
MORE ON
FUNCTION OBJECTS

LECTURE 07-2

JIM FIX, REED COLLEGE CSCI 121

▸Today: functions as data objects (a.k.a. "higher order functions”) cont’d
• expressing functions succinctly using lambda
• returning functions as values
▸Reading:
•PP Chapter 2.1
•CP Chapter 1.6
▸THIS MONDAY: midterm exam on HWs 1-5

COURSE INFO
LECTURE 07-2: HIGHER-ORDER FUNCTIONS IN PYTHON

▸Python treats functions as objects.
• This means we can hand functions to other functions.

✦Functions can be passed as parameters.

▸Functions that take functions as parameters are higher order functions.

▸Such functions are “reasoning about” the functions they are given.

HIGHER ORDER FUNCTIONS
LECTURE 07-2: HIGHER-ORDER FUNCTIONS IN PYTHON

Python treats function as objects. This gives Python certain nifty features.

Generally:
Languages that have higher-order function features allow you to:

▸Pass functions/procedures as arguments to other functions/procedures.

▸Express functions succinctly and anonymously (using lambda).

▸Assign variables to be function objects, and

▸Return functions back from other functions.
 

THE HIGHER-ORDER FUNCTION FEATURES OF PYTHON
LECTURE 07-2: HIGHER-ORDER FUNCTIONS IN PYTHON

Python treats function as objects. This gives Python certain nifty features.

Generally:
Languages that have higher-order function features allow you to:

▸Pass functions/procedures as arguments to other functions/procedures.

▸Express functions succinctly and anonymously (using lambda).

▸Assign variables to be function objects, and

▸Return functions back from other functions.
 

THE HIGHER-ORDER FUNCTION FEATURES OF PYTHON
LECTURE 07-2: HIGHER-ORDER FUNCTIONS IN PYTHON

▸Given: the polynomial p(x) = x4 - 8x3 + 6x - 4
▸Find: which integer from 3 to 10 yields the lowest value?

EXAMPLE: FINDING A MINIMUM VALUE
LECTURE 07-2: HIGHER-ORDER FUNCTIONS IN PYTHON

The code below generalizes on the function being checked:
def p(x):
 return x**4 – 8*x**3 + 6*x – 4

def argument_for_min(some_function,start,end):
 min_so_far = some_function(start)
 where_seen = start
 i = start + 1
 while i <= end:
 if p(i) < min_so_far:
 min_so_far = some_function(i)
 where_seen = i
 i = i + 1
 return where_seen

print(argument_for_min(p,3,10))
print(argument_for_min(p,-20,5))
print(argument_for_min(p,387,501))

EXAMPLE: FINDING A MINIMUM VALUE
LECTURE 07-2: HIGHER-ORDER FUNCTIONS IN PYTHON

def argument_for_min(some_function,start,end):
 min_so_far = some_function(start)
 where_seen = start
 i = start + 1
 while i <= end:
 if p(i) < min_so_far:
 min_so_far = some_function(i)
 where_seen = i
 i = i + 1
 return where_seen

def p(x):
 return x**4 – 8*x**3 + 6*x – 4

def another(arg):
 return 3*arg**5 – 100*arg**2 + 99

print(argument_for_min(p,3,10))
print(argument_for_min(another,3,10))

EXAMPLE: USING IT FOR TWO DIFFERENT FUNCTIONS!
LECTURE 07-2: HIGHER-ORDER FUNCTIONS IN PYTHON

def argument_for_min(some_function,start,end):
 min_so_far = some_function(start)
 where_seen = start
 i = start + 1
 while i <= end:
 if p(i) < min_so_far:
 min_so_far = some_function(i)
 where_seen = i
 i = i + 1
 return where_seen

def f1(x):
 return x * x - 3
def f2(x):
 return x - 3 * abs(x)
def f3(x):
 return x ** 2 - 1

print(argument_of_min(f1,-5,3))
print(argument_of_min(f2,-5,3))
print(argument_of_min(f3,-5,3))

NEEDING DEF CAN SEEM WORDY...
LECTURE 07-2: HIGHER-ORDER FUNCTIONS IN PYTHON

Python treats function as objects. This gives Python certain nifty features.

Generally:
Languages that have higher-order function features allow you to:

▸Pass functions/procedures as arguments to other functions/procedures.

▸Express functions succinctly and anonymously (using lambda).

▸Assign variables to be function objects, and

▸Return functions back from other functions.
 

HIGHER-ORDER FUNCTION FEATURES
LECTURE 07-2: LAMBDA

Python treats function as objects. This gives Python certain nifty features.

Generally:
Languages that have higher-order function features allow you to:

▸Pass functions/procedures as arguments to other functions/procedures.

▸Express functions succinctly and anonymously (using lambda).

▸Assign variables to be function objects, and

▸Return functions back from other functions.
 

HIGHER-ORDER FUNCTION FEATURES
LECTURE 07-2: LAMBDA

def argument_for_min(some_function,start,end):
 min_so_far = some_function(start)
 where_seen = start
 i = start + 1
 while i <= end:
 if p(i) < min_so_far:
 min_so_far = some_function(i)
 where_seen = i
 i = i + 1
 return where_seen

print(argument_of_min(lambda x: x * x - 3,-5,3))
print(argument_of_min(lambda x: x - 3 * abs(x),-5,3))
print(argument_of_min(lambda x: x ** 2 - 1,-5,3))

CAN USE LAMBDA EXPRESSIONS INSTEAD
LECTURE 07-2: LAMBDA

The lambda construct allows you to express a function without naming it.
➡ It provides anonymous function definition

Here is the syntax:
lambda parameters: expression for computed value

▸It constructs a function object that returns the computed value described.

Some other examples, named using variable assignment:
square = lambda a: a * a  
successor = lambda number: number + 1  
sum_squares = lambda x,y : x*x + y*y
two_digit = lambda d1,d2 : 10*d1 + d2  
apply_twice = lambda f,x : f(f(x))
say_hi = lambda n: print(“hi!”*n)
echo = lambda : print(input(“?”)+”!”)

LAMBDA SYNTAX
LECTURE 07-2: LAMBDA

The lambda construct allows you to express a function without naming it.
➡ It provides anonymous function definition.

Here is the syntax:
lambda parameters: expression for computed value

HISTORY

The notation comes from logician A. Church who explored schemes for
formalizing logic, computation, and proof (1930s).

λ f. λ f. f (f x) would be his notation for “apply twice.”

λ n. λ f. λ x. f (n f x) was his successor function for “Church numerals.”

λ f. (λ x. f (x x)) (λ x. f (x x)) was how he could express recursion.

LAMBDA SYNTAX
LECTURE 07-2: LAMBDA

The lambda construct allows you to express a function without naming it.
➡ It provides anonymous function definition.

Here is the syntax:
lambda parameters: expression for computed value

HISTORY

J. McCarthy adopted it for his symbolic reasoning language LisP (1950s).

(lambda (x) (+ x 1)) is how you write the successor function in LisP.

(lambda (d1 d2) (+ (* d1 10) d2)) is how you write two digit.

(lambda (f x) (f (f x))) might be how you write apply twice.

(lambda (f) (lambda (x) (f (f x))) might also be how (using “Currying”).

LAMBDA SYNTAX
LECTURE 07-2: LAMBDA

The lambda notation feels powerful.

▸The code below builds a quadratic function object, then uses it:
>>> q = lambda x: 5*x**2 + 3*x - 1  
>>> q(3)  
53  
>>> q(-1)  
1

▸Can we do this?
def makeQuadratic(a,b,c):  
 return (lambda x: a*x**2 + b*x + c)

▸If we can, then we could do this:
>>> q = makeQuadratic(5,3,-1)  
>>> q(3)  
53  
>>> q(-1)  
1  

RETURNING FUNCTION OBJECTS?
LECTURE 07-2: LAMBDA

Python treats function as objects. This gives Python certain nifty features.

Generally:
Languages that have higher-order function features allow you to:

▸Pass functions/procedures as arguments to other functions/procedures.

▸Express functions succinctly and anonymously (using lambda).

▸Assign variables to be function objects, and

▸Return functions back from other functions.
 

HIGHER-ORDER FUNCTION FEATURES
LECTURE 07-2: NESTED FUNCTIONS

Python treats function as objects. This gives Python certain nifty features.

Generally:
Languages that have higher-order function features allow you to:

▸Pass functions/procedures as arguments to other functions/procedures.

▸Express functions succinctly and anonymously (using lambda).

▸Assign variables to be function objects, and

▸Return functions back from other functions.
 

HIGHER-ORDER FUNCTION FEATURES
LECTURE 07-2: NESTED FUNCTIONS

▸If we write this higher-order function:
def makeQuadratic(a,b,c):  
 return (lambda x: a*x**2 + b*x + c)

▸Then we can do this:
>>> q = makeQuadratic(5,3,-1)  
>>> q(3)  
53  
>>> q(-1)  
1

▸And we can also do this:
>>> r = makeQuadratic(1,0,-1)  
>>> r(3)  
8  
>>> r(-1)  
0  

▸The function makeQuadratic is a kind of function factory.

RETURNING FUNCTIONS
LECTURE 07-2: NESTED FUNCTIONS

▸Let’s define a function that produces adding functions:
def makeAdder(by_this_much):  
 return (lambda x: x + by_this_much)

▸Here it is in use:
>>> successor = makeAdder(1)  
>>> by_ten = makeAdder(10)  
>>> successor(7)  
8  
>>> successor(70)  
71  
>>> by_ten(7)  
17  
>>> by_ten(70)  
80  
>>> (makeAdder(100))(7)  
107

AN ADDER FUNCTION FACTORY
LECTURE 07-2: NESTED FUNCTIONS

▸Here are several different ways of writing the code for makeAdder:
def makeAdder(by_this_much):  
 return (lambda x: x + by_this_much)  
 
def makeAdder(by_this_much):  
 adder = (lambda x: x + by_this_much)  
 return adder  
 
def makeAdder(by_this_much):  
 def adder(x):  
 return x + by_this_much  
 return adder

makeAdder = (lambda btm: (lambda x: x + btm))  

▸We see that def is just a multi-line assignment statement for functions.

ALTERNATIVES FOR WRITING AN ADDER-MAKER
LECTURE 07-2: NESTED FUNCTIONS

def makeRepeater(some_text):  
 def repeater(number):  
 i = 0  
 while i < number:  
 print(some_text)  
 i = i+1  
 return repeater

>>> greeter = makeRepeater(“hello”)  
>>> ouchie = makeRepeater(“ow!”)  
>>> greeter(3)  
hello  
hello  
hello  
>>> ouchie(5)  
ow!  
ow!  
ow!  
ow!  
ow!  

A PROCEDURE FACTORY
LECTURE 07-2: NESTED FUNCTIONS

def tablePrinterFor(op):  
 
 def printTable(rows,cols):  
 for i in range(rows):  
 for j in range(cols):  
 value = op(i,j)  
 print(value,end=‘\t')  
 print()  
  
 return printTable

>>> from operator import mul  
>>> mult_table = tablePrinterFor(mul)  
>>> mult_table(4,6) # Prints a 4x6 mult. table.  
…  
>>> mult_table(12,12) # Prints a 12x12 table.  
…  

ANOTHER PROCEDURE-MAKER
LECTURE 07-2: NESTED FUNCTIONS

def makeGetter(prompt, conversion, condition):  
 def getter():  
 while True:  
 entry = input(prompt)  
 value = conversion(entry)  
 if condition(value):  
 return value  
 print("Not what we requested.")  
 return getter

good_area = lambda x: x >= 0  
area_get = makeGetter(“Enter an area: ", float, good_area)
ok_ans = lambda s: s == "yes" or s == "no"  
answer_get = makeGetter("yes / no? ", lambda x:x, ok_ans)
is_die = lambda d: (d >= 1) and (d <= 6)  
roll_get = makeGetter("What did you roll? ", int, is_die) 

AN INPUT PROCEDURE FACTORY
LECTURE 07-2: NESTED FUNCTIONS

def function_factory(which-one-you-want...):  
 def some_function(x1,x2,…):  
 # Describe how it acts on x1, x2, etc  
 # according to which-one-you-want... 
 …  
 return …  
 return some_function

▸Here is its application for makeAdder:
def makeAdder(dx):  
 def adder(x):  
 return x+dx  
 return adder  

A TEMPLATE FOR FUNCTION FACTORIES
LECTURE 07-2: NESTED FUNCTIONS

def function_factory(which-one-you-want...):  
 some_function = (lambda x1,x2,…: …)  
 return some_function

▸Here is its application for makeAdder:
def makeAdder(dx):  
 adder = (lambda x: x+dx)  
 return adder  

ANOTHER TEMPLATE FOR FUNCTION FACTORIES
LECTURE 07-2: NESTED FUNCTIONS

def function_factory(which-one-you-want...):  
 return (lambda x1,x2,…: …)

▸Here is its application for makeAdder:
def makeAdder(dx):  
 return (lambda x: x+dx)  
  

YET ANOTHER TEMPLATE FOR FUNCTION FACTORIES
LECTURE 07-2: NESTED FUNCTIONS

function_factory = (lambda which-one-you-want...: (lambda x1,x2,…: …))

▸Here is its application for makeAdder:
makeAdder = (lambda dx: (lambda x: x+dx))  
  

AND YET ANOTHER TEMPLATE FOR FUNCTION FACTORIES
LECTURE 07-2: NESTED FUNCTIONS

▸Execute this script in Python Tutor:
def make_adder(dx):  
 def adder(x):
 return x + dx  
 return adder

f = make_adder(7)
g = make_adder(8)

print(f(11))
print(g(12))  

FRAME DEMO
LECTURE 07-2: NESTED FUNCTIONS

▸Execute this script in Python Tutor at this link: https://tinyurl.com/yc7um43e
five = 5
def add_five(x):  
 return x + five

print(add_five(10))
five = five + 1
print(add_five(10))

▸Pay attention to how execution of add_five accesses the global frame.

➡ The global frame is active when add_five is defined.

➡ It is the add_five function’s “context frame.”

➡ It becomes the parent frame of the frame that activates when
add_five is called.

FRAME DEMO #2
LECTURE 07-2: NESTED FUNCTIONS

https://tinyurl.com/yc7um43e

▸Execute this script in Python Tutor at this link: https://tinyurl.com/4ycfbcpv
def make_adder(dx):
 def adder(x):  
 return x + dx

successor = make_adder(1)
by_ten = make_adder(10)
print(successor(7))
print(by_ten(9))  

▸Pay attention to the frames active each time make_adder executes.

➡ Two different frames are active when each adder object is constructed.

➡ One has dx of 1, the other has a dx of 10.

➡ Thus each adder’s function object gets its own context frame.

FRAME DEMO #3
LECTURE 07-2: NESTED FUNCTIONS

https://tinyurl.com/4ycfbcpv

▸Execute this script in Python Tutor at this link: https://tinyurl.com/4ycfbcpv
def make_adder(dx):
 def adder(x):  
 return x + dx

successor = make_adder(1)
by_ten = make_adder(10)
print(successor(7))
print(by_ten(9))

▸When each adder is called…

•A new frame is created and activated with the call.

➡ One with x of 7, one with x of 9.

• Its parent frame is the context frame of its adder function.

➡ One has a dx of 1, the other has a dx of 10.

FRAME DEMO #3
LECTURE 07-2: NESTED FUNCTIONS

https://tinyurl.com/4ycfbcpv

▸Execute this script in Python Tutor at this link: https://tinyurl.com/4ycfbcpv
def make_adder(dx):
 def adder(x):  
 return x + dx

successor = make_adder(1)
by_ten = make_adder(10)
print(successor(7))
print(by_ten(9))

▸A chain of parent frames is followed until a variable name is found.

FRAME DEMO #3
LECTURE 07-2: NESTED FUNCTIONS

https://tinyurl.com/4ycfbcpv

▸Execution of this script:
def make_adder(dx):  
 def adder(x):
 return x + dx  
 return adder

f = make_adder(7)
g = make_adder(8)

print(f(11))
print(g(12))  

FRAME ANIMATION…
LECTURE 07-2: NESTED FUNCTIONS

global

fn make_adder

fn adder

make_adder

#0

#0

#1

make_adder

#1 #0

#2

adder#3

adder#4

fn adder #2

mk_add

dx 7

dx 8

x 11

x 12

adder

adder

g

h

#0

#1

#2

WORK IN PROGRESS

PARDON OUR MESS

