DATA ABSTRACTIONS
& OBJECT-ORIENTATION

LECTURE 07-2

JIM FIX, REED COLLEGE CSCI 121

AFTER BREAK

In-Class Midterm Exam: Wednesday, October 26th

closed note, closed computer, hand-written

about 6 or 7 problems similar to quiz and homework problems

Topics covered:
scripting, including input and print
int and str operations
function and procedure de f; return; the None value
conditional 1 f-else statements; while loops; bool
lists and dictionaries

| will post a practice exam this week.
| will post practice exam solutions on Monday, October 24th.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

AFTER BREAK

»Project 2 due: Monday, October 31st
* note that this is a change to the posted schedules
* choice between stats and chats and Twitter trends

TODAY

Today:
inventing your own data structures and data types
object-oriented programming in Python
Reading: on Python object-orientation
TP Ch 12, 14-16
CPCh2.5-2.8

FUNCTIONAL/PROCEDURAL ABSTRACTION

Idea: invent new operations and actions that constitute your program

We use the de £ statement to define functions and procedures
We give them meaningful and memorable names.
We take care to make them broadly useful.

Good definitions enhance code modularity
They can be made part of a used by several programs.
Makes code collaboration easier and larger programs easier to write.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

FUNCTIONAL/PROCEDURAL ABSTRACTION

» Functions/procedures create a useful barrier of abstraction.
* Make code easier to read
* You need not know all the details.
* Only need to know the function's interface and behavior.

def removeDuplicates (somelList):
"""This modifies a list so each item occurs just once."""

...messy code details here and below...

DATA ABSTRACTION

Idea: invent a new data object that your program needs.

Determine its features and components.
These are its attributes.

Consider the operations you'd like it to support.
e.g. access, queries, look-ups, checks, changes, actions, activities, ...
These are its methods.

DATA ABSTRACTION

Idea: invent a new data object that your program needs.

Determine its features and components.
These are its attributes.

Consider the operations you'd like it to support.
e.g. access, queries, look-ups, checks, changes, actions, activities, ...
These are its methods.

Sometimes the object is a collection, organized in a useful way.
In that case it's a data structure.

Python provides a few: “tuples” (e.g. pairs), strings, lists, dictionaries.

Others: vectors, stacks, queues, linked lists, trees, graphs, ...

DATA ABSTRACTION: ADVANTAGES

Idea: invent a new data object that your program needs.

Can be special purpose, geared for a specific application or algorithm.
Tuples, lists, and dictionaries can sometimes be too generic, featureless.
Can write code that reads how you think about your program's activity.
This is the data analog to functional abstraction.

Some data abstractions have universal value, can be reused.
A good design saves programming effort in the future
Abstraction forces a modular design.
It makes code easier to understand; easier to get right.
May even be useful elsewhere.

EXAMPLE: RATIONAL NUMBER OBJECT

We can represent a rational number in Python with a list
It stores two items: its integer numerator and denominator.

Here are some basic operations on our rational number object:
Make a new rational number (an object constructor):

def createRational(n, d):
return [n, d]

Get the numerator (object's accessor or "getter”):

def numerator(r):
return r[0]

Get the denominator (another “getter”):

def denominator(r):
return r[1l]

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: RATIONAL NUMBER OBJECT

»We can build operations that work with rational number objects:

3 2

= s = = 277
4 3

* We can invent rational number multiplication:

def rationalProduct(r, s):
newNumer = numerator(r) * numerator(s)
newDenom = denominator(r) * denominator(s)
return createRational (newNumer,newDenom)

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: RATIONAL NUMBER OBJECT

»We can build operations that work with rational number objects:

3 2 3*2

—_— Y — =

4 3 4*3

* We can invent rational number multiplication:

def rationalProduct(r, s):
newNumer = numerator(r) * numerator(s)
newDenom = denominator(r) * denominator(s)
return createRational (newNumer,newDenom)

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: RATIONAL NUMBER OBJECT

»We can build operations that work with rational number objects:

3 2 3*2 6

—_— Y — =

4 3 a+*3 12

* We can invent rational number multiplication:

def rationalProduct(r, s):
newNumer = numerator(r) * numerator(s)
newDenom = denominator(r) * denominator(s)
return createRational (newNumer,newDenom)

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: RATIONAL NUMBER OBJECT

»We can build operations that work with rational number objects:

3 .
— + — = ?7?
g 3

» We can invent rational number addition:

def rationalSum(r, s):
nr,dr = numerator(r),denominator(r)
ns,ds = numerator(s),denominator(s)
newNumer = nr*ds + ns*dr
newDenom = ds*dr
return createRational (newNumer,newDenom)

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: RATIONAL NUMBER OBJECT

»We can build operations that work with rational number objects:

3*3 2*4
=

S . 2 _
4 3 4*3 3*4

» We can invent rational number addition:

def rationalSum(r, s):
nr,dr = numerator(r),denominator(r)
ns,ds = numerator(s),denominator(s)
newNumer = nr*ds + ns*dr
newDenom = ds*dr
return createRational (newNumer,newDenom)

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: RATIONAL NUMBER OBJECT

»We can build operations that work with rational number objects:

Il
+
il

3 2
_+—
4 3

» We can invent rational number addition:

def rationalSum(r, s):
nr,dr = numerator(r),denominator(r)
ns,ds = numerator(s),denominator(s)
newNumer = nr*ds + ns*dr
newDenom = ds*dr
return createRational (newNumer,newDenom)

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: RATIONAL NUMBER OBJECT

»We can build operations that work with rational number objects:

a

< whenever axd == cxb
b d

» We can check whether two rational numbers are the same:

def areSameRationals(r, s):
nr,dr = numerator(r),denominator(r)
ns,ds = numerator(s),denominator(s)
return (nr*ds == ns*dr)

EXAMPLE: RATIONAL NUMBER OBJECT

We can build operations that work with rational number objects:

We can invent ways of displaying and reporting rational numbers

def stringOfRational(r):
ntext str (numerator(r))
dtext str (denominator(r))
return ntext + “/“ + dtext

def outputRational(r):
print (stringOfRational(r))

Other operations: subtraction, division, conversionto £loat,...

OUR RATIONAL NUMBER OBJECT IN ACTION

With these defined, here is an interaction:

>>> a = createRational(l, 3)

>>> b createRational (1, 2)

>>> ¢ rationalSum(a, rationalProduct (b, a))
>>> outputRational (c¢)

Here, we are relying on functional abstraction to provide data abstraction.
The function calls hide the underlying representation.
This allows us to change that underlying implementation easily:
We can enhance or rewrite the underlying code...
..with no change to the “client” code that relies on it.

Provides an abstraction barrier that makes code maintainable.
The details are hidden from the code that uses the object.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: AN ENHANCED RATIONAL NUMBER OBJECT

» We change our constructor from this...

def createRational(n, d):
return [n, d]

»...to this, which simplifies the numerator and denominator with the GCD:

def createRational(n, d):
g = GCD(n,d) # Find greatest common divisor

return [n//g, d//g]

» Qur script doesn't need to change, but the object's behavior is improved:

>>> a = createRational(l, 3)

>>> b createRational(1l, 2)

>>> ¢ = rationalSum(a, rationalProduct(b, a))
>>> outputRational (c)

1/ 2

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: RATIONAL OBJECT USING A DICTIONARY INSTEAD

» Note that we could use a dictionary instead:

def createRational(n, d):
g = GCD(n,d)
return {"numerator":n//g, "denominator":d//g}

def numerator(r):
return r["numerator"]

def denominator(r):
return r["denominator"]

» Client code need not change since it uses the getters and constructor:

def rationalSum(r, s):
nr,dr = numerator(r),denominator(r)
ns,ds = numerator(s),denominator(s)
newNumer = nr*ds + ns*dr
newDenom = ds*dr
return createRational (newNumer,newDenom)

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: A GIFT CARD OBJECT

» Here is a gift card object's use:

>>> gc = createGiftCard(100)
>>> spend(gc,20)

80

>>> spend(gc,45)

35

>>> spend(gc,50)
'Insufficient funds'

>>> spend(gc,20)

15

=LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: GIFT CARD OBJECT USING A DICTIONARY

» We could use a dictionary to represent a gift card:

def createGiftCard(amount):
return {"balance":amount}

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: GIFT CARD OBJECT USING A DICTIONARY

» We could use a dictionary to represent a gift card:

def createGiftCard(amount):
return {"balance":amount}

def spend(giftCard,amount):
balance = giftCard["balance"]
if amount > balance:

return “Insufficient funds”

balance -= amount
update the object's info
giftCard|["balance"”"] = balance
return balance

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: GIFT CARD OBJECT USING A DICTIONARY

» We could use a dictionary to represent a gift card:

def createGiftCard(amount):
return {"balance":amount}

def spend(giftCard,amount):
balance = giftCard["balance"]
if amount > balance:

return “Insufficient funds”

balance -= amount
update the object's info
giftCard|["balance"”"] = balance
return balance

def addFunds(giftCard,amount):
giftCard["balance”] += amount
return giftCard["balance"]

GIFT CARD SUMMARY

We made a gift card object that responds to two kinds of request:
We could spend money from the card.
We could add funds to the card.
We built these as two different functions.

OBJECT TERMINOLOGY

spend and addFunds are messages to which gift card objects respond.
Their code are the gift card's methods for handling each request.
The suite of messages that an object supports is its interface.

OBJECT ORIENTATION

Many languages support coding up data abstractions in this style.
hey allow you to invent your own type of object.

They let you define its attributes, the information each object stores.
They allow you to define a set of operations on that type.

Your code is organized as a class definition for that object type.

OBJECT ORIENTATION

These are called class-based object-oriented languages.
Python is an example, as is C++ and Java.

Object-oriented languages have special syntax for:
constructors
attribute access
method definition

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: GIFT CARD CLASS

» Here is the class definition of a new GiftCard type:

class GiftCard:

def init_(self, amount): # used by the constructor
self.balance = amount

def addFunds(self, amount): # a method definition
self.balance = self.balance + amount
return self.balance

def spend(self, amount): # another method definition
if amount > self.balance:
return “Insufficient funds”
self.balance = self.balance — amount
return self.balance

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: GIFT CARD CLASS

» Here is the class definition of a new GiftCard type:

class GiftCard:

def

def

def

def

__init__ (self, amount): # used by the constructor

self.balance = amount

addFunds (self, amount): # a method definition
self.balance = self.balance + amount
return self.balance

spend (self, amount): # another method definition
if amount > self.balance:
return “Insufficient funds”
self.balance = self.balance — amount
return self.balance

getBalance(self): # a balance “getter”
return self.balance

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: USING A GIFT CARD OBJECT

» Here is a gift card object's use, assuming there is a "ciftcard.py" file:

>>> from GiftCard import GiftCard

>>> gc = GiftCard(100) # use the constructor; it calls _ init
>>> gc.spend(20)

80

>>> gc.spend(45)

35

>>> gc.spend(50)
'Insufficient funds
>>> gc.getBalance()
35

>>> gc.addFunds (20)
55

>>> gc.spend(50)

5

>>> gc.balance # Python lets a client access attributes EEK!
5

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: ACCOUNT CLASS

» Here is the class deflnltlon of a new Account type:

= ——

\class Account:

1\
| rate = .02

def init__ (self, amount):

self.balance = amount

|

def deposit(self, amount):
self.balance += amount

def payInterest(self):
self balance *= 1.0 + rate|

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

— - —— S
{

EXAMPLE: ACCOUNT CLASS c1ass account:

| rate = .02
»Here is Account in use: .
def 1init_(self, amount):

>>> a = Account (100) self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: ACCOUNT CLASS c1ass account:

|
|

»Here is Account in use;
>>> a = Account(100)

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):
self.balance *= 1.0 + rate|

COMMENTARY

==

* Class name is used like a function. We are calling the constructor.
= this creates a new object, an instance of class Account

e init _ code runs with this new object passed as sel£.

* The argument is passed as the other parameterto _ init .

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: ACCOUNT CLASS c1ass account:

|
|

»Here is Account in use;
>>> a = Account (100)

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):
self.balance *= 1.0 + rate|

COMMENTARY

==

* Class name is used like a function. We are calling the constructor.
= this creates a new object, an instance of class Account

e init _ code runs with this new object passed as sel£.

* The argument is passed as the other parameterto _ init .

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: ACCOUNT CLASS c1ass account:

|
|

»Here is Account in use;
>>> a = Account (100)

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):
self.balance *= 1.0 + rate|

COMMENTARY

==

* Class name is used like a function. We are calling the constructor.
= this creates a new object, an instance of class Account

e init _ code runs with this new object passed as sel£.

* The argument is passed as the other parameterto _ init .

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: ACCOUNT CLASS c1ass account:

¥y

def init (self, amount):
self.balance = amount

|
l

rate = .02

»Here is Account in use;
>>> a = Account(100)

def deposit(self, amount):
self.balance += amount

def payInterest(self):
self.balance *= 1.0 + rate|

s = B e — —— —

COMMENTARY
* Class name is used like a function. We are calling the constructor.
= this creates a new object, an instance of class Account
e init _ code runs with this new object passed as self£.
* The argument is passed as the other parameterto __ init .

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: ACCOUNT CLASS c1ass account:

|
»Here is Account‘e:

>>> a = Account(100)

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):
self.balance *= 1.0 + rate|

COMMENTARY

==

* Class name is used like a function. We are calling the constructor.
= this creates a new object, an instance of class Account

e init _ code runs with this new object passed as sel£.

* The argument is passed as the other parameterto _init .

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: ACCOUNT CLASS c1ass account:

»Here is Account in use;:

>>> a = Account(100)
>>> a.balance
100

I
|
|

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: ACCOUNT CLASS c1ass account:

f
1
|

rate = .02

»Here is Account in use;:

>>> a = Account (100)
>>> a.balance

def init (self, amount):
self.balance = amount

100 | : .
def deposit(self, amount):
self.balance += amount
J;
def payInterest(self):
self.balance *= 1.0 + rate|
COMMENTARY

»This expression performs an access of an instance variable.
+Syntax: object . attribute-name
* Gets the value of an attribute with that name from the object.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: ACCOUNT CLASS c1ass account:

f
J
|

rate = .02

»Here is Account in use;:

>>> a = Account (100)
>>> a.balance

def init (self, amount):
self.balance = amount

|
100 def deposit(self, amount):
self.balance += amount
J;
def payInterest(self):
self.balance *= 1.0 + rate|
COMMENTARY

» This expression performs an access of an instance variable.
+Syntax: object . attribute-name
* Gets the value of an attribute with that name from the object.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: ACCOUNT CLASS c1ass account:

f
J
|

rate = .02

»Here is Account in use;:

>>> a = Account (100)
>>> a.balance

def init (self, amount):
self.balance = amount

|
100 def deposit(self, amount):
self.balance += amount
J;
def payInterest(self):
self.balance *= 1.0 + rate|
COMMENTARY

»This expression performs an access of an instance variable.
+Syntax: object . attribute-name
* Gets the value of an attribute with that name from the object.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: ACCOUNT CLASS c1ass account:

f
1
|

rate = .02

»Here is Account in use;:

>>> a = Account (100)
>>> a.balance

def init (self, amount):
self.balance = amount

100 | : .
def deposit(self, amount):
self.balance += amount
J;
def payInterest(self):
self.balance *= 1.0 + rate|
COMMENTARY

»This expression performs an access of an instance variable.
+Syntax: object . attribute-name
* Gets the value of an attribute with that name from the object.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

— - —— S
{

EXAMPLE: ACCOUNT CLASS c1ass account:

|
l

rate = .02

»Here is Account in use;:

>>> a = Account(100)
>>> a.balance

%\
100 def deposit(self, amount):

;>;za-rate self.balance += amount

def init (self, amount):
self.balance = amount

def payInterest(self):

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: ACCOUNT CLASS c1ass account:

f
[
1
|

rate = .02

»Here is Account in use;:

>>> a = Account (100)
>>> a.balance

def init (self, amount):
self.balance = amount

|
100 def deposit(self, amount):
s<d self.balance += amount
def payInterest(self):
self.balance *= 1.0 + rate|
COMMENTARY

»The same notation is used to look up class variables.
»If an object is missing an attribute, the class is checked instead.
»You can also access it directly inside the class.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

rate = .02

EXAMPLE: ACCOUNT CLASS c1ass Ac#=) N

»Here is Account in use;:

>>> a = Account(100)
>>> a.balance

def init (self, amount):
self.balance = amount

|
100 def deposit(self, amount):
s<d self.balance += amount
def payInterest(self):
self.balance *= 1.0 + rate|
COMMENTARY

»The same notation is used to look up class variables.
»If an object is missing an attribute, the class is checked instead.
»You can also access it directly inside the class.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

J
rate = .02

EXAMPLE: ACCOUNT CLASS c1ass Ac#=) o

»Here is Account in use;:

>>> a = Account(100)
>>> a.balance

def init (self, amount):
self.balance = amount

F\
LAy def deposit(self, amount):
>>> N - rate self.balance += amount
def payInterest(self):
self.balance *= 1.0 + rate|
COMMENTARY

»The same notation is used to look up class variables.
»If an object is missing an attribute, the class is checked instead.
»You can also access a class variable by "dotting" with the class.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

— - —_— =
{

EXAMPLE: ACCOUNT CLASS c1ass account:

|
l

rate = .02

»Here is Account in use;:

>>> a = Account(100)
>>> a.balance

def init (self, amount):
self.balance = amount

%\
100 def deposit(self, amount):
;>;za-rate self.balance += amount

>>> a.deposit (50) def payInterest(self):

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: ACCOUNT CLASS c1ass account:

»Here is Account in use;:

>>> a = Account (100)

>>> a.balance

100

>>> a.rate

0.02

>>> a.deposit (50)

COMMENTARY

|
|

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):
self.balance *= 1.0 + rate|

==

» This expression requests execution of a method.
+Similar syntax: object . method-name (...arguments...)
» This behaves a lot like a function call.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: ACCOUNT CLASS c1ass account:

»Here is Account in use;:

>>> a = Account (100)

>>> a.balance

100

>>> a.rate

0.02

>>> a.deposit (50)

COMMENTARY

|
|

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):
self.balance *= 1.0 + rate|

==

» This expression requests execution of a method.
+Similar syntax: object . method-name (...arguments...)
» This behaves a lot like a function call.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: ACCOUNT CLASS c1ass account:

»Here is Account in use;:

>>> a = Account (100)

>>> a.balance

100

>>> a.rate

0.02

>>> a.deposit (50)

COMMENTARY

|
|

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):
self.balance *= 1.0 + rate|

==

» This expression requests execution of a method.
+Similar syntax: object . method-name (...arguments...)
» This behaves a lot like a function call.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: ACCOUNT CLASS c1ass account:

|
|

rate = .02
»Here iIs Account in use: ..

def 1inait_(self, a t):
>>> a = Account(100) self.balance = t
>>> a.balance
100 | :

def deposit(self, amount):
>>> a.rate self.balance += amount
0.02 |
>>> a.deposit (50) def payInterest(self):

self.balance *= 1.0 + rate}

COMMENTARY
» This expression requests execution of a method.
+Similar syntax: object . method-name (...arguments...)
» This behaves a lot like a function call.
= The argument value is passed as the parameter amount.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: ACCOUNT CLASS ciass account: N

»Here is Account in use;:

>>> a = Account(100)
>>> a.balance

100

>>> a.rate

0.02

>>> a.deposit (50)

COMMENTARY

|
|

rate = .02

def init_ (s , amount):
self.bala = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):

self.balance *= 1.0 + rate|

==

» This expression requests execution of a method.
+Similar syntax: object . method-name (...arguments...)
» This behaves a lot like a function call.
= The message receiver object is passed as self.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: ACCOUNT CLASS c1ass account:

»Here is Account in use;:

>>> a = Account(100)
>>> a.balance

100

>>> a.rate

0.02

>>> a.deposit (50)
>>> a.paylInterest()

COMMENTARY

|
|

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, unt) :
self.balance ount

def payInterest(self):
self.balance *= 1.0 + rate|

==

» This expression requests execution of a method.
+Similar syntax: object. method-name (...arquments...)
» Methods with no arguments just have a receiver parameter sel £.

EXAMPLE: ACCOUNT CLASS c1ass account:

Here is Account In use:

>>> a = Account (100)
>>> a.balance

100

>>> a.rate

0.02

>>> a.deposit (50)
>>> Account.rate
0.02

COMMENTARY

ﬂ

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):

self.balance *= 1.0 + rate|

E— = = ==

In a way, a class is like an object. It can have attributes.
There is only one “class object”, so only one Account . rate
There is a different balance for every Account instance.

|
|

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: ACCOUNT CLASS

»Here is Account in use;

>>> a = Account(100)

>>> a.balance

100

>>> a.rate

0.02

>>> a.deposit (50)

>>> Account.rate

0.02

>>> Account.deposit(a,10)

COMMENTARY

|

'class Account:
f

|

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):

self.balance *= 1.0 + rate|

==

*You can also call an instance's method using its class name:
+Syntax: class-name . instance-method-name (receiver , arguments)

EXAMPLE: ACCOUNT CLASS c1ass account:

Here is Account In use:

>>> a = Account(100)

>>> a.balance

100

>>> a.rate

0.02

>>> a.deposit (50)

>>> Account.rate

0.02

>>> Account.deposit(a,10)

COMMENTARY

|

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):

self.balance *= 1.0 + rate|

E— — = ==

You can also call an instance's method using its class name:

Syntax: class-name . instance-method-name (receiver, arguments)

Iltis as if deposit isafunction attached to the Account class.

J
)

EXAMPLE: ACCOUNT CLASS c1ass account:

Here is Account In use:

>>> a = Account(100)

>>> a.balance

100

>>> a.rate

0.02

>>> a.deposit (50)

>>> Account.rate

0.02

>>> Account.deposit(a,10)

COMMENTARY

u;

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):

self.balance *= 1.0 + rate|

E— — = ==

You can also call an instance's method using its class name:

Syntax: class-name . instance-method-name (receiver, arguments)

You pass the receiver as the first argument to that “function.”

!
)

NEXT TIME

We will build hierarchies of different classes that relate to each other:
Account

YRR

Checking Savings

/

PromotionalChecking

We make subclasses that inherit the attributes of their "superclasses"
A checking account has all the info and operations of an account.
But it might also have "specialized" features and behavior.
|.e. it might have additional attributes.
It might override the behavior it inherits.

