
DATA ABSTRACTIONS
& OBJECT-ORIENTATION

LECTURE 07-2

JIM FIX, REED COLLEGE CSCI 121

▸In-Class Midterm Exam: Wednesday, October 26th
• closed note, closed computer, hand-written
• about 6 or 7 problems similar to quiz and homework problems
• Topics covered:
➡ scripting, including input and print
➡ int and str operations
➡ function and procedure def; return; the None value
➡ conditional if-else statements; while loops; bool
➡ lists and dictionaries

• I will post a practice exam this week.
• I will post practice exam solutions on Monday, October 24th.

AFTER BREAK
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Project 2 due: Monday, October 31st
•note that this is a change to the posted schedules
• choice between stats and chats and Twitter trends

AFTER BREAK
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Today:
• inventing your own data structures and data types
• object-oriented programming in Python
▸Reading: on Python object-orientation

➡ TP Ch 12, 14-16
➡ CP Ch 2.5-2.8

TODAY
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

Idea: invent new operations and actions that constitute your program

▸We use the def statement to define functions and procedures
•We give them meaningful and memorable names.
•We take care to make them broadly useful.

▸Good definitions enhance code modularity
• They can be made part of a library used by several programs.
•Makes code collaboration easier and larger programs easier to write.

FUNCTIONAL/PROCEDURAL ABSTRACTION
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Functions/procedures create a useful barrier of abstraction.
•Make code easier to read
• You need not know all the details.
•Only need to know the function's interface and behavior.

def removeDuplicates(someList):
 """This modifies a list so each item occurs just once."""

 ...messy code details here and below...

FUNCTIONAL/PROCEDURAL ABSTRACTION
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

Idea: invent a new data object that your program needs.

▸Determine its features and components.
➡ These are its attributes.

▸Consider the operations you’d like it to support.
• e.g. access, queries, look-ups, checks, changes, actions, activities, ...
➡ These are its methods.

DATA ABSTRACTION
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

Idea: invent a new data object that your program needs.

▸Determine its features and components.
➡ These are its attributes.

▸Consider the operations you’d like it to support.
• e.g. access, queries, look-ups, checks, changes, actions, activities, ...
➡ These are its methods.

▸Sometimes the object is a collection, organized in a useful way.
➡ In that case it’s a data structure.

▸Python provides a few: “tuples” (e.g. pairs), strings, lists, dictionaries.
▸Others: vectors, stacks, queues, linked lists, trees, graphs, …

DATA ABSTRACTION
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

Idea: invent a new data object that your program needs.

▸Can be special purpose, geared for a specific application or algorithm.
• Tuples, lists, and dictionaries can sometimes be too generic, featureless.
•Can write code that reads how you think about your program's activity.
• This is the data analog to functional abstraction.

▸Some data abstractions have universal value, can be reused.
➡ A good design saves programming effort in the future

▸Abstraction forces a modular design.
➡ It makes code easier to understand; easier to get right.
➡ May even be useful elsewhere.

DATA ABSTRACTION: ADVANTAGES
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We can represent a rational number in Python with a list
➡ It stores two items: its integer numerator and denominator.

▸Here are some basic operations on our rational number object:
• Make a new rational number (an object constructor):

def createRational(n, d):
 return [n, d]

• Get the numerator (object's accessor or “getter”):
def numerator(r):
 return r[0]

• Get the denominator (another “getter”):
def denominator(r):
 return r[1]

EXAMPLE: RATIONAL NUMBER OBJECT
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We can build operations that work with rational number objects:

• We can invent rational number multiplication:
def rationalProduct(r, s):
 newNumer = numerator(r) * numerator(s)  
 newDenom = denominator(r) * denominator(s)
 return createRational(newNumer,newDenom)

EXAMPLE: RATIONAL NUMBER OBJECT

3
4

___ *
2
3

___ = ???

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We can build operations that work with rational number objects:

• We can invent rational number multiplication:
def rationalProduct(r, s):
 newNumer = numerator(r) * numerator(s)  
 newDenom = denominator(r) * denominator(s)
 return createRational(newNumer,newDenom)

EXAMPLE: RATIONAL NUMBER OBJECT

3
4

___ *
2
3

___ =
4 * 3

_______3 * 2 =

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We can build operations that work with rational number objects:

• We can invent rational number multiplication:
def rationalProduct(r, s):
 newNumer = numerator(r) * numerator(s)  
 newDenom = denominator(r) * denominator(s)
 return createRational(newNumer,newDenom)

EXAMPLE: RATIONAL NUMBER OBJECT

3
4

___ *
2
3

___ =
4 * 3

_______3 * 2 =
12
___6

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We can build operations that work with rational number objects:

 
 

• We can invent rational number addition:
def rationalSum(r, s):
 nr,dr = numerator(r),denominator(r)
 ns,ds = numerator(s),denominator(s)  
 newNumer = nr*ds + ns*dr  
 newDenom = ds*dr
 return createRational(newNumer,newDenom)

EXAMPLE: RATIONAL NUMBER OBJECT

3
4

___ +
2
3

___ = ???

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We can build operations that work with rational number objects:

 
 

• We can invent rational number addition:
def rationalSum(r, s):
 nr,dr = numerator(r),denominator(r)
 ns,ds = numerator(s),denominator(s)  
 newNumer = nr*ds + ns*dr  
 newDenom = ds*dr
 return createRational(newNumer,newDenom)

EXAMPLE: RATIONAL NUMBER OBJECT

3
4

___ +
2
3

___ =
4 * 3

_______3 * 3
3 * 4

_______2 * 4+

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We can build operations that work with rational number objects:

 
 

• We can invent rational number addition:
def rationalSum(r, s):
 nr,dr = numerator(r),denominator(r)
 ns,ds = numerator(s),denominator(s)  
 newNumer = nr*ds + ns*dr  
 newDenom = ds*dr
 return createRational(newNumer,newDenom)

EXAMPLE: RATIONAL NUMBER OBJECT

3
4

___ +
2
3

___ =
12
___ +

12
___9 8 =

12
___17

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We can build operations that work with rational number objects:

 
 

• We can check whether two rational numbers are the same:
def areSameRationals(r, s):
 nr,dr = numerator(r),denominator(r)
 ns,ds = numerator(s),denominator(s)
 return (nr*ds == ns*dr)

EXAMPLE: RATIONAL NUMBER OBJECT

a
b

___ ==
c
d

___ whenever a*d == c*b

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We can build operations that work with rational number objects:
• We can invent ways of displaying and reporting rational numbers

def stringOfRational(r):  
 ntext = str(numerator(r))  
 dtext = str(denominator(r))
 return ntext + “/“ + dtext  

def outputRational(r):
 print(stringOfRational(r))  

• Other operations: subtraction, division, conversion to float, ...

EXAMPLE: RATIONAL NUMBER OBJECT
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸With these defined, here is an interaction:
>>> a = createRational(1, 3)
>>> b = createRational(1, 2)
>>> c = rationalSum(a, rationalProduct(b, a))
>>> outputRational(c)
9 / 18

▸Here, we are relying on functional abstraction to provide data abstraction.
➡ The function calls hide the underlying representation.

• This allows us to change that underlying implementation easily:
➡We can enhance or rewrite the underlying code...
➡ ...with no change to the “client” code that relies on it.

▸Provides an abstraction barrier that makes code maintainable.
➡ The details are hidden from the code that uses the object.

OUR RATIONAL NUMBER OBJECT IN ACTION
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We change our constructor from this...
def createRational(n, d):
 return [n, d]

▸ ...to this, which simplifies the numerator and denominator with the GCD:
def createRational(n, d):
 g = GCD(n,d) # Find greatest common divisor
 return [n//g, d//g]  

▸Our script doesn't need to change, but the object's behavior is improved:
>>> a = createRational(1, 3)
>>> b = createRational(1, 2)
>>> c = rationalSum(a, rationalProduct(b, a))
>>> outputRational(c)
1 / 2

EXAMPLE: AN ENHANCED RATIONAL NUMBER OBJECT
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Note that we could use a dictionary instead:
def createRational(n, d):
 g = GCD(n,d)
 return {"numerator":n//g, "denominator":d//g}

def numerator(r):
 return r["numerator"]  
 
def denominator(r):
 return r["denominator"]  

▸Client code need not change since it uses the getters and constructor:
def rationalSum(r, s):
 nr,dr = numerator(r),denominator(r)
 ns,ds = numerator(s),denominator(s)  
 newNumer = nr*ds + ns*dr  
 newDenom = ds*dr
 return createRational(newNumer,newDenom)

EXAMPLE: RATIONAL OBJECT USING A DICTIONARY INSTEAD
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is a gift card object's use:
>>> gc = createGiftCard(100)
>>> spend(gc,20)
80
>>> spend(gc,45)
35
>>> spend(gc,50)
'Insufficient funds'
>>> spend(gc,20)
15

EXAMPLE: A GIFT CARD OBJECT
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We could use a dictionary to represent a gift card:
def createGiftCard(amount):
 return {"balance":amount}
 
 

EXAMPLE: GIFT CARD OBJECT USING A DICTIONARY
=LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We could use a dictionary to represent a gift card:
def createGiftCard(amount):
 return {"balance":amount}

def spend(giftCard,amount):
 balance = giftCard["balance"]
 if amount > balance:
 return “Insufficient funds”
 balance -= amount
 # update the object's info
 giftCard["balance"] = balance
 return balance  
 

EXAMPLE: GIFT CARD OBJECT USING A DICTIONARY
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We could use a dictionary to represent a gift card:
def createGiftCard(amount):
 return {"balance":amount}

def spend(giftCard,amount):
 balance = giftCard["balance"]
 if amount > balance:
 return “Insufficient funds”
 balance -= amount
 # update the object's info
 giftCard["balance"] = balance
 return balance

def addFunds(giftCard,amount):
 giftCard["balance"] += amount
 return giftCard["balance"]
 
 

EXAMPLE: GIFT CARD OBJECT USING A DICTIONARY
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We made a gift card object that responds to two kinds of request:
➡ We could spend money from the card.
➡ We could add funds to the card.

• We built these as two different functions.

GIFT CARD SUMMARY
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸spend and addFunds are messages to which gift card objects respond.
▸ Their code are the gift card's methods for handling each request.
▸ The suite of messages that an object supports is its interface.

OBJECT TERMINOLOGY
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Many languages support coding up data abstractions in this style.
➡ They allow you to invent your own type of object.
➡ They let you define its attributes, the information each object stores.
➡ They allow you to define a set of operations on that type.

• Your code is organized as a class definition for that object type.

OBJECT ORIENTATION
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸ These are called class-based object-oriented languages.
➡Python is an example, as is C++ and Java.

▸Object-oriented languages have special syntax for:
➡ constructors
➡ attribute access
➡method definition

OBJECT ORIENTATION
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is the class definition of a new GiftCard type:

class GiftCard:

 def __init__(self, amount): # used by the constructor
 self.balance = amount

 def addFunds(self, amount): # a method definition
 self.balance = self.balance + amount
 return self.balance

 def spend(self, amount): # another method definition
 if amount > self.balance:
 return “Insufficient funds”
 self.balance = self.balance – amount
 return self.balance
 

 

EXAMPLE: GIFT CARD CLASS
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is the class definition of a new GiftCard type:

class GiftCard:

 def __init__(self, amount): # used by the constructor
 self.balance = amount

 def addFunds(self, amount): # a method definition
 self.balance = self.balance + amount
 return self.balance

 def spend(self, amount): # another method definition
 if amount > self.balance:
 return “Insufficient funds”
 self.balance = self.balance – amount
 return self.balance

 def getBalance(self): # a balance “getter”
 return self.balance
 

EXAMPLE: GIFT CARD CLASS
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is a gift card object's use, assuming there is a "GiftCard.py" file:
 
>>> from GiftCard import GiftCard
>>> gc = GiftCard(100) # use the constructor; it calls __init__
>>> gc.spend(20)
80
>>> gc.spend(45)
35
>>> gc.spend(50)
'Insufficient funds'
>>> gc.getBalance()
35
>>> gc.addFunds(20)
55
>>> gc.spend(50)
5
>>> gc.balance # Python lets a client access attributes EEK!
5

EXAMPLE: USING A GIFT CARD OBJECT
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is the class definition of a new Account type:
class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate
 
 

EXAMPLE: ACCOUNT CLASS

class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
•Class name is used like a function. We are calling the constructor.
➡ this creates a new object, an instance of class Account

•__init__ code runs with this new object passed as self.
• The argument is passed as the other parameter to __init__.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
•Class name is used like a function. We are calling the constructor.
➡ this creates a new object, an instance of class Account

•__init__ code runs with this new object passed as self.
• The argument is passed as the other parameter to __init__.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
•Class name is used like a function. We are calling the constructor.
➡ this creates a new object, an instance of class Account

•__init__ code runs with this new object passed as self.
• The argument is passed as the other parameter to __init__.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
•Class name is used like a function. We are calling the constructor.
➡ this creates a new object, an instance of class Account

•__init__ code runs with this new object passed as self.
• The argument is passed as the other parameter to __init__.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
•Class name is used like a function. We are calling the constructor.
➡ this creates a new object, an instance of class Account

•__init__ code runs with this new object passed as self.
• The argument is passed as the other parameter to __init__.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸This expression performs an access of an instance variable.

✦Syntax: object.attribute-name
•Gets the value of an attribute with that name from the object.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸This expression performs an access of an instance variable.

✦Syntax: object.attribute-name
•Gets the value of an attribute with that name from the object.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸This expression performs an access of an instance variable.

✦Syntax: object.attribute-name
•Gets the value of an attribute with that name from the object.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸This expression performs an access of an instance variable.

✦Syntax: object.attribute-name
•Gets the value of an attribute with that name from the object.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸The same notation is used to look up class variables.
▸If an object is missing an attribute, the class is checked instead.
▸You can also access it directly inside the class.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸The same notation is used to look up class variables.
▸If an object is missing an attribute, the class is checked instead.
▸You can also access it directly inside the class.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> Account.rate  
0.02

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸The same notation is used to look up class variables.
▸If an object is missing an attribute, the class is checked instead.
▸You can also access a class variable by "dotting" with the class.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02  
>>> a.deposit(50)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02  
>>> a.deposit(50)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸This expression requests execution of a method.

✦Similar syntax: object.method-name (...arguments...)
• This behaves a lot like a function call.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02  
>>> a.deposit(50)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸This expression requests execution of a method.

✦Similar syntax: object.method-name (...arguments...)
• This behaves a lot like a function call.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02  
>>> a.deposit(50)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸This expression requests execution of a method.

✦Similar syntax: object.method-name (...arguments...)
• This behaves a lot like a function call.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02  
>>> a.deposit(50)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸This expression requests execution of a method.

✦Similar syntax: object.method-name (...arguments...)
• This behaves a lot like a function call.
➡ The argument value is passed as the parameter amount.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02  
>>> a.deposit(50)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸This expression requests execution of a method.

✦Similar syntax: object.method-name (...arguments...)
• This behaves a lot like a function call.
➡ The message receiver object is passed as self.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02  
>>> a.deposit(50)  
>>> a.payInterest()

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸This expression requests execution of a method.

✦Similar syntax: object.method-name (...arguments...)
▸Methods with no arguments just have a receiver parameter self.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02  
>>> a.deposit(50)  
>>> Account.rate  
0.02

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
• In a way, a class is like an object. It can have attributes.
• There is only one "class object", so only one Account.rate
• There is a different balance for every Account instance.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02  
>>> a.deposit(50)  
>>> Account.rate  
0.02  
>>> Account.deposit(a,10)  

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸You can also call an instance's method using its class name:

✦Syntax: class-name.instance-method-name(receiver,arguments)

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02  
>>> a.deposit(50)  
>>> Account.rate  
0.02  
>>> Account.deposit(a,10)  

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸You can also call an instance's method using its class name:

✦Syntax: class-name.instance-method-name(receiver,arguments)
▸It is as if deposit is a function attached to the Account class.

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02  
>>> a.deposit(50)  
>>> Account.rate  
0.02  
>>> Account.deposit(a,10)  

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸You can also call an instance's method using its class name:

✦Syntax: class-name.instance-method-name(receiver,arguments)
▸You pass the receiver as the first argument to that "function."

LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We will build hierarchies of different classes that relate to each other:

▸We make subclasses that inherit the attributes of their "superclasses"
• A Checking account has all the info and operations of an Account.
• But it might also have "specialized" features and behavior.

✦ I.e. it might have additional attributes.
• It might override the behavior it inherits.

NEXT TIME
LECTURE 07-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

Account

Checking Savings

PromotionalChecking

