
FUNCTION OBJECTS

LECTURE 09-1

JIM FIX, REED COLLEGE CSCI 121

CS COLLOQUIUM TOMORROW
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

CS COLLOQUIUM TOMORROW
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

▸Project 3 will be posted today. It's due Monday, November 15th.
• there are two options:
➡ hawk-dove: a simulation of evolving birds that compete for resources
➡ flocks: a graphical simulation of fl ocking birds and other creatures

▸Today: functions as data objects, a.k.a. "higher order functions"
• expressing functions succinctly using lambda
•passing functions as arguments
• returning functions as values
▸Reading: CP Chapter 1.6 Higher-Order Functions
▸NEXT MONDAY: a quiz on recursion

COURSE INFO
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

PROJECT 3 OPTION #2 DEMO: FLOCKS OF "BOIDS"
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

Python treats function as objects. This gives Python certain nifty features.

Generally:
Languages that have higher-order function features allow you to:

▸Pass functions/procedures as arguments to other functions/procedures.

▸Express functions succinctly and anonymously (using lambda).

▸Assign variables to be function objects, and

▸Return functions back from other functions.
 

THE HIGHER-ORDER FUNCTION FEATURES OF PYTHON
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

▸Given: the polynomial p(x) = x4 - 8x3 + 6x - 4
▸Find: which integer from 3 to 10 yields the lowest value?

EXAMPLE: FINDING A MINIMUM VALUE
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

▸Given: the polynomial p(x) = x4 - 8x3 + 6x - 4
▸Find: which integer from 3 to 10 yields the lowest value?

Here is a script that computes that minimum:
def p(x):
 return x**4 – 8*x**3 + 6*x – 4

min_so_far = p(3)
where_seen = 3
i = 4
while i <= 10:
 if p(i) < min_so_far:
 min_so_far = p(i)
 where_seen = i
 i = i + 1
print(where_seen)

EXAMPLE: FINDING A MINIMUM VALUE
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

Note that there is a template for performing this algorithm. Can work for...
✦ ...any function
✦ ...any start value
✦ ...any end value

min_so_far = some_function(3)
where_seen = start
i = start + 1
while i <= end:
 if some_function(i) < min_so_far:
 min_so_far = some_function(i)
 where_seen = i
 i = i + 1
print(where_seen)

A TEMPLATE FOR FINDING MINIMUMS
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

The code below generalizes on the range we check:
def p(x):
 return x**4 – 8*x**3 + 6*x – 4

def argument_for_min_p(start,end):
 min_so_far = p(start)
 where_seen = start
 i = start + 1
 while i <= end:
 if p(i) < min_so_far:
 min_so_far = p(i)
 where_seen = i
 i = i + 1
 return where_seen

print(argument_for_min_p(3,10))
print(argument_for_min_p(-20,5))
print(argument_for_min_p(387,501))

EXAMPLE: FINDING A MINIMUM VALUE
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

The code below also generalizes on the function being checked:
def p(x):
 return x**4 – 8*x**3 + 6*x – 4

def argument_for_min(some_function,start,end):
 min_so_far = some_function(start)
 where_seen = start
 i = start + 1
 while i <= end:
 if p(i) < min_so_far:
 min_so_far = some_function(i)
 where_seen = i
 i = i + 1
 return where_seen

print(argument_for_min(p,3,10))
print(argument_for_min(p,-20,5))
print(argument_for_min(p,387,501))

EXAMPLE: FINDING A MINIMUM VALUE
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

def argument_for_min(some_function,start,end):
 min_so_far = some_function(start)
 where_seen = start
 i = start + 1
 while i <= end:
 if p(i) < min_so_far:
 min_so_far = some_function(i)
 where_seen = i
 i = i + 1
 return where_seen

def p(x):
 return x**4 – 8*x**3 + 6*x – 4

def another(arg):
 return 3*arg**5 – 100*arg**2 + 99

print(argument_for_min(p,3,10))
print(argument_for_min(another,3,10))

EXAMPLE: USING IT FOR TWO DIFFERENT FUNCTIONS!
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

▸Python treats functions as objects.
• This means we can hand functions to other functions.

✦Functions can be passed as parameters.

▸Functions that take functions as parameters are higher order functions.

▸Such functions are “reasoning about” the functions they are given.

HIGHER ORDER FUNCTIONS
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

def argument_for_min(some_function,start,end):
 min_so_far = some_function(start)
 where_seen = start
 i = start + 1
 while i <= end:
 if p(i) < min_so_far:
 min_so_far = some_function(i)
 where_seen = i
 i = i + 1
 return where_seen

def f1(x):
 return x * x - 3
def f2(x):
 return x - 3 * abs(x)
def f3(x):
 return x ** 2 - 1

print(argument_of_min(f1,-5,3))
print(argument_of_min(f2,-5,3))
print(argument_of_min(f3,-5,3))

NEEDING DEF CAN SEEM WORDY...
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

def argument_for_min(some_function,start,end):
 min_so_far = some_function(start)
 where_seen = start
 i = start + 1
 while i <= end:
 if p(i) < min_so_far:
 min_so_far = some_function(i)
 where_seen = i
 i = i + 1
 return where_seen

print(argument_of_min(lambda x: x * x - 3,-5,3))
print(argument_of_min(lambda x: x - 3 * abs(x),-5,3))
print(argument_of_min(lambda x: x ** 2 - 1,-5,3))

CAN USE LAMBDA EXPRESSIONS INSTEAD
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

The lambda construct allows you to express a function without naming it.
➡ It provides anonymous function definition

Here is the syntax:
lambda parameters: expression for computed value

▸It constructs a function object that returns the computed value described.

Some examples, named using variable assignment:
square = lambda a: a * a  
successor = lambda number: number + 1  
sum_squares = lambda x,y : x*x + y*y  
apply_twice = lambda f,x : f(f(x))  
say_hi = lambda : print(“hi!”)

LAMBDA SYNTAX
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

Let's invent a procedure that reports a function's value
def report_eval(name,f,x):
 ????  

Here is how I'd like it to work:
>>> report_eval(“abs”,abs,-5)
The value of abs(-5) is 5.
>>> report_eval(“abs”,abs,3)
The value of abs(3) is 3.
>>> report_eval(“square”, lambda x: x*x, -5)
The value of square(-5) is 25.
>>> report_eval(“square”, lambda x: x*x, 3)
The value of square(3) is 9.

A HIGHER-ORDER PROCEDURE
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

This procedure reports a function's value:
def report_eval(name,f,x):  
 
 # evaluate f at x  
 y = f(x)  
 
 # build the report string  
 it = name + “(“ + str(x) + “)”  
 that = str(y)  
 s = “The value of “ + it + “ is “ + that + ”.”  
 
 # output the report string  
 print(s)  

Here is it in use:
>>> report_eval(“abs”,abs,-5)
The value of abs(-5) is 5.
>>> report_eval(“square”, lambda x: x*x, 3)
The value of square(3) is 9.

A HIGHER-ORDER PROCEDURE
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

How about this procedure?
def sequence_report(name, seq, n):
 ????  

Here is how I'd like it to work:
>>> sequence_report(“fib”,fibonacci,9)
 n | fib(n)  
---+--------  
 1 | 1  
 2 | 1  
 3 | 2  
 4 | 3  
 5 | 5  
 6 | 8  
 7 | 13  
 8 | 21  
 9 | 34

ANOTHER HIGHER-ORDER PROCEDURE
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

Here is the code for it:
def sequence_report(name, seq, n):  
 print(" n | " + name + "(n)")  
 print("-"*3 + "+" + "-"*(len(name)+5))  
 i = 1  
 while i <= n:  
 print(" "+str(i)+" | "+str(seq(i)))  
 i = i + 1  

A SEQUENCE REPORTER
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

Q: What does this procedure do?

A: ?
def abcde(op,size):  
 i = 1  
 while i <= size:  
 j = 1  
 while j <= size:  
 value = op(i,j)  
 print(str(value),end=‘\t’)  
 j = j + 1  
 print()  
 i = i + 1  

YET ANOTHER HIGHER-ORDER PROCEDURE
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

This is what it does:
>>> multiply = lambda x,y: x * y
>>> abcde(mul,5)  
1 2 3 4 5  
2 4 6 8 10  
3 6 9 12 15  
4 8 12 16 20  
5 10 15 20 25

A MULTIPLICATION TABLE
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

This is what it does:
>>> from operator import mul
>>> abcde(mul,5)  
1 2 3 4 5  
2 4 6 8 10  
3 6 9 12 15  
4 8 12 16 20  
5 10 15 20 25

A MULTIPLICATION TABLE
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

Q: What does this procedure do?

A: It produces a table for any two-parameter function op.
def table(op,size):  
 i = 1  
 while i <= size:  
 j = 1  
 while j <= size:  
 value = op(i,j)  
 print(str(value),end=‘\t’)  
 j = j + 1  
 print()  
 i = i + 1  

YET ANOTHER HIGHER-ORDER PROCEDURE
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

The lambda notation feels powerful.

▸The code below builds a quadratic function object, then uses it:
>>> q = lambda x: 5*x**2 + 3*x - 1  
>>> q(3)  
53  
>>> q(-1)  
1

▸Can we do this?
def makeQuadratic(a,b,c):  
 return (lambda x: a*x**2 + b*x + c)

▸If we can, then we could do this:
>>> q = makeQuadratic(5,3,-1)  
>>> q(3)  
53  
>>> q(-1)  
1  

RETURNING FUNCTION OBJECTS?
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

Python treats function as objects. This gives Python certain nifty features.

Generally:
Languages that have higher-order function features allow you to:

▸Pass functions/procedures as arguments to other functions/procedures.

▸Express functions succinctly and anonymously (using lambda).

▸Assign variables to be function objects, and

▸Return functions back from other functions.
 

HIGHER-ORDER FUNCTION FEATURES
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

Python treats function as objects. This gives Python certain nifty features.

Generally:
Languages that have higher-order function features allow you to:

▸Pass functions/procedures as arguments to other functions/procedures.

▸Express functions succinctly and anonymously (using lambda).

▸Assign variables to be function objects, and

▸Return functions back from other functions.
 

HIGHER-ORDER FUNCTION FEATURES
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

▸If we write this higher-order function:
def makeQuadratic(a,b,c):  
 return (lambda x: a*x**2 + b*x + c)

▸Then we can do this:
>>> q = makeQuadratic(5,3,-1)  
>>> q(3)  
53  
>>> q(-1)  
1

▸And we can also do this:
>>> r = makeQuadratic(1,0,-1)  
>>> r(3)  
8  
>>> r(-1)  
0  

▸The function makeQuadratic is a kind of function factory.

RETURNING FUNCTIONS
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

▸Let’s define a function that produces adding functions:
def makeAdder(by_this_much):  
 return (lambda x: x + by_this_much)

▸Here it is in use:
>>> successor = makeAdder(1)  
>>> by_ten = makeAdder(10)  
>>> successor(7)  
8  
>>> successor(70)  
71  
>>> by_ten(7)  
17  
>>> by_ten(70)  
80  
>>> (makeAdder(100))(7)  
107

AN ADDER FUNCTION FACTORY
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

▸Here are several different ways of writing the code for makeAdder:
def makeAdder(by_this_much):  
 return (lambda x: x + by_this_much)  
 
def makeAdder(by_this_much):  
 adder = (lambda x: x + by_this_much)  
 return adder  
 
def makeAdder(by_this_much):  
 def adder(x):  
 return x + by_this_much  
 return adder

makeAdder = (lambda btm: (lambda x: x + btm))  

▸We see that def is just a multi-line assignment statement for functions.

ALTERNATIVES FOR WRITING AN ADDER-MAKER
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

def makeRepeater(some_text):  
 def repeater(number):  
 i = 0  
 while i < number:  
 print(some_text)  
 i = i+1  
 return repeater

>>> greeter = makeRepeater(“hello”)  
>>> ouchie = makeRepeater(“ow!”)  
>>> greeter(3)  
hello  
hello  
hello  
>>> ouchie(5)  
ow!  
ow!  
ow!  
ow!  
ow!  

A PROCEDURE FACTORY
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

def tablePrinterFor(op):  
 
 def printTable(rows,cols):  
 for i in range(rows):  
 for j in range(cols):  
 value = op(i,j)  
 print(value,end=‘\t')  
 print()  
  
 return printTable

>>> from operator import mul  
>>> mult_table = tablePrinterFor(mul)  
>>> mult_table(4,6) # Prints a 4x6 mult. table.  
…  
>>> mult_table(12,12) # Prints a 12x12 table.  
…  

ANOTHER PROCEDURE-MAKER
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

def makeGetter(prompt, conversion, condition):  
 def getter():  
 while True:  
 entry = input(prompt)  
 value = conversion(entry)  
 if condition(value):  
 return value  
 print("Not what we requested.")  
 return getter

good_area = lambda x: x >= 0  
area_get = makeGetter(“Enter an area: ", float, good_area)
ok_ans = lambda s: s == "yes" or s == "no"  
answer_get = makeGetter("yes / no? ", lambda x:x, ok_ans)
is_die = lambda d: (d >= 1) and (d <= 6)  
roll_get = makeGetter("What did you roll? ", int, is_die) 

AN INPUT PROCEDURE FACTORY
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

def function_factory(which-one-you-want...):  
 def some_function(x1,x2,…):  
 # Describe how it acts on x1, x2, etc  
 # according to which-one-you-want... 
 …  
 return …  
 return some_function

▸Here is its application for makeAdder:
def makeAdder(dx):  
 def adder(x):  
 return x+dx  
 return adder  

A TEMPLATE FOR FUNCTION FACTORIES
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

def function_factory(which-one-you-want...):  
 some_function = (lambda x1,x2,…: …)  
 return some_function

▸Here is its application for makeAdder:
def makeAdder(dx):  
 adder = (lambda x: x+dx)  
 return adder  

ANOTHER TEMPLATE FOR FUNCTION FACTORIES
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

def function_factory(which-one-you-want...):  
 return (lambda x1,x2,…: …)

▸Here is its application for makeAdder:
def makeAdder(dx):  
 return (lambda x: x+dx)  
  

YET ANOTHER TEMPLATE FOR FUNCTION FACTORIES
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

function_factory = (lambda which-one-you-want...: (lambda x1,x2,…: …))

▸Here is its application for makeAdder:
makeAdder = (lambda dx: (lambda x: x+dx))  
  

AND YET ANOTHER TEMPLATE FOR FUNCTION FACTORIES
LECTURE 09-1: HIGHER-ORDER FUNCTIONS IN PYTHON

