
INHERITANCE

LECTURE 07-1

JIM FIX, REED COLLEGE CSCI 121

▸Many languages support coding up data abstractions in this style.
➡ They allow you to invent your own type of object.
➡ They let you define its attributes, the information each object stores.
➡ They allow you to define a set of operations on that type.

• Your code is organized as a class definition for that object type.

RECALL: OBJECT ORIENTATION
LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸ These are called class-based object-oriented languages.
➡Python is an example, as is C++ and Java.

▸Object-oriented languages have special syntax for:
➡ constructors
➡ attribute access
➡method definition

OBJECT ORIENTATION
LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸We invented a GiftCard type that responds to two kinds of request:
➡ We could spend money from the card.
➡ We could add funds to the card.

▸We write their code in a class definition

RECALL: GIFT CARD EXAMPLE
LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is the class definition of a new GiftCard type:

class GiftCard:

 def __init__(self, amount): # used by the constructor
 self.balance = amount

 def addFunds(self, amount): # a method definition
 self.balance = self.balance + amount
 return self.balance

 def spend(self, amount): # another method definition
 if amount > self.balance:
 return “Insufficient funds”
 self.balance = self.balance – amount
 return self.balance
 

 

EXAMPLE: GIFT CARD CLASS
LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is the class definition of a new GiftCard type:

class GiftCard:

 def __init__(self, amount): # used by the constructor
 self.balance = amount

 def addFunds(self, amount): # a method definition
 self.balance = self.balance + amount
 return self.balance

 def spend(self, amount): # another method definition
 if amount > self.balance:
 return “Insufficient funds”
 self.balance = self.balance – amount
 return self.balance

 def getBalance(self): # a balance “getter”
 return self.balance
 

EXAMPLE: GIFT CARD CLASS
LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is a gift card object's use, assuming there is a "GiftCard.py" file:
 
>>> from GiftCard import GiftCard
>>> gc = GiftCard(100) # use the constructor; it calls __init__
>>> gc.spend(20)
80
>>> gc.spend(45)
35
>>> gc.spend(50)
'Insufficient funds'
>>> gc.getBalance()
35
>>> gc.addFunds(20)
55
>>> gc.spend(50)
5
>>> gc.balance # Python lets a client access attributes EEK!
5

EXAMPLE: USING A GIFT CARD OBJECT
LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is the class definition of a new Account type:
class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate
 
 

EXAMPLE: ACCOUNT CLASS

class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
• The class name is used like a function. We’re calling the constructor.
➡ This creates a new Account object.

•__init__ runs with self as this new object.
•100 is passed as the other parameter to __init__.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
• The class name is used like a function. We’re calling the constructor.
➡ This creates a new Account object.

•__init__ runs with self as this new object.
•100 is passed as the other parameter to __init__.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
• The class name is used like a function. We’re calling the constructor.
➡ This creates a new Account object.

•__init__ runs with self as this new object.
•100 is passed as the other parameter to __init__.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
• The class name is used like a function. We’re calling the constructor.
➡ This creates a new Account object.

•__init__ runs with self as this new object.
•100 is passed as the other parameter to __init__.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
• The class name is used like a function. We’re calling the constructor.
➡ This creates a new Account object.

•__init__ runs with self as this new object.
•100 is passed as the other parameter to __init__.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸This accesses an instance variable.

✦Syntax: object.attribute-name
•Gets that attribute’s value.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸This accesses an instance variable.

✦Syntax: object.attribute-name
•Gets that attribute’s value.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸This accesses an instance variable.

✦Syntax: object.attribute-name
•Gets that attribute’s value.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸This accesses an instance variable.

✦Syntax: object.attribute-name
•Gets that attribute’s value.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸The same notation is used to access a class variables.
▸If an object is missing an attribute, the class is checked instead.
▸You can also access it directly inside the class.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸The same notation is used to access a class variables.
▸If an object is missing an attribute, the class is checked instead.
▸You can also access it directly inside the class.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> Account.rate  
0.02

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸The same notation is used to access a class variables.
▸If an object is missing an attribute, the class is checked instead.
▸You can also access a class variable by "dotting" with the class.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02  
>>> a.deposit(50)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02  
>>> a.deposit(50)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸This expression requests execution of a method.

✦Similar syntax: object.method-name (...arguments...)
• This behaves a lot like a function call.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02  
>>> a.deposit(50)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸This expression requests execution of a method.

✦Similar syntax: object.method-name (...arguments...)
• This behaves a lot like a function call.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02  
>>> a.deposit(50)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸This expression requests execution of a method.

✦Similar syntax: object.method-name (...arguments...)
• This behaves a lot like a function call.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02  
>>> a.deposit(50)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸This expression requests execution of a method.

✦Similar syntax: object.method-name (...arguments...)
• This behaves a lot like a function call.
➡ The argument value is passed as the parameter amount.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02  
>>> a.deposit(50)

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸This expression requests execution of a method.

✦Similar syntax: object.method-name (...arguments...)
• This behaves a lot like a function call.
➡ The message receiver object is passed as self.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02  
>>> a.deposit(50)  
>>> a.payInterest()

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸This expression requests execution of a method.

✦Similar syntax: object.method-name (...arguments...)
▸Methods with no arguments just have a receiver parameter self.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02  
>>> a.deposit(50)  
>>> Account.rate  
0.02

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
• In a way, a class is like an object. It can have attributes.
• There is only one "class object", so only one Account.rate
•But there is a different balance for every Account instance.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02  
>>> a.deposit(50)  
>>> Account.rate  
0.02  
>>> Account.deposit(a,10)  

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸You can also call an instance's method using its class name:

✦Syntax: class-name.instance-method-name(receiver,arguments)

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02  
>>> a.deposit(50)  
>>> Account.rate  
0.02  
>>> Account.deposit(a,10)  

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸You can also call an instance's method using its class name:

✦Syntax: class-name.instance-method-name(receiver,arguments)
▸It is as if deposit is a function attached to the Account class.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is Account in use: 
>>> a = Account(100)  
>>> a.balance  
100  
>>> a.rate  
0.02  
>>> a.deposit(50)  
>>> Account.rate  
0.02  
>>> Account.deposit(a,10)  

 
 

EXAMPLE: ACCOUNT CLASS class Account:  
  
 rate = .02  

 def __init__(self, amount):
 self.balance = amount  

 def deposit(self, amount):
 self.balance += amount  
 
 def payInterest(self):
 self.balance *= 1.0 + rate

COMMENTARY
▸You can also call an instance's method using its class name:

✦Syntax: class-name.instance-method-name(receiver,arguments)
▸You pass the receiver as the first argument to that "function."

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸Here is the class definition of a new Account type:
class Account:  
 interest_rate = .02  
 def __init__(self, amount):
 self.balance = amount  
 def deposit(self, amount):
 self.balance += amount  
 def payInterest(self):
 self.balance *= 1.0 + self.interest_rate
 def getBalance(self):
 return self.balance

▸Here is Account in use:
>>> a = Account(150)
>>> a.deposit(50)
>>> a.payInterest()
>>> a.getBalance()
204.0

SUMMARY: ACCOUNT CLASS
LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

▸We can build hierarchies of different accounts:

▸We make subclasses that inherit the attributes of their "superclasses"
• A Savings account has all the info and operations of an Account.
• But it has features and behavior more specific to checking accounts

✦ This is called subclass specialization.
✦ We extend the superclass with additional attributes.

• It also overrides some of the behavior it inherits from Account.

AN ACCOUNT CLASS HIERARCHY

Account

Checking Savings

PromotionalChecking

LECTURE 07-1: CLASS INHERITANCE

class Account:  
 interest_rate = .02  
 def __init__(self, amount):
 self.balance = amount  
 def deposit(self, amount):
 self.balance += amount
 def withdraw(self, amount):
 self.balance -= amount  
 def payInterest(self):
 self.balance *= 1.0 + self.interest_rate

class Savings(Account):
 interest_rate = 0.04
 withdraw_fee = 1.0
 def withdraw(self, amount):
 Account.withdraw(self, amount + self.withdraw_fee)

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT
LECTURE 07-1: CLASS INHERITANCE

class Account:  
 interest_rate = .02  
 def __init__(self, amount):
 self.balance = amount  
 def deposit(self, amount):
 self.balance += amount
 def withdraw(self, amount):
 self.balance -= amount  
 def payInterest(self):
 self.balance *= 1.0 + self.interest_rate

class Savings(Account): # inherit the methods and class variables of Account
 interest_rate = 0.04
 withdraw_fee = 1.0
 def withdraw(self, amount):
 Account.withdraw(self, amount + self.withdraw_fee)

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT
LECTURE 07-1: CLASS INHERITANCE

class Account:  
 interest_rate = .02  
 def __init__(self, amount):
 self.balance = amount  
 def deposit(self, amount):
 self.balance += amount
 def withdraw(self, amount):
 self.balance -= amount  
 def payInterest(self):
 self.balance *= 1.0 + self.interest_rate

class Savings(Account):
 interest_rate = 0.04 # overrides the class variable inherited from Account
 withdraw_fee = 1.0
 def withdraw(self, amount):
 Account.withdraw(self, amount + self.withdraw_fee)

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT
LECTURE 07-1: CLASS INHERITANCE

class Account:  
 interest_rate = .02  
 def __init__(self, amount):
 self.balance = amount  
 def deposit(self, amount):
 self.balance += amount
 def withdraw(self, amount):
 self.balance -= amount  
 def payInterest(self):
 self.balance *= 1.0 + self.interest_rate

class Savings(Account):
 interest_rate = 0.04
 withdraw_fee = 1.0 # extends with a specializing class variable
 def withdraw(self, amount):
 Account.withdraw(self, amount + self.withdraw_fee)

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT
LECTURE 07-1: CLASS INHERITANCE

class Account:  
 interest_rate = .02  
 def __init__(self, amount):
 self.balance = amount  
 def deposit(self, amount):
 self.balance += amount
 def withdraw(self, amount):
 self.balance -= amount  
 def payInterest(self):
 self.balance *= 1.0 + self.interest_rate

class Savings(Account):
 interest_rate = 0.04
 withdraw_fee = 1.0
 def withdraw(self, amount): # overrides a method inherited from Account
 Account.withdraw(self, amount + self.withdraw_fee)

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT
LECTURE 07-1: CLASS INHERITANCE

class Account:  
 interest_rate = .02  
 def __init__(self, amount):
 self.balance = amount  
 def deposit(self, amount):
 self.balance += amount
 def withdraw(self, amount):
 self.balance -= amount  
 def payInterest(self):
 self.balance *= 1.0 + self.interest_rate

class Savings(Account):
 interest_rate = 0.04
 withdraw_fee = 1.0
 def withdraw(self, amount): # overrides a method inherited from Account
 Account.withdraw(self, amount + self.withdraw_fee)
 # explicitly invokes the method of its superclass

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT
LECTURE 07-1: CLASS INHERITANCE

▸Here is Account in use:
>>> a = Account(100)
>>> a.balance
100.0
>>> a.payInterest()
>>> a.balance
102.0
>>> a.withdraw(20)
>>> a.balance
82.0

▸Here is Savings in use:
>>> a = Savings(100)
>>> a.balance
100.0
>>> a.payInterest()
>>> a.balance
104.0
>>> a.withdraw(20)
>>> a.balance
83.0

ACCOUNT VERSUS SAVINGS
LECTURE 07-1: CLASS INHERITANCE

class Account:  
 interest_rate = .02  
 def __init__(self, amount):
 self.balance = amount  
 def deposit(self, amount):
 self.balance += amount
 def withdraw(self, amount):
 self.balance -= amount  
 def payInterest(self):
 self.balance *= 1.0 + self.interest_rate

class Checking(Account):

 min_balance = 1000.0

 def payInterest(self):
 if self.balance >= self.min_balance:
 Account.payInterest(self)

INHERITANCE EXAMPLE: A CHECKING ACCOUNT
LECTURE 07-1: CLASS INHERITANCE

▸Here is Checking in use:
>>> a = Checking(1000.0)
>>> a.balance
1000.0
>>> a.payInterest()
>>> a.balance
1040.0
>>> a.withdraw(50.0)
>>> a.balance
990.0
>>> a.payInterest()
>>> a.balance
990.0

CHECKING ACCOUNT INTERACTION
LECTURE 07-1: CLASS INHERITANCE

class Checking(Account):

 min_balance = 1000.0

 def payInterest(self):
 if self.balance >= self.min_balance:
 Account.payInterest(self)

class PromotionalChecking(Checking):

 reward = 50

 def __init__(self,amount):
 Checking.__init__(self,amount+self.reward)  
 # The code above explicitly uses the initializer code from Checking

INHERITANCE EXAMPLE: A PROMOTIONAL CHECKING ACCOUNT
LECTURE 07-1: CLASS INHERITANCE

class Checking(Account):

 min_balance = 1000.0

 def payInterest(self):
 if self.balance >= self.min_balance:
 Account.payInterest(self)

class PromotionalChecking(Checking):

 reward = 50

 def __init__(self,amount):
 super().__init__(amount+self.reward)  
 # The code above uses the initializer code from Checking that was inherited from Account
 # Using super() references self as though it is an instance of its superclass

INHERITANCE EXAMPLE: A PROMOTIONAL CHECKING ACCOUNT
LECTURE 07-1: CLASS INHERITANCE

▸New object types are defined with class.
▸Within the class you define these things:
•__init__
• other methods
•
▸Method parameters are self followed by the others.
▸Object dot notation:
•Methods are called using receiver.method(...)
•Object attributes are accessed by receiver.variable
•We use self. notation inside a method to access these things too.
▸New instances are built with class-name(...)

OBJECT TAKEAWAYS
LECTURE 07-1: CLASS INHERITANCE

▸New object types are defined with class.
▸Within the class you define these things:
•__init__
• other methods
• (maybe) class attributes
▸Method parameters are self followed by the others.
▸Object dot notation:
•Methods are called using receiver.method(...)
•Object attributes are accessed by receiver.variable
•We use self. notation inside a method to access these things too.
▸New instances are built with class-name(...)

OBJECT TAKEAWAYS
LECTURE 07-1: CLASS INHERITANCE

▸A class inherits from its superclass with
➡ class class-name(super-class-name):

▸You can call the superclass initializer with the syntax:
➡ super-class-name.__init__(self,...)

▸You can call the superclass methods with the syntax:
➡ super-class-name.method(self,...)

▸Subclasses inherit the methods of their superclass.
▸They can be specialized in two ways:
• You can add additional attributes and methods.
• You can override super-class methods.

INHERITANCE TAKEAWAYS
LECTURE 07-1: CLASS INHERITANCE

