
Access to the global frame
What happens when this script is executed?
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

The global frame is accessible
A function has access to globally-de!ned names:

➡ Python checks a function’s local frame for a name.

➡ If no slot in local frame, it checks the global frame.

➡ A function can call globally de!ned functions.

➡ A function can use global variables.

➡ If the function assigns a variable anywhere within its
code (i.e. “locally”) then Python treats it as a local
variable.

Access to the global frame
What happens when this script is executed?
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

#0

Access to the global frame
What happens when this script is executed?
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs fn sum_sqrs

#0

Access to the global frame
What happens when this script is executed?
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

fn sum_sqrs
fn <lambda>

#0

Access to the global frame
What happens when this script is executed?
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

#0

Access to the global frame
What happens when this script is executed?
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

#0

#1 ????

Access to the global frame
What happens when this script is executed?
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

#0

#1

!!!!!!

Access to the global frame
What happens when this script is executed?
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

#0

#1 ????

Access to the global frame
What happens when this script is executed?
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

#0

#1

!!!

Access to the global frame
What happens when this script is executed?
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

sum_sqrs
x 3

y 4

#0

#1

#2

Access to the global frame
What happens when this script is executed?
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

sum_sqrs
x 3

y 4

#0

#1

#2 ????

Access to the global frame
What happens when this script is executed?
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

sum_sqrs
x 3

y 4

#0

#1

#2

!!!!!!!!!

Access to the global frame
What happens when this script is executed?
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

sum_sqrs
x 3

y 4

<lambda>
x 3

#0

#1

#2

#3

Access to the global frame
What happens when this script is executed?
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

sum_sqrs
x 3

y 4

a 9

<lambda>
x 3

#0

#1

#2

#3

Access to the global frame
What happens when this script is executed?
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

sum_sqrs
x 3

y 4

a 9

<lambda>
x 3

<lambda>
x 4

#0

#1

#2

#3

#4

Access to the global frame
What happens when this script is executed?
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

sum_sqrs
x 3

y 4

a 9

b 16

<lambda>
x 3

<lambda>
x 4

#0

#1

#2

#3

#4

Access to the global frame
What happens when this script is executed?
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

r 25

sum_sqrs
x 3

y 4

a 9

b 16

<lambda>
x 3

<lambda>
x 4

#0

#1

#2

#3

#4

Access to the global frame
What happens when this script is executed?
a = 3
b = 4
def sum_sqrs(x,y):
 a = sqr(x)
 b = sqr(y)
 return a + b
sqr = lambda x: x * x
def report():
 s = “The sum of the squares “
 print(s + str(a) + “ “ + str(b) + “ are:”)
 r = sum_sqrs(a,b)
 print(r)
report()

<global>
a 3

b 4

sum_sqrs
sqr

report

fn sum_sqrs
fn <lambda>
fn report

report
s “The…”

r 25

sum_sqrs
x 3

y 4

a 9

b 16

<lambda>
x 3

<lambda>
x 4

#0

#1

#2

#3

#4

The global frame is accessible
A function has access to globally-de!ned names:

➡ When a variable name is used, Python checks local
frame.

➡ If no binding in local frame, it checks the global frame.

➡ If a global function is called locally, binding is known

➡ If a global variable is accessed locally, binding is known.

➡ A local assignment within a function makes that name
a new local variable. Any other mention of that name
will be treated as a local access/update.

What about passing functions?
What happens when this script is executed?
def sqr(x):
 return x * x
def sum_apply(f,v1,v2):
 a = f(v1)
 b = f(v2)
 return a + b
r = sum_apply(sqr,3,4)

Passing functions
Suppose a function object is passed as a parameter.

➡ The local variable for that parameter also refers to that
function object.

➡ The global name and local parameter name are aliases
for that function object.

➡ When the function is called locally, that same function
object is used.

Aliasing of function objects
What happens when this script is executed?
def sqr(x):
 return x * x
def sum_apply(f,v1,v2):
 a = f(v1)
 b = f(v2)
 return a + b
r = sum_apply(sqr,3,4)

<global>
sqr

sum_apply

fn sqr

fn sum_apply

#0

Aliasing of function objects
What happens when this script is executed?
def sqr(x):
 return x * x
def sum_apply(f,v1,v2):
 a = f(v1)
 b = f(v2)
 return a + b
r = sum_apply(sqr,3,4)

<global>

r 25

sqr
sum_apply

fn sqr

fn sum_apply

sum_apply

v1 3

v2 4

#0

#1
f

➡ Both the local name f and the
global name sqr refer to the
same function object.

Aliasing of function objects
What happens when this script is executed?
def sqr(x):
 return x * x
def sum_apply(f,v1,v2):
 a = f(v1)
 b = f(v2)
 return a + b
r = sum_apply(sqr,3,4)

<global>

r 25

sqr
sum_apply

fn sqr

fn sum_apply

sum_apply

v1 3

v2 4

sqr
x 3

#0

#1

#2

f

Aliasing of function objects
What happens when this script is executed?
def sqr(x):
 return x * x
def sum_apply(f,v1,v2):
 a = f(v1)
 b = f(v2)
 return a + b
r = sum_apply(sqr,3,4)

<global>

r 25

sqr
sum_apply

fn sqr

fn sum_apply

sum_apply

v1 3

v2 4

a 9

sqr
x 3

sqr
x 4

#0

#1

#2

#3

b 16

f

