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Returning function objects

Suppose a function object is returned:

def make adder (by how much):
return (lambda x: x + by how much)

addl = make_ adder (1)
add5 = make_adder(5)

= The function object “remembers”its local frame.
= This is called its parent frame.

= A function object is a “closure. This is the description of
its code along with info about its parent frame.

closure = code + context



Parent frames

When a def is executed at the top level, that function’s
function parent frame is the global frame.

When a def is executed locally, that function’s parent
frame is that active local frame.

That active frame is the context in which that def is
executed.

A reference to that parent frame is stored with the
function object.

That def code + parent frame reference = the closure.



Parent frames

Let’s revisit how Python seeks the global frame...
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def sum sqrs(x,y):

a = sqr(x)

b = sqr(y)

return a + b
sgr = lambda x: x * x
def report():

s = “The sum of the squares “

print(s + str(a) + “ “ + str(b) + “ are:")
r = sum_sqrs(a,b)

print(r)

report ()
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a=3
b = 4 :
def sum_sqrs(x,y): = The def of sum_ sqrs occurs in
a = sqr(x) the global context.
b = sqr(y) = This is sum sqrs’ parent

» return a + b :
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def report():
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report ()
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def sum sqrs(x,y):
a = sqr(x)
b = sqr(y)
return a + b

sqr = lambda x: x * x :
q X = The local frame for this call to
def report():

-s = #“The sum of thi report USes report’s parent
print(s + str(a) + frame.
r = sum_sqrs(a,b)

print(r)
report ()




#0 <global>

a

b

sum sqrs n

sar =
report E

~report )l

3 “The...” |

Parer:

Let’s revisit how Python see

a=3
b =4
def sum sqrs(x,y):
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b = sqr(y)
return a + b
sgr = lambda x: x * x
def report():

fn sum sqgrs #0
fn <lambda> #0
fn report #0
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-print(s + s + “ “ + str(b) + “ are:"”)
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print(r)
report ()
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def sum sqrs(x,y):
a = sqr(x)
b = sqr(y)
return a + b = Since a is unknown within the
sqr = lambda x: x * x§ |5cal frame, Python checks the

def report():
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-print(s + s + “ “ + str(b) + “ are:”)

r = sum_sqrs(d,b)
print(r)
report ()
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Suppose a function object is returned:

def make adder (by how much):
return (lambda x: x + by how much)

addl = make_ adder (1)
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