python seeks the global frame…
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

sum_sqrs
x 3

y 4

#0

#1

#2

!!!!!!!!!
#0
#0

#0

#0

#0

Parent frames
Let’s revisit how Python seeks the global frame…
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

sum_sqrs
x 3

y 4

<lambda>
x 3

#0

#1

#2

#3

#0
#0

#0

#0

#0

#0

Parent frames
Let’s revisit how Python seeks the global frame…
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

sum_sqrs
x 3

y 4

a 9

<lambda>
x 3

#0

#1

#2

#3

#0
#0

#0

#0

#0

#0

Parent frames
Let’s revisit how Python seeks the global frame…
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

sum_sqrs
x 3

y 4

a 9

<lambda>
x 3

<lambda>
x 4

#0

#1

#2

#3

#4

#0
#0

#0

#0

#0

#0

#0

Parent frames
Let’s revisit how Python seeks the global frame…
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

sum_sqrs
x 3

y 4

a 9

b 16

<lambda>
x 3

<lambda>
x 4

#0

#1

#2

#3

#4

#0
#0

#0

#0

#0

#0

#0

Parent frames
Let’s revisit how Python seeks the global frame…
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

r 25

sum_sqrs
x 3

y 4

a 9

b 16

<lambda>
x 3

<lambda>
x 4

#0

#1

#2

#3

#4

#0
#0

#0

#0

#0

#0

#0

Parent frames
Let’s revisit how Python seeks the global frame…
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

r 25

sum_sqrs
x 3

y 4

a 9

b 16

<lambda>
x 3

<lambda>
x 4

#0

#1

#2

#3

#4

#0
#0

#0

#0

#0

#0

#0

Returning function objects
Suppose a function object is returned:

 def make_adder(by_how_much):  
 return (lambda x: x + by_how_much)

 add1 = make_adder(1)  
 add5 = make_adder(5)

➡ The function object “remembers” its local frame.

➡ This is called its parent frame.

➡ A function object is a “closure.” This is the description of
its code along with info about its parent frame.

closure = code + context

