Access to the global frame

What happens when this script is executed?

a=3
b =4
def sum sqrs(x,y):
a = sqr(x)
b = sqr(y)
return a + b
sgr = lambda x: x * x
def report():

s = “The sum of the squares “

print(s + str(a) + “ “ + str(b) + “ are:")
r = sum_sqrs(a,b)

print(r)

report ()



The global frame is accessible

A function has access to globally-defined names:

= Python checks a function’s local frame for a name.
= |f no slot in local frame, it checks the global frame.
= A function can call globally defined functions.

= A function can use global variables.

= |If the function assigns a variable anywhere within its
code (i.e.”locally”) then Python treats it as a local
variable.
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The global frame is accessible

A function has access to globally-defined names:

= \When a variable name is used, Python checks local
frame.

= If no binding in local frame, it checks the global frame.

= |If a global function is called locally, binding is known

= If a global variable is accessed locally, binding is known.

= A local assignment within a function makes that name
a new local variable. Any other mention of that name
will be treated as a local access/update.



What about passing functions?

What happens when this script is executed?

def sqr(x):

return x * x
def sum apply(f,vl,v2):
a = f(vl)
b = £(v2)
return a + b
sum_apply(sqr,3,4)
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Passing functions

Suppose a function object is passed as a parameter.

= The local variable for that parameter also refers to that
function object.

= The global name and local parameter name are aliases
for that function object.

= When the function is called locally, that same function
object is used.



What happens when this

def sqr(x):
return x * x
def sum apply(f,vl,v2
a = f(vl)
b = f£(v2)
return a + b
r = sum_apply(sqr,3,4

AliaSing Of | #0 <global>

e
sum apply E




Aliasing of feme i |

sax [
What happens when this SEESEERSSEE o —

def sqr(x):
return x * X #1

ﬂ Sum_apply ( f ’ vl ’ v2 )
a = f(vl)

b = £(v2)
return a + b
r = sum _apply(sqr,3,4)

P fn sum apply

= Both the local name £ and the

global name sqr refer to the
same function object.
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