
CSCI 121:
Frames & Environments

Executing a script
What does this script do when executed?
x = 3
y = x + 3
x = x - 10
print(x)
print(y)
z = x * y
print(z)

Executing a script
What does this script do when executed?
x = 3
y = x + 3
x = x - 10
print(x)
print(y)
z = x * y
print(z)

Output to the console:
-7
6
-42

Executing a script
What does this script do when executed?
x = 3
y = x + 3
x = x - 10
print(x)
print(y)
z = x * y
print(z)

How does Python do this work? 
How does it track variables? Where does it store them? 
How are they organized?

Executing a script
What does this script do when executed?
x = 3
y = x + 3
x = x - 10
…

Questions:  
How does Python do this work? 
How does it track variables? Where does it store them? 
How are they organized?

Answer:  
Python uses variable frames 
It organizes an execution environment full of them.

Rules for global frame
When a script is executed:

➡ A global frame is constructed to hold script variables.

➡ A slot is added for each newly assigned variable. 
 x = 35

➡ The variable’s slot stores its current value.

➡ Python checks the slot for that variable’s value. 
 print(“The value is “ + str(x) + ”.”)

➡ A variable reassignment updates that slot’s contents.  
 x = x + 1

Activity within the global frame
What does this script do when executed?
x = 3
y = x + 3
x = x - 10
print(x)
print(y)
z = x * y
print(z)

Output to the console:

<global>#0

Activity within the global frame
What does this script do when executed?
x = 3
y = x + 3
x = x - 10
print(x)
print(y)
z = x * y
print(z)

Output to the console:

<global>#0

Activity within the global frame
What does this script do when executed?
x = 3
y = x + 3
x = x - 10
print(x)
print(y)
z = x * y
print(z)

Output to the console:

<global>
x 3

#0

Activity within the global frame
What does this script do when executed?
x = 3
y = x + 3
x = x - 10
print(x)
print(y)
z = x * y
print(z)

Output to the console:

<global>
x 3

y 6

#0

Activity within the global frame
What does this script do when executed?
x = 3
y = x + 3
x = x - 10
print(x)
print(y)
z = x * y
print(z)

Output to the console:

<global>
x -7

y 6

#0

Activity within the global frame
What does this script do when executed?
x = 3
y = x + 3
x = x - 10
print(x)
print(y)
z = x * y
print(z)

Output to the console:
-7

<global>
x -7

y 6

#0

Activity within the global frame
What does this script do when executed?
x = 3
y = x + 3
x = x - 10
print(x)
print(y)
z = x * y
print(z)

Output to the console:
-7
6

<global>
x -7

y 6

#0

Activity within the global frame
What does this script do when executed?
x = 3
y = x + 3
x = x - 10
print(x)
print(y)
z = x * y
print(z)

Output to the console:
-7
6

<global>
x -7

y 6

#0

z -42

Activity within the global frame
What does this script do when executed?
x = 3
y = x + 3
x = x - 10
print(x)
print(y)
z = x * y
print(z)

Output to the console:
-7
6
-42

<global>
x -7

y 6

#0

z -42

What about functions?
What happens when this script is executed?
x = 3
y = x + 3
def sqr(x):
 v = x * x
 return v
by1 = (lambda x: x+1)
x = x - 10

Rules for de!ning functions
Functions are treated like values, but in a special way.

➡ A def statement is like an assignment statement.

➡ A slot is created for that function.

➡ Its name refers to a new function object, constructed for
that de!nition.

➡ Evaluation of lambda also constructs a new function object.

➡ A function object holds info about the de!nition so its
code can be executed later (when it is called).

 

Function variables
What happens when this script is executed?
x = 3
y = x + 3
def sqr(x):
 v = x * x
 return v
by1 = (lambda x: x+1)
x = x - 10

<global>#0

Function bindings
What happens when this script is executed?
x = 3
y = x + 3
def sqr(x):
 v = x * x
 return v
by1 = (lambda x: x+1)
x = x - 10

<global>#0

Function bindings
What happens when this script is executed?
x = 3
y = x + 3
def sqr(x):
 v = x * x
 return v
by1 = (lambda x: x+1)
x = x - 10

<global>
x 3

#0

Function bindings
What happens when this script is executed?
x = 3
y = x + 3
def sqr(x):
 v = x * x
 return v
by1 = (lambda x: x+1)
x = x - 10

<global>
x 3

y 6

#0

Function bindings
What happens when this script is executed?
x = 3
y = x + 3
def sqr(x):
 v = x * x
 return v
by1 = (lambda x: x+1)
x = x - 10

<global>
x 3

y 6

sqr fn sqr

#0

Function bindings
What happens when this script is executed?
x = 3
y = x + 3
def sqr(x):
 v = x * x
 return v
by1 = (lambda x: x+1)
x = x - 10

<global>
x 3

y 6

sqr
by1

fn sqr
fn <lambda>

#0

Function bindings
What happens when this script is executed?
x = 3
y = x + 3
def sqr(x):
 v = x * x
 return v
by1 = (lambda x: x+1)
x = x - 10

<global>
x -7

y 6

sqr
by1

fn sqr
fn <lambda>

#0

What about function calls?
What happens when this script is executed?
x = 3
y = x + 3
def sqr(x):
 z = x * x
 return z
by1 = (lambda x: x+1)
x = x - 10
a = sqr(y)
b = sqr(10)

Rules for executing functions
When a function is called:

➡ A new local frame is created when a function is called.

➡ It holds the local variables for that function.

➡ Slots are added for each parameter variable.

➡ They are set to the values passed to that function.

➡ Assignments add slots to that local frame.

➡ Python checks local slots for local variables’ values.

➡ Reassigning updates a local slot’s contents.

Activity within a local frame
What happens when this script is executed?
x = 3
y = x + 3
def sqr(x):
 v = x * x
 return v
by1 = (lambda x: x+1)
x = x - 10
a = sqr(y)
b = sqr(10)

<global>
x -7

y 6

sqr
by1

fn sqr
fn <lambda>

#0

Activity within a local frame
What happens when this script is executed?
x = 3
y = x + 3
def sqr(x):
 v = x * x
 return v
by1 = (lambda x: x+1)
x = x - 10
a = sqr(y)
b = sqr(10)

<global>
x -7

y 6

sqr
by1

fn sqr
fn <lambda>

#0

sqr
x 6

#1

Activity within a local frame
What happens when this script is executed?
x = 3
y = x + 3
def sqr(x):
 v = x * x
 return v
by1 = (lambda x: x+1)
x = x - 10
a = sqr(y)
b = sqr(10)

<global>
x -7

y 6

sqr
by1

fn sqr
fn <lambda>

#0

sqr
x 6

v 36

#1

Activity within a local frame
What happens when this script is executed?
x = 3
y = x + 3
def sqr(x):
 v = x * x
 return v
by1 = (lambda x: x+1)
x = x - 10
a = sqr(y)
b = sqr(10)

<global>
x -7

y 6

sqr
by1

fn sqr
fn <lambda>

#0

sqr
x 6

v 36

#1

36

Activity within a local frame
What happens when this script is executed?
x = 3
y = x + 3
def sqr(x):
 v = x * x
 return v
by1 = (lambda x: x+1)
x = x - 10
a = sqr(y)
b = sqr(10)

<global>
x -7

y 6

sqr
by1

a

fn sqr
fn <lambda>

#0

sqr
x 6

v 36

#1

36

Activity within a local frame
What happens when this script is executed?
x = 3
y = x + 3
def sqr(x):
 v = x * x
 return v
by1 = (lambda x: x+1)
x = x - 10
a = sqr(y)
b = sqr(10)

<global>
x -7

y 6

sqr
by1

a

fn sqr
fn <lambda>

#0

sqr
x 6

#1

36

b 100

sqr
x 10

#2

v 36

jimfix

Activity within a local frame
What happens when this script is executed?
x = 3
y = x + 3
def sqr(x):
 v = x * x
 return v
by1 = (lambda x: x+1)
x = x - 10
a = sqr(y)
b = sqr(10)

<global>
x -7

y 6

sqr
by1

a

fn sqr
fn <lambda>

#0

sqr
x 6

#1

36

b 100

sqr
x 10

v 100

#2

v 36

jimfix

