Access to the global frame

What happens when this script is executed?

a=3
b =4
def sum sqrs(x,y):
a = sqr(x)
b = sqr(y)
return a + b
sgr = lambda x: x * x
def report():

s = “The sum of the squares “

print(s + str(a) + “ “ + str(b) + “ are:")
r = sum_sqrs(a,b)

print(r)

report ()

The global frame is accessible

A function has access to globally-defined names:

= Python checks a function’s local frame for a name.
= |f no slot in local frame, it checks the global frame.
= A function can call globally defined functions.

= A function can use global variables.

= |If the function assigns a variable anywhere within its
code (i.e.”locally”) then Python treats it as a local
variable.

#0

Access tot

What happens when this ¢
a=3
b = 4
def sum sqrs(x,y):
a = sqr(x)
b = sqr(y)

return a + b
sgqr = lambda x: x * X
def report():
s = “The sum of t
print(s + str(a)
r = sum_sqrs(a,b)
print (r)
report ()

<global>

2 El

b

Access to t S
e e —

What happens when this ¢

3
4
sum_sqrs(x,y):
a = sqr(x)
b = sqr(y)
return a + b
= lambda x: x * x
report ():
s = “The sum of t
print(s + str(a)
r = sum_sqrs(a,b)
print (r)

report ()

#0 <global>
a

Access tot o
What happens when this Sums:: E

3
4

sum_sqgrs(x,y):
a = sqr(x)
b = sqr(y)

return a + b
= lambda x: x * x
report ():
s = “The sum of t
print(s + str(a)
r = sum_sqgrs(a,b)
print(r)

report ()

What happens when this sc¢

sqr
def

sl

#0 <global>

a
3. JIIE

sum sqrs n fn sum sqrs
sqr n fn <lambda>
3 report E
4

sum_sqrs(x,y):

a = sqr(x)

b = sqr(y)

return a + b

= lambda x: x * Xx

report ():

Access to th

fn report

s = “The sum of the squares “

print(s + str(a) + “ “ + str(b) + Y are:")
r = sum_sqrs(a,b)

print(r)

report ()

#0 <global>

a

g JIE

sum sqrs n fn sum sqrs

sqr n fn <lambda>
report E

3 “The...” |

Access to th

What happens when this sc

a=3
b =4
def sum sqrs(x,y):
a = sqr(x)
b = sqr(y)
return a + b
sgr = lambda x: x * x
def report():

fn report

s = “The suy the squares “
-print(s + s + “ “ + str(b) + “ are:")
r = sum_sqrs(d,b)
print(r)
report ()

| #0 <global> |
Access to th MU |
t sum sars I e ad T

What happens when this s¢ fn <lambda>

a=3
b =4
def sum sqrs(x,y):
a = sqr(x)
b = sqr(y)
return a + b
sgr = lambda x: x * x
def report():

fn report

s = “The suy the squares “
-print(s + s + “ “ + str(b) + “ are:”)
r = sum_sqrs(d,b)
print (r)
report ()

#0 <global>

a

g JIE

sum sqrs n fn sum sqrs

sqr n fn <lambda>
report E

3 “The...” |

Access to th

What happens when this sc

a=3
b =4
def sum sqrs(x,y):
a = sqr(x)
b = sqr(y)
return a + b
sgr = lambda x: x * x
def report():
s = “The sum of the squares “
] + “ “ + str(b) + “ are:")

fn report

report ()

fn sum sqrs

What happens when this <¢ > fn <lambda>
a =3 : - fn report
b = 4

def sum sqrs(x,y):
a = sqr(x)
b = sqr(y)
return a + b
sgr = lambda x: x * x
def report():
s = “The sum of the squares “
] + “ “ + str(b) + “ are:")

report ()

#0 <global>

a
3 JMIIE

sum sqrs n fn sum sqrs
sqr n fn <lambda>

Access to th

What happens when this sc

a =3 rePOrt‘= fn report
b =4
ﬂ sum_sqrs(x,y):
a = sqr(x)
b = sqr(y)
return a + b #2 sum_sqrs
sgr = lambda x: x * x x ENN
def report(): a4
s = “The sum of the
print(s + str(a) 4 “ are:")

r = sum_sqrs(a,b)
print(r)
report ()

#0 <global>

a
3. JIIE

sum sqrs n fn sum sqrs
sqr n fn <lambda>
report E

Access to th

What happens when this sc

fn report

return a + b | #2 sum_sqrs
sqr = lambda x: x * X |
def report():

s = “The sum of th¢
print(s + str(a) +
r = sum_sqgrs(a,b)
print(r)

report ()

 “ are:")

 #0 <global> |

Access to th

What happens when this sq

2

fn sum sqrs
fn <lambda>

fn report

#2 sum_sqrs

return a + b
sgr = lambda x: x * x x ENN
def report(): v E

s = “The sum of the

print(s + str(a) 4

r = sum_sqrs(a,b)

print (r)
report ()

“ are:")

#0 <global>

2 El

Access to th —me
TS @ fn sum sqrs

What happens when this <¢ 13 @— > in <lambda>
a =3 report E

b =4
def sum_sqrs(x,y):
a = sqr(x)
b = sqr(y)
return a + b #2 sum_sqrs
dﬁbda X: X * X x
def report(): vy /e
s = “The sum of the
print(s + str(a) +
r = sum_sqrs(a,b) FEEREPEITTES

print(r) -

report ()

fn report

“ are:")

#0 <global>

2 El

Access to th —me
TS @ fn sum sqrs

What happenS when this <¢ sar i fn <lambda>
a =3 report E
b =4
def sum sqrs(x,y):
sEemEy 2 T S9r(x)

b = sqr(y)

return a + b
sgr = lambda x: x * x
def report():

s = “The sum of the
print(s + str(a) +

r = sum_sqgrs(a,b) FEEREETTES
print(r) « N

report ()

fn report

#2

“ are:")

#0 <global>

a
b me

sum sqrs n fn sum sqrs
sqr n fn <lambda>

Access to th

What happens when this sc¢

a =3 rePOrt‘= fn report
b =4
def sum_sqgrs(x,y):
a = sqr(x)
b = sqr(y)
return a + b #2 sum_sqrs
dﬁbda X: X * X x K
def report(): y
s = “The sum of the &
print(s + str(a) + “ are:")

r = sum_sqgrs(a,b) FEEREETTES
print(r) X

report () # <lambda>
x

#0 <global>

Access to th —me
TS @ fn sum sqrs

What happenS when this s¢ sar i fn <lambda>

a =3 reportn

b =4

def sum sqrs(x,y):
a = sqr(x)

fn report

TEEEy D C ST W)
return a + b #2 sum_sqrs

sqr = lambda x: x * x x EN
def report(): y [
s = “The sum of the 2 I

print(s + str(a) + “ are:")

8 16

r = sum_sqgrs(a,b) FEEREETTES
print(r) X

report () # <lambda>
x

#0 <global>

a
3. JHIE

sum sqrs n fn sum sqrs

fn <lambda>

Access to th

What happens when this sc¢

a=3
b =4
def sum sqrs(x,y):
a = sqr(x)
b = sqr(y)
return a + b
sgr = lambda x: x * x
def report():
s = “The sum of the
print(s + str(a) + B 16 “ are:")

‘ r = sum_sqrs(a,b) FEEESTTTIES
print(r) x

report() #4 <lambda>
x

fn report

#2

#0 <global>

a
3. JHIE

sum sqrs n fn sum sqrs

fn <lambda>

Access to th

What happens when this sc¢

a=3
b =4
def sum sqrs(x,y):
a = sqr(x)
b = sqr(y)
return a + b
sgr = lambda x: x * x
def report():
s = “The sum of the
print(s + str(a) + B 16 “ are:")

r = sum_sqgrs(a,b) FEEREETTES
print(r) x
»repor t0) #4 <lambda>
x

fn report

#2

The global frame is accessible

A function has access to globally-defined names:

= \When a variable name is used, Python checks local
frame.

= If no binding in local frame, it checks the global frame.

= |If a global function is called locally, binding is known

= If a global variable is accessed locally, binding is known.

= A local assignment within a function makes that name
a new local variable. Any other mention of that name
will be treated as a local access/update.

What about passing functions?

What happens when this script is executed?

def sqr(x):

return x * x
def sum apply(f,vl,v2):
a = f(vl)
b = £(v2)
return a + b
sum_apply(sqr,3,4)

N
I

Passing functions

Suppose a function object is passed as a parameter.

= The local variable for that parameter also refers to that
function object.

= The global name and local parameter name are aliases
for that function object.

= When the function is called locally, that same function
object is used.

What happens when this

def sqr(x):
return x * x
def sum apply(f,vl,v2
a = f(vl)
b = f£(v2)
return a + b
r = sum_apply(sqr,3,4

AliaSing Of | #0 <global>

e
sum apply E

Aliasing of feme i |

sax [
What happens when this SEESEERSSEE o —

def sqr(x):
return x * X #1

ﬂ Sum_apply (f ’ vl ’ v2)
a = f(vl)

b = £(v2)
return a + b
r = sum _apply(sqr,3,4)

P fn sum apply

= Both the local name £ and the

global name sqr refer to the
same function object.

Al iaSing Of f #0 <global>
What happens when this &¢ sumap:f; g

def sqr(x):
return x * X o
def sum apply(f,vl,v2)
a = f(vl)
b = f(v2)
return a + b
r = sum_apply(sqr,3,4)

- fn sqr

» fn sum_apply

Aliasing of fsme i |

sax [T
What happens when this SEESEERSSEE o —

def sqr(x):
return x * x #
def sum apply(f,vl,v2)
a = f(vl)
b = f£(v2)
return a + b

»r = sum_apply(sqr,3,4)

P fn sum apply

