
OBJECT-ORIENTATION
& CLASS INHERITANCE

LECTURE 08-1

JIM FIX, REED COLLEGE CSCI 121

▸Project 2 is due next Monday
▸The 1st Midterm Exam is Wednesday
▸Today: we continue looking at object-orientation in Python
• a few more examples, including Rational
• special methods
• class inheritance
▸Reading: Python object-orientation

➡ TP2e Ch 15-18
✦at https://greenteapress.com/thinkpython2/thinkpython2.pdf

➡ CP Ch 2.5-2.8

COURSE INFO
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

Below is a template for most class definitions:
class class-name:
 def __init__(self,parameter-list):
 statements that set each of self's attributes
 ...
 def method-name (self,parameter-list):
 statements that access self's attributes
 ...
 ...

 

SYNTAX: CLASS DEFINITION
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

Below is a template for most class definitions:
class class-name:
 def __init__(self,parameter-list):
 statements that set each of self's attributes
 ...
 def method-name (self,parameter-list):
 ...self.attribute... # attribute access
 ...
 ...

 

SYNTAX: CLASS DEFINITION
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

Below is a template for most class definitions:
class class-name:
 def __init__(self,parameter-list):
 statements that set each of self's attributes
 ...
 def method-name(self,parameter-list):
 ...
 # method invocation
 self.method(parameters)
 ...
 ...

 

SYNTAX: CLASS DEFINITION
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

Below is a template for most class definitions:
class class-name:
 def __init__(self,parameter-list):
 ...
 def method-name(self,parameter-list):
 ...
 ...

Here is client code for creating a new object instance:
thing = class-name(parameters)
thing.method-name(parameters)

 

SYNTAX: CLASS DEFINITION
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

Here is a class for an object that produces the Fibonacci sequence:
class Fib:
 def __init__(self):
 self.prev = 0
 self.current = 1
 def advance(self):
 next = self.prev + self.current
 self.prev = self.current
 self.current = next
 def get(self):
 return self.current
 def output(self):
 print(self.get())
 self.advance()

 

EXAMPLE: A FIBONACCI GENERATOR CLASS
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

Here is a class for an object that produces the Fibonacci sequence:
class Fib:
 def __init__(self):
 self.reset()
 def advance(self):
 next = self.prev + self.current
 self.prev = self.current
 self.current = next
 def get(self):
 return self.current
 def output(self):
 print(self.get())
 self.advance()
 def reset(self):
 self.prev = 0
 self.current = 1

 

EXAMPLE: A FIBONACCI GENERATOR CLASS
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

Here is a class for an object that stores a two-digit number:
class TwoDigit:
 def __init__(self,d2,d1):
 self.tens = d2
 self.ones = d1
 def changeTensTo(self,d):
 self.tens = d
 def changeOnesTo(self,d):
 self.ones = d
 def get(self):
 return self.tens*10 + self.ones

 

EXAMPLE: A TWO-DIGIT NUMBER OBJECT
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

Here is a different implementation of the two-digit number class:
class TwoDigit:
 def __init__(self,d2,d1):
 self.number = d2*10 + d1
 def changeTensTo(self,d):
 self.number = d*10 + (self.number%10)
 def changeOnesTo(self,d):
 self.number = (self.number//10)*10 + d
 def get(self):
 return self.number

▸Any client code that uses TwoDigit can be the same for either, so long as
it uses only its methods.

EXAMPLE: A TWO-DIGIT NUMBER OBJECT V2.0
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

Here is our rational number data structure as an object class
class Rational:
 def __init__(self,n,d):
 if d < 0:
 n *= -1
 d *= -1
 g = GCD(n,d)
 self.numerator = n // g
 self.denominator = d // g

 def getNumerator(self):
 return self.numerator

 def getDenominator(self):
 return self.denominator

EXAMPLE: RATIONAL NUMBER CLASS
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

We can define multiplication of rational numbers as we did before:

class Rational:
 def __init__(self,n,d): ...
 def getNumerator(self): ...
 def getDenominator(self): ...

 def times(self,other):
 sn = self.getNumerator()
 sd = self.getDenominator()
 on = other.getNumerator()
 od = other.getDenominator()
 return Rational(sn*on, sd*od)

EXAMPLE: RATIONAL NUMBER ADDITION METHOD
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

We can define addition of rational numbers as we did before:

class Rational:
 def __init__(self,n,d): ...
 def getNumerator(self): ...
 def getDenominator(self): ...
 def times(self,other): ...
 def plus(self,other):
 sn = self.getNumerator()
 sd = self.getDenominator()
 on = other.getNumerator()
 od = other.getDenominator()
 return Rational(sn*od + on*sd, sd*od)

EXAMPLE: RATIONAL NUMBER ADDITION METHOD
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

▸With these defined, here is an interaction:
>>> a = Rational(1, 3)
>>> a.asString()
'1 / 3'
>>> b = Rational(1, 2)
>>> ba = b.times(a)
>>> ba.asString()
'1 / 6'
>>> c = a.plus(ba)
>>> c.asString()
'1 / 2'

OUR RATIONAL NUMBER OBJECT IN ACTION
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

▸Wouldn't this be great to see instead?
>>> a = Rational(1, 3)
>>> a
1 / 3
>>> b = Rational(1, 2)
>>> b * a
1 / 6
>>> a + b * a
1 / 2

OUR RATIONAL NUMBER OBJECT IN ACTION
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

Python has "special methods" that provide hooks to using operator syntax:
class Rational:
 def __init__(self,n,d): ...
 ...

 # defines r1 * r2
 def __mul__(self,other):
 sn = self.getNumerator()
 sd = self.getDenominator()
 on = other.getNumerator()
 od = other.getDenominator()
 return Rational(sn*on, sd*od)

EXAMPLE: DEFINING THE TIMES OPERATION
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

class Rational:
 def __init__(self,n,d): ...
 def getNumerator(self): ...
 def getDenominator(self): ...
 def __mul__(self,other): ...

 # defines r1 + r2
 def __add__(self,other):
 sn = self.getNumerator()
 sd = self.getDenominator()
 on = other.getNumerator()
 od = other.getDenominator()
 return Rational(sn*od + on*sd, sd*od)

EXAMPLE: DEFINING THE PLUS OPERATION
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

Python has "special methods" for lots of built-in syntax.
▸They are surrounded by a double underscore (_)
▸Documented at this technical page:

➡ https://docs.python.org/3/reference/datamodel.html#special-method-names
▸Nice overview here:

➡ https://www.pythonlikeyoumeanit.com/Module4_OOP/Special_Methods.html

Example:
 def __mul__(self,other):
 ...
▸ Defines x * y to mean x.__mul__(y)

SPECIAL METHODS
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

Python has "special methods" for lots of built-in syntax.
▸They are surrounded by a double underscore (_)
▸Documented at this technical page:

➡ https://docs.python.org/3/reference/datamodel.html#special-method-names
▸Nice overview here:

➡ https://www.pythonlikeyoumeanit.com/Module4_OOP/Special_Methods.html

Example:
 def __eq__(self,other):
 ...
▸ Defines x == y to mean x.__eq__(y)

SPECIAL METHODS
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

Python has "special methods" for lots of built-in syntax.
▸They are surrounded by a double underscore (_)
▸Documented at this technical page:

➡ https://docs.python.org/3/reference/datamodel.html#special-method-names
▸Nice overview here:

➡ https://www.pythonlikeyoumeanit.com/Module4_OOP/Special_Methods.html

Example:
 def __getitem__(self,index):
 ...
▸ Defines x[i] to mean x.__getitem__(i)

SPECIAL METHODS
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

Python has "special methods" for lots of built-in syntax.
▸They are surrounded by a double underscore (_)
▸Documented at this technical page:

➡ https://docs.python.org/3/reference/datamodel.html#special-method-names
▸Nice overview here:

➡ https://www.pythonlikeyoumeanit.com/Module4_OOP/Special_Methods.html

Example:
 def __str__(self):
 ...
▸ Defines str(x) to mean x.__str__()
▸ Also used for print(x). It means print(x.__str__())

SPECIAL METHODS
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

Python has "special methods" for lots of built-in syntax.
▸They are surrounded by a double underscore (_)
▸Documented at this technical page:

➡ https://docs.python.org/3/reference/datamodel.html#special-method-names
▸Nice overview here:

➡ https://www.pythonlikeyoumeanit.com/Module4_OOP/Special_Methods.html

Example:
 def __repr__(self):
 ...
▸ Defines the string "representation" of an object.

SPECIAL METHODS
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

Python has "special methods" for lots of built-in syntax.
▸They are surrounded by a double underscore (_)
▸Documented at this technical page:

➡ https://docs.python.org/3/reference/datamodel.html#special-method-names
▸Nice overview here:

➡ https://www.pythonlikeyoumeanit.com/Module4_OOP/Special_Methods.html

Example:
 def __repr__(self):
 ...
▸ Used by the interpreter to display the object's value, like so:

>>> Rational(27, 33)
9 / 11

SPECIAL METHODS
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

▸Here is the class definition of a new Account type:
class Account:  
 interest_rate = .02  
 def __init__(self, amount):
 self.balance = amount  
 def deposit(self, amount):
 self.balance += amount  
 def payInterest(self):
 self.balance *= 1.0 + self.interest_rate
 def getBalance(self):
 return self.balance

▸Here is Account in use:
>>> a = Account(150)
>>> a.deposit(50)
>>> a.payInterest()
>>> a.getBalance()
204.0

RECALL: ACCOUNT CLASS
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

▸We can build hierarchies of different accounts:

▸We make subclasses that inherit the attributes of their "superclasses"
• A Savings account has all the info and operations of an Account.
• But it has features and behavior more specific to checking accounts

✦ This is called subclass specialization.
✦ We extend the superclass with additional attributes.

• It also overrides some of the behavior it inherits from Account.

AN ACCOUNT CLASS HIERARCHY

Account

Checking Savings

PromotionalChecking

LECTURE 08-1: CLASS INHERITANCE

class Account:  
 interest_rate = .02  
 def __init__(self, amount):
 self.balance = amount  
 def deposit(self, amount):
 self.balance += amount
 def withdraw(self, amount):
 self.balance -= amount  
 def payInterest(self):
 self.balance *= 1.0 + self.interest_rate

class Savings(Account):
 interest_rate = 0.04
 withdraw_fee = 1.0
 def withdraw(self, amount):
 Account.withdraw(self, amount + self.withdraw_fee)

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT
LECTURE 08-1: CLASS INHERITANCE

class Account:  
 interest_rate = .02  
 def __init__(self, amount):
 self.balance = amount  
 def deposit(self, amount):
 self.balance += amount
 def withdraw(self, amount):
 self.balance -= amount  
 def payInterest(self):
 self.balance *= 1.0 + self.interest_rate

class Savings(Account): # inherit the methods and class variables of Account
 interest_rate = 0.04
 withdraw_fee = 1.0
 def withdraw(self, amount):
 Account.withdraw(self, amount + self.withdraw_fee)

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT
LECTURE 08-1: CLASS INHERITANCE

class Account:  
 interest_rate = .02  
 def __init__(self, amount):
 self.balance = amount  
 def deposit(self, amount):
 self.balance += amount
 def withdraw(self, amount):
 self.balance -= amount  
 def payInterest(self):
 self.balance *= 1.0 + self.interest_rate

class Savings(Account):
 interest_rate = 0.04 # overrides the class variable inherited from Account
 withdraw_fee = 1.0
 def withdraw(self, amount):
 Account.withdraw(self, amount + self.withdraw_fee)

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT
LECTURE 08-1: CLASS INHERITANCE

class Account:  
 interest_rate = .02  
 def __init__(self, amount):
 self.balance = amount  
 def deposit(self, amount):
 self.balance += amount
 def withdraw(self, amount):
 self.balance -= amount  
 def payInterest(self):
 self.balance *= 1.0 + self.interest_rate

class Savings(Account):
 interest_rate = 0.04
 withdraw_fee = 1.0 # extends with a specializing class variable
 def withdraw(self, amount):
 Account.withdraw(self, amount + self.withdraw_fee)

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT
LECTURE 08-1: CLASS INHERITANCE

class Account:  
 interest_rate = .02  
 def __init__(self, amount):
 self.balance = amount  
 def deposit(self, amount):
 self.balance += amount
 def withdraw(self, amount):
 self.balance -= amount  
 def payInterest(self):
 self.balance *= 1.0 + self.interest_rate

class Savings(Account):
 interest_rate = 0.04
 withdraw_fee = 1.0
 def withdraw(self, amount): # overrides a method inherited from Account
 Account.withdraw(self, amount + self.withdraw_fee)

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT
LECTURE 08-1: CLASS INHERITANCE

class Account:  
 interest_rate = .02  
 def __init__(self, amount):
 self.balance = amount  
 def deposit(self, amount):
 self.balance += amount
 def withdraw(self, amount):
 self.balance -= amount  
 def payInterest(self):
 self.balance *= 1.0 + self.interest_rate

class Savings(Account):
 interest_rate = 0.04
 withdraw_fee = 1.0
 def withdraw(self, amount): # overrides a method inherited from Account
 Account.withdraw(self, amount + self.withdraw_fee)
 # explicitly invokes the method of its superclass

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT
LECTURE 08-1: CLASS INHERITANCE

class Account:  
 interest_rate = .02  
 def __init__(self, amount):
 self.balance = amount  
 def deposit(self, amount):
 self.balance += amount
 def withdraw(self, amount):
 self.balance -= amount  
 def payInterest(self):
 self.balance *= 1.0 + self.interest_rate

class Savings(Account):
 interest_rate = 0.04
 withdraw_fee = 1.0
 def withdraw(self, amount): # overrides a method inherited from Account
 Account.withdraw(self, amount + self.withdraw_fee)
 # explicitly invokes the method of its superclass

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT
LECTURE 08-1: CLASS INHERITANCE

▸Here is Account in use:
>>> a = Account(100)
>>> a.balance
100.0
>>> a.payInterest()
>>> a.balance
102.0
>>> a.withdraw(20)
>>> a.balance
82.0

▸Here is Savings in use:
>>> a = Savings(100)
>>> a.balance
100.0
>>> a.payInterest()
>>> a.balance
104.0
>>> a.withdraw(20)
>>> a.balance
83.0

ACCOUNT VERSUS SAVINGS
LECTURE 08-1: CLASS INHERITANCE

class Account:  
 interest_rate = .02  
 def __init__(self, amount):
 self.balance = amount  
 def deposit(self, amount):
 self.balance += amount
 def withdraw(self, amount):
 self.balance -= amount  
 def payInterest(self):
 self.balance *= 1.0 + self.interest_rate

class Checking(Account):

 min_balance = 1000.0

 def payInterest(self):
 if self.balance >= self.min_balance:
 Account.payInterest(self)

INHERITANCE EXAMPLE: A CHECKING ACCOUNT
LECTURE 08-1: CLASS INHERITANCE

▸Here is Checking in use:
>>> a = Checking(1000.0)
>>> a.balance
1000.0
>>> a.payInterest()
>>> a.balance
1040.0
>>> a.withdraw(50.0)
>>> a.balance
990.0
>>> a.payInterest()
>>> a.balance
990.0

CHECKING ACCOUNT INTERACTION
LECTURE 08-1: CLASS INHERITANCE

class Checking(Account):

 min_balance = 1000.0

 def payInterest(self):
 if self.balance >= self.min_balance:
 Account.payInterest(self)

class PromotionalChecking(Checking):

 reward = 50

 def __init__(self,amount):
 Checking.__init__(self,amount+self.reward)  
 # The code above explicitly uses the initializer code from Checking

INHERITANCE EXAMPLE: A PROMOTIONAL CHECKING ACCOUNT
LECTURE 08-1: CLASS INHERITANCE

class Checking(Account):

 min_balance = 1000.0

 def payInterest(self):
 if self.balance >= self.min_balance:
 Account.payInterest(self)

class PromotionalChecking(Checking):

 reward = 50

 def __init__(self,amount):
 super().__init__(amount+self.reward)  
 # The code above explicitly uses the initializer code from Checking

INHERITANCE EXAMPLE: A PROMOTIONAL CHECKING ACCOUNT
LECTURE 08-1: CLASS INHERITANCE

class Checking(Account):

 min_balance = 1000.0

 def payInterest(self):
 if self.balance >= self.min_balance:
 Account.payInterest(self)

class PromotionalChecking(Checking):

 reward = 50

 def __init__(self,amount):
 super().__init__(amount+self.reward)  
 # The code above uses the initializer code from Checking that was inherited from Account
 # Using super() references self as though it is an instance of its superclass

INHERITANCE EXAMPLE: A PROMOTIONAL CHECKING ACCOUNT
LECTURE 08-1: CLASS INHERITANCE

▸New object types are defined with class.
▸Within the class you define these things:
•__init__
• other methods
• (maybe) class attributes
▸Method parameters are self followed by the others.
▸Object dot notation:
•Methods are called using receiver.method(...)
• Instance variables are accessed by receiver.variable
•We use self. notation inside a method to access these things too.
▸New instances are built with class-name(...)

OBJECT TAKEAWAYS
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

▸A class inherits from its superclass with
➡ class class-name(super-class-name):

▸You can call the superclass initializer with the syntax:
➡ super-class-name.__init__(self,...)

▸You can call the superclass methods with the syntax:
➡ super-class-name.method(self,...)

▸Subclasses inherit the methods of their superclass.
▸They can be specialized in two ways:
• You can add additional attributes and methods.
• You can override super-class methods.

INHERITANCE TAKEAWAYS
LECTURE 08-1: OBJECT-ORIENTATION AND INHERITANCE

