FUNCTION OBJECTS

LECTURE 09-1

JIM FIX, REED COLLEGE CSCI 121

HOUSSAM ABBAS

OREGON STATE UNIVERSITY

Logic-Based Computational Ethics for
Autonomous Agents

This talk will describe some of my research in developing engineering tools for
automatic reasoning about ethical guidelines. The creation of intelligent systems that
are autonomous, update their own objectives, and interact with humans in their daily
lives, is a prime motivation in systems engineering, robotics, and Artificial Intelligence.
Examples include nursing robots in hospitals and self-driving vehicles. An explicit ethical
awareness in these systems is a necessary condition for successful daily interaction with
humans. However, to this day, there are comparatively few algorithms, and even fewer
tools, for designing ethics-equipped autonomous systems, especially when integrated
with a physical control loop. This research develops a computational theory and formal
design tools for ethics-equipped embaodied systems.

The ethical guidelines in question specifically take the form of statements of Obligation
(" The robot ought to care for the patient in greater pain'), Permission (" The robot is
permitted to offer a mask to a contagious patient') and Prohibition (" The robot is
forbidden from factoring gender into care decisions'). We formalize such Obligations,
Permissions and Prohibitions in deontic logic, and develop model-checking and learning
algorithms for deontic properties of finite automata. | will then describe the road ahead
for the formal study of ethical obligations in autonomous systems.

HOUSSAM ABBAS

OREGON STATE UNIVERSITY

TUESDAY, NOVEMBER 1, 2022
4:40PM
ELIOT 314

This talk will describe some of my research in developing engineering tools for
automatic reasoning about ethical guidelines. The creation of intelligent systems that
are autonomous, update their own objectives, and interact with humans in their daily
lives, is a prime motivation in systems engineering, robotics, and Artificial Intelligence.
Examples include nursing robots in hospitals and self-driving vehicles. An explicit ethical
awareness in these systems is a necessary condition for successful daily interaction with
humans. However, to this day, there are comparatively few algorithms, and even fewer
tools, for designing ethics-equipped autonomous systems, especially when integrated
with a physical control loop. This research develops a computational theory and formal
design tools for ethics-equipped embaodied systems.

The ethical guidelines in question specifically take the form of statements of Obligation
(" The robot ought to care for the patient in greater pain'), Permission (" The robot is
permitted to offer a mask to a contagious patient') and Prohibition (" The robot is
forbidden from factoring gender into care decisions'). We formalize such Obligations,
Permissions and Prohibitions in deontic logic, and develop model-checking and learning
algorithms for deontic properties of finite automata. | will then describe the road ahead
for the formal study of ethical obligations in autonomous systems.

COURSE INFO

Project 3 will be posted today. It's due Monday, November 15th.
there are two options:
hawk-dove: a simulation of evolving birds that compete for resources
flocks: a graphical simulation of flocking birds and other creatures
Today: functions as data objects, a.k.a. "higher order functions"
expressing functions succinctly using Lambda
passing functions as arguments
returning functions as values
Reading: CP Chapter 1.6 Higher-Order Functions
NEXT MONDAY: a quiz on recursion

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

PROJECT 3 OPTION #2 DEMO: FLOCKS OF "BOIDS™

THE HIGHER-ORDER FUNCTION FEATURES OF PYTHON

Python treats function as objects. This gives Python certain nifty features.

Generally:
Languages that have higher-order function features allow you to:

Pass functions/procedures as arguments to other functions/procedures.
Express functions succinctly and anonymously (using 1ambda).
Assign variables to be function objects, and

Return functions back from other functions.

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

EXAMPLE: FINDING A MINIMUM VALUE

» Given: the polynomial p(x) = x*- 8x3 + 6x - 4
»Find: which integer from 3 to 10 yields the lowest value?

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

EXAMPLE: FINDING A MINIMUM VALUE

» Given: the polynomial p(x) = x*- 8x3 + 6x - 4
»Find: which integer from 3 to 10 yields the lowest value?

Here is a script that computes that minimum:

def p(x):

return x**4 — 8*x**3 + 6%*x — 4
min so far = p(3)
where_seen = 3

i=4
while i <= 10:
if p(i) < min _so far:
min so far = p(1i)
where seen i
i=1i+1
print (where seen)

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

A TEMPLATE FOR FINDING MINIMUMS

Note that there is a template for performing this algorithm. Can work for...
+...any function
+...any start value
+...any end value

some_function(3)
start

min_so far
where seen
i = start + 1
while i <= end:
if some function(i) < min_so_ far:
min_so far some_ function(i)
where seen i
i=1i+1
print (where seen)

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

EXAMPLE: FINDING A MINIMUM VALUE

The code below generalizes on the range we check:

def p(x):
return x**4 — 8*x**3 + 6*x — 4

def argument for min p(start,end):
min so far = p(start)
where seen = start
i = start + 1
while i <= end:
if p(i) < min_so far:
min so far = p(1)
where _seen = i
i=1i+1
return where seen

print (argument for min p(3,10))
print (argument for min p(-20,5))
print (argument for min p(387,501))

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

EXAMPLE: FINDING A MINIMUM VALUE

The code below also generalizes on the function being checked:

def p(x):
return x**4 — 8*x**3 + 6*x — 4

def argument for min(some function,start,end):
min so far = some function(start)
where seen = start
i = start + 1
while i <= end:
if p(i) < min_so far:
min so far = some function(i)
where _seen = i
i=1i+1
return where seen

print (argument for min(p,3,10))
print (argument for min(p,-20,5))
print (argument for min(p,387,501))

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

EXAMPLE: USING IT FOR TWO DIFFERENT FUNCTIONS!

def argument_ for min(some_ function,start,end):
min so far = some_ function(start)
where seen = start
i = start + 1
while i <= end:
if p(i) < min _so far:
min_so far = some_function(i)
where seen = i
i=1i+1
return where seen

def p(x):
return x**4 — 8*x**3 + 6*x — 4

def another(arg):
return 3*arg**5 — 100*arg**2 + 99

print (argument for min(p,3,10))
print (argument for min(another,3,10))

HIGHER ORDER FUNCTIONS

Python treats functions as objects.
This means we can hand functions to other functions.
Functions can be passed as parameters.

Functions that take functions as parameters are higher order functions.

Such functions are “reasoning about” the functions they are given.

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

NEEDING DEF CAN SEEM WORDY...

def argument for min(some_ function,start,end):
min so far = some function(start)
where seen = start
i = start + 1
while i <= end:
if p(i) < min_so far:

min so far = some_ function(i)
where seen = i
i=1i+1

return where_seen

def f1(x):

return x * x - 3
def £f2(x):

return x - 3 * abs(x)
def £3(x):

return x ** 2 - 1

print (argument of min(f1,-5,3))
print (argument of min(f2,-5,3))
print (argument of min(£f3,-5,3))

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

CAN USE LAMBDA EXPRESSIONS INSTEAD

def argument_ for min(some_ function,start,end):
min so far = some_ function(start)
where seen = start
i = start + 1
while i <= end:
if p(i) < min _so far:
min_so far = some_function(i)
where seen = i
i=1i+1
return where seen

print (argument of min(lambda x: x * x - 3,-5,3))
print (argument of min(lambda x: x - 3 * abs(x),-5,3))
print (argument of min(lambda x: x ** 2 - 1,-5,3))

LAMBDA SYNTAX

The 1ambda construct allows you to express a function without naming it.
It provides anonymous function definition
Here is the syntax:
lambda parameters: expression for computed value
It constructs a function object that returns the computed value described.

Some examples, named using variable assignment:

square = lambda a: a * a

successor = lambda number: number + 1
sum squares = lambda x,y : xX*x + y*y
apply twice = lambda f,x : f£(f(x))
say hi = lambda : print(“hi!"”)

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

A HIGHER-ORDER PROCEDURE

Let's invent a procedure that reports a function's value

def report eval(name,f, x):
?22?2°?

Here is how I'd like it to work:

>>> report eval (“abs”,abs,-5)

The value of abs(-5) is 5.

>>> report eval(“abs”,abs,3)

The value of abs(3) is 3.

>>> report eval (“square”, lambda x: x*x, -5)
The value of square(-5) is 25.

>>> report eval(“square”, lambda x: x*x, 3)
The value of square(3) is 9.

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

A HIGHER-ORDER PROCEDURE

This procedure reports a function's value:

def report eval (name,f,x):

evaluate f at x
y = £(x)

build the report string

it = name + “(” + str(x) + “)”

that = str(y)

s = “The value of “ + it + “ is “ + that + ”.”

output the report string
print(s)

Here is it in use:

>>> report eval(“abs”,abs,-5)

The value of abs(-5) is 5.

>>> report eval (“square”, lambda x: x*x, 3)
The value of square(3) is 9.

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

ANOTHER HIGHER-ORDER PROCEDURE

How about this procedure?

def sequence report(name, seq, n):
22727

Here is how I'd like it to work:

>>> sequence_report(“£fib”, fibonacci,9)

n | £ib(n)
S S

1 1

2 1

3 2

4. 3

5 5

6 8

7 13

8 21

9 34

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

A SEQUENCE REPORTER

Here is the code for it:

def sequence_ report(name, seq, n):

print(" n | " + name + "(n)")
print("-"*3 + "+" + "-"*(len(name)+5))
i=1
while i <= n:

print (" "+str(i)+" | "+str(seq(i)))

i=1i+1

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

YET ANOTHER HIGHER-ORDER PROCEDURE

Q: What does this procedure do?

A:?
def abcde(op,size):
i=1
while i <= size:
j =1

while j <= size:
value = op(1i,j)
print (str(value),end=‘\t"’)
j =3 +1

print ()

i=1+1

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

A MULTIPLICATION TABLE

This is what it does:

>>> multiply = lambda x,y: x * y
>>> abcde(mul,5)

1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

4 8 12 16 20

5 10 15 20 25

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

A MULTIPLICATION TABLE

This is what it does:

>>> from operator import mul
>>> abcde(mul,5)

1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

4 8 12 16 20

5 10 15 20 25

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

YET ANOTHER HIGHER-ORDER PROCEDURE

Q: What does this procedure do?
A: It produces a table for any two-parameter function op.

def table(op,size):

1 =1
while 1 <= size:
|

while j <= size:
value = op(1i,j)
print (str(value),end=‘\t"’)
j =3 +1

print ()

i=1+1

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

RETURNING FUNCTION OBJECTS?

The lambda notation feels powerful.

»The code below builds a quadratic function object, then uses it:

>>> q = lambda x: 5*x**2 + 3*x - 1
>>> q(3)

53

>>> q(-1)

1

»Can we do this?

def makeQuadratic(a,b,c):
return (lambda x: a*x**2 + b*x + c)

»If we can, then we could do this:

>>> q = makeQuadratic(5,3,-1)
>>> q(3)

53

>>> q(-1)

1

HIGHER-ORDER FUNCTION FEATURES

Python treats function as objects. This gives Python certain nifty features.

Generally:
Languages that have higher-order function features allow you to:

Pass functions/procedures as arguments to other functions/procedures.
Express functions succinctly and anonymously (using 1ambda).
Assign variables to be function objects, and

Return functions back from other functions.

HIGHER-ORDER FUNCTION FEATURES

Python treats function as objects. This gives Python certain nifty features.

Generally:
Languages that have higher-order function features allow you to:

Pass functions/procedures as arguments to other functions/procedures.
Express functions succinctly and anonymously (using 1ambda).
Assign variables to be function objects, and

Return functions back from other functions.

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

RETURNING FUNCTIONS

> If we write this higher-order function:

def makeQuadratic(a,b,c):
return (lambda x: a*x**2 + b*x + c)

»Then we can do this:

>>> q = makeQuadratic(5,3,-1)
>>> q(3)

53

>>> q(-1)

1

» And we can also do this:

>>> r = makeQuadratic(1,0,-1)
>>> r(3)

8

>>> r(-1)

0]

»The function makeQuadratic is a kind of function factory.

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

AN ADDER FUNCTION FACTORY

» Let's define a function that produces adding functions:

def makeAdder (by this much):
return (lambda x: x + by this much)

»Here itis in use:

>>> successor = makeAdder (1)
>>> by_ten = makeAdder(1l0)
>>> successor(7)

8

>>> successor(70)

71

>>> by ten(7)

17

>>> by ten(70)

80

>>> (makeAdder (100)) (7)
107

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

ALTERNATIVES FOR WRITING AN ADDER-MAKER

»Here are several different ways of writing the code formakeAdder:

def makeAdder (by this much):
return (lambda x: x + by this much)

def makeAdder (by this much):
adder = (lambda x: x + by this much)
return adder

def makeAdder (by this much):
def adder(x):
return x + by this much
return adder

makeAdder = (lambda btm: (lambda x: x + btm))

»We see that de £ is just a multi-line assignment statement for functions.

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

A PROCEDURE FACTORY

def makeRepeater (some_ text):
def repeater (number):
i=0
while i1 < number:
print (some_ text)
i = 1i+1
return repeater

>>> greeter = makeRepeater (“hello”)
>>> ouchie = makeRepeater (“ow!”)
>>> greeter(3)

hello

hello

hello

>>> ouchie(5)

ow!

ow!

ow!

ow!

ow!

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

ANOTHER PROCEDURE-MAKER

def tablePrinterFor(op):

def printTable(rows,cols):
for 1 in range(rows):
for j in range(cols):
value = op(1i,j)
print (value,end=‘\t")
print ()

return printTable
>>> from operator import mul
>>> mult_table = tablePrinterFor (mul)

>>> mult table(4,6) # Prints a 4x6 mult. table.

>>> mult_table(12,12) # Prints a 12x12 table.

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

AN INPUT PROCEDURE FACTORY

def makeGetter (prompt, conversion, condition):
def getter():
while True:
entry = input (prompt)
value = conversion(entry)
if condition(value):
return value
print ("Not what we requested.")
return getter

good area = lambda x: x >= 0

area _get = makeGetter (”“Enter an area: ", float, good area)
ok _ans = lambda s: == "yes" or == "no"

answer get = makeGetter("yes / no? ", lambda x:x, ok ans)
is die = lambda d: (d >= 1) and (d <= 6)

roll get = makeGetter("What did you roll? ", int, is die)

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

A TEMPLATE FOR FUNCTION FACTORIES

def function_factory (Wwhich-one-you-want...y s

def some function(x1l,x2,..):
Describe how it acts on x1, x2, etc

¥ according to Which-one-you-want...

return ..
return some_ function

»Here is its application formakeAdder:

def makeAdder (dx):
def adder(x):
return x+dx
return adder

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

ANOTHER TEMPLATE FOR FUNCTION FACTORIES

def function_factory (Wwhich-one-you-want...y s

some function = (lambda x1,x2,..: ..)
return some_ function

»Here is its application formakeAdder:

def makeAdder (dx):
adder = (lambda x: x+dx)
return adder

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

YET ANOTHER TEMPLATE FOR FUNCTION FACTORIES

def function_factory (Wwhich-one-you-want...y s
return (lambda x1,x2,..: ..)

»Here is its application formakeAdder:

def makeAdder (dx):
return (lambda x: x+dx)

LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

AND YET ANOTHER TEMPLATE FOR FUNCTION FACTORIES

function factory = (lambda Which-one-you-want...: (lambda x1,x2,..: ..))

»Here is its application formakeAdder:

makeAdder = (lambda dx: (lambda x: x+dx))

