0BJECT-ORIENTATION
& CLASS INHERITANCE

LECTURE 08-1

JIM FIX, REED COLLEGE CSCI 121

COURSE INFO

Project 2 is due next Monday
The 1st Midterm Exam is Wednesday
Today: we continue looking at object-orientation in Python

a few more examples, including Rational

special methods

class inheritance
Reading: Python object-orientation

TP2e Ch 15-18
at https://greenteapress.com/thinkpython2/thinkpython2.pdf

CP Ch 2.5-2.8

LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

SYNTAX: CLASS DEFINITION

Below is a template for most class definitions:
class class-name:
def init (self, parameter-list) :
statements that set each of sel £'s attributes

def method-name (self , parameter-list) :
statements that access sel £'s attributes

LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

SYNTAX: CLASS DEFINITION

Below is a template for most class definitions:
class class-name:
def init (self, parameter-list) :
statements that set each of sel £'s attributes

def method-name (self , parameter-list) :
...self.attribute... # attribute access

LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

SYNTAX: CLASS DEFINITION

Below is a template for most class definitions:
class class-name:
def init (self, parameter-list) :
statements that set each of sel £'s attributes

def method-name (self, parameter-list) :

method invocation
self . method (parameters)

LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

SYNTAX: CLASS DEFINITION

Below is a template for most class definitions:
class class-name:
def init (self, parameter-list) :

def method-name (self , parameter-list) :
Here is client code for creating a new object instance:

thing = class-name (parameters)
thing.method-name (parameters)

LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

EXAMPLE: A FIBONACCI GENERATOR CLASS

Here is a class for an object that produces the Fibonacci sequence:
class Fib:

def

def

def

def

__init (self):

self.prev = 0
self.current =1

advance (self):

next = self.prev + self.current
self.prev = self.current
self.current = next

get (self):

return self.current
output (self):

print (self.get())
self.advance()

LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

EXAMPLE: A FIBONACCI GENERATOR CLASS

Here is a class for an object that produces the Fibonacci sequence:

class Fib:

def init (self):
self.reset ()

def advance(self):
next = self.prev + self.current
self.prev = self.current
self.current = next

def get(self):
return self.current

def output (self):
print (self.get())
self.advance ()

def reset(self):
self.prev = 0
self.current =1

LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

EXAMPLE: A TWO-DIGIT NUMBER OBJECT

Here is a class for an object that stores a two-digit number:
class TwoDigit:

def

__init (self,d2,d1):
self tens = d2
self.ones = dl

def changeTensTo(self,d):

self.tens d

def changeOnesTo(self,d):

self.ones d

def get(self):

return self.tens*10

+ self.ones

LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

EXAMPLE: A TWO-DIGIT NUMBER OBJECT V2.0

Here is a different implementation of the two-digit number class:

class TwoDigit:
def 1init (self,d2,d1):
self.number = d2*10 + dl
def changeTensTo(self,d):
self.number = d*10 + (self.number310)
def changeOnesTo(self,d):
self.number = (self.number//10)*10 + d
def get(self):
return self.number

» Any client code that uses TwoDigit can be the same for either, so long as
it uses only its methods.

LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

EXAMPLE: RATIONAL NUMBER CLASS

Here is our rational number data structure as an object class

class Rational:
def 1init_ (self,n,d):
if d < O:
n *= -1
d *= -1
g = GCD(n,d)
self.numerator = n
self.denominator =

// g
d // g

def getNumerator(self):
return self.numerator

def getDenominator(self):
return self.denominator

LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

EXAMPLE: RATIONAL NUMBER ADDITION METHOD

We can define multiplication of rational numbers as we did before:

class Rational:
def init (self,n,d): ..
def getNumerator(self): ...
def getDenominator(self): ...

def times(self,other):
sn = self.getNumerator ()
sd = self.getDenominator ()
on other.getNumerator ()
od = other.getDenominator ()
return Rational (sn*on, sd*od)

LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

EXAMPLE: RATIONAL NUMBER ADDITION METHOD

We can define addition of rational numbers as we did before:

class Rational:
def init_ (self,n,d):
def getNumerator(self):
def getDenominator(self):
def times (self,other):

def plus(self,other):
sn = self.getNumerator ()
sd = self.getDenominator()
on other.getNumerator ()
od = other.getDenominator ()
return Rational(sn*od + on*sd, sd*od)

LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

OUR RATIONAL NUMBER OBJECT IN ACTION

» With these defined, here is an interaction:

>>> a = Rational(1l, 3)
>>> a.asString()

‘1 / 3

>>> b = Rational(1l, 2)
>>> ba = b.times(a)
>>> ba.asString()

'1/ 6'

>>> ¢ = a.plus(ba)

>>> c.asString()

‘1 / 2

LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

OUR RATIONAL NUMBER OBJECT IN ACTION

»Wouldn't this be great to see instead?

>>> a = Rational(1l, 3)
>>>
1/
>>>
>>>

1/
>>>

1/

Rational (1, 2)
a

+ b * a

N 6D T W
*

LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

EXAMPLE: DEFINING THE TIMES OPERATION

Python has "special methods" that provide hooks to using operator syntax:

class Rational:
def init (self,n,d): ..

defines rl * r2
def mul (self,other):
sn = self.getNumerator ()
sd self.getDenominator ()
on = other.getNumerator ()
od = other.getDenominator ()
return Rational (sn*on, sd*od)

LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

EXAMPLE: DEFINING THE PLUS OPERATION

class Rational:
def init (self,n,d):
def getNumerator(self):
def getDenominator(self):
def mul (self,other):

defines rl + r2
def @ add__ (self,other):
sn = self.getNumerator ()
sd = self.getDenominator ()
on other.getNumerator ()
od = other.getDenominator ()
return Rational(sn*od + on*sd, sd*od)

LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

SPECIAL METHODS

Python has "special methods" for lots of built-in syntax.
»They are surrounded by a double underscore (_)

» Documented at this technical page:
= https://docs.python.org/3/reference/datamodel.html#special-method-names

»Nice overview here:
= https://www.pythonlikeyoumeanit.com/Module4_0OOP/Special_Methods.html

Example:
def mul (self,other):

» Definesx * y tomeanx. mul (y)

LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

SPECIAL METHODS

Python has "special methods" for lots of built-in syntax.
»They are surrounded by a double underscore (_)

» Documented at this technical page:
= https://docs.python.org/3/reference/datamodel.html#special-method-names

»Nice overview here:
= https://www.pythonlikeyoumeanit.com/Module4_0OOP/Special_Methods.html

Example:
def eq (self,other):

» Definesx == y tomeanx. eq (y)

LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

SPECIAL METHODS

Python has "special methods" for lots of built-in syntax.
»They are surrounded by a double underscore (_)

» Documented at this technical page:
= https://docs.python.org/3/reference/datamodel.html#special-method-names

»Nice overview here:
= https://www.pythonlikeyoumeanit.com/Module4_0OOP/Special_Methods.html

Example:
def getitem (self,index):

» Definesx[i] tomeanx. getitem (i)

LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

SPECIAL METHODS

Python has "special methods" for lots of built-in syntax.
»They are surrounded by a double underscore (_)

» Documented at this technical page:
= https://docs.python.org/3/reference/datamodel.html#special-method-names

»Nice overview here:
= https://www.pythonlikeyoumeanit.com/Module4_0OOP/Special_Methods.html

Example:
def str (self):

» Definesstr(x) tomeanx. str ()

» Alsoused forprint (x).ltmeans print (x. str ())

LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

SPECIAL METHODS

Python has "special methods" for lots of built-in syntax.
»They are surrounded by a double underscore (_)

» Documented at this technical page:
= https://docs.python.org/3/reference/datamodel.html#special-method-names

»Nice overview here:
= https://www.pythonlikeyoumeanit.com/Module4_0OOP/Special_Methods.html

Example:
def repr (self):

» Defines the string "representation” of an object.

LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

SPECIAL METHODS

Python has "special methods" for lots of built-in syntax.
»They are surrounded by a double underscore (_)

» Documented at this technical page:
= https://docs.python.org/3/reference/datamodel.html#special-method-names

»Nice overview here:
= https://www.pythonlikeyoumeanit.com/Module4_0OOP/Special_Methods.html

Example:
def repr (self):

» Used by the interpreter to display the object's value, like so:

>>> Rational (27, 33)
9 / 11

LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

RECALL: ACCOUNT CLASS

» Here is the class definition of a new Account type:

class Account:
interest rate = .02
def init (self, amount):
self.balance = amount
def deposit(self, amount):
self.balance += amount
def payInterest(self):
self.balance *= 1.0 + self.interest rate
def getBalance(self):
return self.balance

»Here is Account in use;
>>> a = Account(150)

>>> a.deposit (50)
>>> a.payInterest()
>>> a.getBalance()
204.0

AN ACCOUNT CLASS HIERARCHY

We can build hierarchies of different accounts:

Accoug:\\\
Checking Savings

/

PromotionalChecking

We make subclasses that inherit the attributes of their "superclasses"
A savings account has all the info and operations of an Account.
But it has features and behavior more specific to checking accounts

This is called subclass specialization.
We extend the superclass with additional attributes.
It also overrides some of the behavior it inherits from Account.

LECTURE 08-1: CLASS INHERITANCE

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT

class Account:

interest rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

def payInterest(self):

self.balance *= 1.0 + self.interest rate

class Savings (Account):
interest rate = 0.04
withdraw fee = 1.0
def withdraw(self, amount):
Account.withdraw(self, amount + self.withdraw fee)

LECTURE 08-1: CLASS INHERITANCE

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT

class Account:

interest rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

def payInterest(self):

self.balance *= 1.0 + self.interest rate

class Savings (Account) : #inherit the methods and class variables of Account
interest rate = 0.04
withdraw fee = 1.0
def withdraw(self, amount):
Account.withdraw(self, amount + self.withdraw fee)

LECTURE 08-1: CLASS INHERITANCE

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT

class Account:

interest rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

def payInterest(self):

self.balance *= 1.0 + self.interest rate

class Savings (Account):
interest rate = 0.04 #overrides the class variable inherited from Account
withdraw fee = 1.0
def withdraw(self, amount):
Account.withdraw(self, amount + self.withdraw fee)

LECTURE 08-1: CLASS INHERITANCE

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT

class Account:

interest rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

def payInterest(self):

self.balance *= 1.0 + self.interest rate

class Savings (Account):
interest rate = 0.04
withdraw fee = 1.0 #extendswith aspecializing class variable
def withdraw(self, amount):
Account.withdraw(self, amount + self.withdraw fee)

LECTURE 08-1: CLASS INHERITANCE

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT

class Account:

interest rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

def payInterest(self):

self.balance *= 1.0 + self.interest rate

class Savings (Account):
interest rate = 0.04
withdraw fee = 1.0
def withdraw(self, amount): #overridesa method inherited from Account

Account.withdraw(self, amount + self.withdraw fee)

LECTURE 08-1: CLASS INHERITANCE

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT

class Account:

interest rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

def payInterest(self):

self.balance *= 1.0 + self.interest rate

class Savings (Account):
interest rate = 0.04
withdraw fee = 1.0
def withdraw(self, amount): #overridesa method inherited from Account

Account.withdraw(self, amount + self.withdraw fee)
explicitly invokes the method of its superclass

LECTURE 08-1: CLASS INHERITANCE

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT

class Account:

interest rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

def payInterest(self):

self.balance *= 1.0 + self.interest rate

class Savings (Account):
interest rate = 0.04
withdraw fee = 1.0
def withdraw(self, amount): #overridesa method inherited from Account

Account.withdraw(self, amount + self.withdraw fee)
explicitly invokes the method of its superclass

LECTURE 08-1: CLASS INHERITANCE

ACCOUNT VERSUS SAVINGS

»Here is Account in use:
>>> a = Account(100)

>>> a.balance

100.0

>>> a.payInterest()
>>> a.balance

102.0

>>> a.withdraw(20)
>>> a.balance

82.0

»Here is Savings in use:
>>> a = Savings (100)

>>> a.balance

100.0

>>> a.payInterest ()
>>> a.balance

104.0

>>> a.withdraw(20)
>>> a.balance

83.0

LECTURE 08-1: CLASS INHERITANCE

INHERITANCE EXAMPLE: A CHECKING ACCOUNT

class Account:

interest rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

def payInterest(self):

self.balance *= 1.0 + self.interest rate
class Checking(Account):
min balance = 1000.0
def payInterest(self):

if self.balance >= self.min balance:
Account.payInterest (self)

LECTURE 08-1: CLASS INHERITANCE

CHECKING ACCOUNT INTERACTION

»Here is Checking in use:

>>> a = Checking(1000.0)
>>> a.balance

1000.0

>>> a.paylInterest()

>>> a.balance

1040.0

>>> a.withdraw(50.0)
>>> a.balance

990.0

>>> a.payInterest()
>>> a.balance

990.0

LECTURE 08-1: CLASS INHERITANCE

INHERITANCE EXAMPLE: A PROMOTIONAL CHECKING ACCOUNT

class Checking(Account):
min balance = 1000.0
def payInterest(self):
if self.balance >= self.min balance:
Account.payInterest (self)
class PromotionalChecking(Checking):
reward = 50
def init (self,amount):

Checking. init_ (self,amount+self.reward)
#The code above explicitly uses the initializer code from Checking

LECTURE 08-1: CLASS INHERITANCE

INHERITANCE EXAMPLE: A PROMOTIONAL CHECKING ACCOUNT

class Checking(Account):
min balance = 1000.0
def payInterest(self):
if self.balance >= self.min balance:
Account.payInterest (self)
class PromotionalChecking(Checking):
reward = 50
def init (self,amount):

super(). init (amount+self.reward)
#The code above explicitly uses the initializer code from Checking

LECTURE 08-1: CLASS INHERITANCE

INHERITANCE EXAMPLE: A PROMOTIONAL CHECKING ACCOUNT

class Checking(Account):
min balance = 1000.0

def payInterest(self):
if self.balance >= self.min balance:
Account.payInterest (self)

class PromotionalChecking(Checking):
reward = 50

def init (self,amount):
super(). init (amount+self.reward)
The code above uses the initializer code from Checking that was inherited from Account
Using super() references self as though it is an instance of its superclass

OBJECT TAKEAWAYS

New object types are defined with class.
Within the class you define these things:
__init
other methods
(maybe) class attributes
Method parameters are se1 £ followed by the others.
Object dot notation:
Methods are called using receiver.method(...)
Instance variables are accessed by receiver.variable
We use self. notation inside a method to access these things too.
New instances are built withclass-name(...)

LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

INHERITANCE TAKEAWAYS

» A class inherits from its superclass with

= class class-name (super-class-name):
»You can call the superclass initializer with the syntax:

= super-class-name. init (self,...)
»You can call the superclass methods with the syntax:

= super-class-name.method(self,...)
»Subclasses inherit the methods of their superclass.

»They can be specialized in two ways:
* You can add additional attributes and methods.
* You can override super-class methods.

