INHERITANCE

LECTURE 07-1

JIM FIX, REED COLLEGE CSCI 121

RECALL: OBJECT ORIENTATION

Many languages support coding up data abstractions in this style.
hey allow you to invent your own type of object.

They let you define its attributes, the information each object stores.
They allow you to define a set of operations on that type.

Your code is organized as a class definition for that object type.

OBJECT ORIENTATION

These are called class-based object-oriented languages.
Python is an example, as is C++ and Java.

Object-oriented languages have special syntax for:
constructors
attribute access
method definition

RECALL: GIFT CARD EXAMPLE

We invented a Gi £tCard type that responds to two kinds of request:
We could spend money from the card.
We could add funds to the card.

We write their code in a class definition

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: GIFT CARD CLASS

» Here is the class definition of a new GiftCard type:

class GiftCard:

def init_(self, amount): # used by the constructor
self.balance = amount

def addFunds(self, amount): # a method definition
self.balance = self.balance + amount
return self.balance

def spend(self, amount): # another method definition
if amount > self.balance:
return “Insufficient funds”
self.balance = self.balance — amount
return self.balance

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: GIFT CARD CLASS

» Here is the class definition of a new GiftCard type:

class GiftCard:

def init_(self, amount): # used by the constructor
self.balance = amount

def addFunds(self, amount): # a method definition
self.balance = self.balance + amount
return self.balance

def spend(self, amount): # another method definition
if amount > self.balance:
return “Insufficient funds”
self.balance = self.balance — amount
return self.balance

def getBalance(self): # a balance “getter”
return self.balance

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: USING A GIFT CARD OBJECT

» Here is a gift card object's use, assuming there is a "ciftcard.py" file:

>>> from GiftCard import GiftCard

>>> gc = GiftCard(100) # use the constructor; it calls _ init
>>> gc.spend(20)

80

>>> gc.spend(45)

35

>>> gc.spend(50)
'Insufficient funds
>>> gc.getBalance()
35

>>> gc.addFunds (20)
55

>>> gc.spend(50)

5

>>> gc.balance # Python lets a client access attributes EEK!
5

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: ACCOUNT CLASS

» Here is the class deflnltlon of a new Account type:

= ——

\class Account:

1\
| rate = .02

def init__ (self, amount):

self.balance = amount

|

def deposit(self, amount):
self.balance += amount

def payInterest(self):
self balance *= 1.0 + rate|

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: ACCOUNT CLASS c1ass account:

| rate = .02
»Here is Account in use: .
def 1init_(self, amount):

>>> a = Account (100) self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: ACCOUNT CLASS c1ass account:

»Here is Account in use;
>>> a = Account(100)

COMMENTARY

|
|

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):
self.balance *= 1.0 + rate|

==

* The class name is used like a function. We're calling the constructor.
= This creates a new Account object.

e init__ runswith self as this new object.

* 100 is passed as the other parameterto __init .

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: ACCOUNT CLASS c1ass account:

»Here is Account in use;
>>> a = Account (100)

COMMENTARY

|
|

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):
self.balance *= 1.0 + rate|

==

* The class name is used like a function. We're calling the constructor.
= This creates a new Account object.

* dinit__ runswith self as this new object.

* 100 is passed as the other parameterto __init .

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: ACCOUNT CLASS c1ass account:

»Here is Account in use;
>>> a = Account (100)

COMMENTARY

|
|

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):
self.balance *= 1.0 + rate|

==

* The class name is used like a function. We're calling the constructor.
= This creates a new Account object.

* dinit__ runswith self as this new object.

* 100 is passed as the other parameterto __init .

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: ACCOUNT CLASS c1ass account:

|
|

»Here is Account in use;
>>> a = Account (100)

rate = .02

-

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):
self.balance *= 1.0 + rate|

COMMENTARY

==

* The class name is used like a function. We're calling the constructor.
= This creates a new Account object.

* init__ runswith self as this new object.

* 100 is passed as the other parameterto __init .

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: ACCOUNT CLASS c1ass account:

|
»Here is Account‘e:

>>> a = Account(100)

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):
self.balance *= 1.0 + rate|

COMMENTARY

==

* The class name is used like a function. We're calling the constructor.
= This creates a new Account object.

* dinit__ runswith self as this new object.

* 100 is passed as the other parameterto __init .

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: ACCOUNT CLASS c1ass account:

| rate = .02
»Here is Account in use;

def init (self, amount):

>>> a = Account(100) self.balance = amount
>>> a.balance
100 *‘ :

def deposit(self, amount):

self.balance += amount

def payInterest(self):

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: ACCOUNT CLASS c1ass account:

|

|

rate = .02

»Here is Account in use;:

>>> a = Account (100)
>>> a.balance

def init (self, amount):
self.balance = amount

100 def deposit(self, amount):
self.balance += amount
J;
def payInterest(self):
self.balance *= 1.0 + rate|
COMMENTARY

»This accesses an instance variable.
+Syntax: object . attribute-name
* Gets that attribute's value.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: ACCOUNT CLASS c1ass account:

|
|

rate = .02

»Here is Account in use;:

>>> a = Account (100)
>>> a.balance

def init (self, amount):
self.balance = amount

100 def deposit(self, amount):
self.balance += amount
J;
def payInterest(self):
self.balance *= 1.0 + rate|
COMMENTARY

» This accesses an instance variable.
+Syntax: object . attribute-name
* Gets that attribute’s value.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: ACCOUNT CLASS c1ass account:

|
|

rate = .02

»Here is Account in use;:

>>> a = Account (100)
>>> a.balance

def init (self, amount):
self.balance = amount

100 def deposit(self, amount):
self.balance += amount
J;
def payInterest(self):
self.balance *= 1.0 + rate|
COMMENTARY

»This accesses an instance variable.
+Syntax: object. attribute-name
* Gets that attribute's value.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: ACCOUNT CLASS c1ass account:

|

|

rate = .02

»Here is Account in use;:

>>> a = Account (100)
>>> a.balance

def init (self, amount):
self.balance = amount

100 def deposit(self, amount):
self.balance += amount
J;
def payInterest(self):
self.balance *= 1.0 + rate|
COMMENTARY

»This accesses an instance variable.
+Syntax: object . attribute-name
* Gets that attribute's value.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: ACCOUNT CLASS c1ass account:

|
rate = .02

»Here is Account in use;:

def init (self, amount):

>>> a = Account (100) self.balance = amount
>>> a.balance
100 | :

def deposit(self, amount):
;>;za-rate self.balance += amount

def payInterest(self):

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: ACCOUNT CLASS c1ass account:

f
J
|

rate = .02

»Here is Account in use;:

>>> a = Account (100)
>>> a.balance

def init (self, amount):
self.balance = amount

|
100 def deposit(self, amount):
>>> e self.balance += amount
def payInterest(self):
self.balance *= 1.0 + rate|
COMMENTARY

»The same notation is used to access a class variables.
»If an object is missing an attribute, the class is checked instead.
»You can also access it directly inside the class.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

rate = .02

EXAMPLE: ACCOUNT CLASS c1ass Ac*=) N

»Here is Account in use;:

>>> a = Account(100)
>>> a.balance

def init (self, amount):
self.balance = amount

|
100 def deposit(self, amount):
s<d self.balance += amount
def payInterest(self):
self.balance *= 1.0 + rate|
COMMENTARY

»The same notation is used to access a class variables.
»If an object is missing an attribute, the class is checked instead.
»You can also access it directly inside the class.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

J
rate = .02

EXAMPLE: ACCOUNT CLASS c1ass Ac*=) o

»Here is Account in use;:

>>> a = Account(100)
>>> a.balance

def init (self, amount):
self.balance = amount

F\
LAy def deposit(self, amount):
>>> N - rate self.balance += amount
def payInterest(self):
self.balance *= 1.0 + rate|
COMMENTARY

»The same notation is used to access a class variables.
»If an object is missing an attribute, the class is checked instead.
»You can also access a class variable by "dotting" with the class.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: ACCOUNT CLASS c1ass account:

|
rate = .02

»Here is Account in use;:

def init (self, amount):

>>> a = Account (100) self.balance = amount
>>> a.balance
100 | :

def deposit(self, amount):
;>;za-rate self.balance += amount

>>> a.deposit (50) def payInterest(self):

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: ACCOUNT CLASS c1ass account:

»Here is Account in use;:

>>> a = Account (100)

>>> a.balance

100

>>> a.rate

0.02

>>> a.deposit (50)

COMMENTARY

|
|

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):
self.balance *= 1.0 + rate|

==

» This expression requests execution of a method.
+Similar syntax: object . method-name (...arguments...)
» This behaves a lot like a function call.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: ACCOUNT CLASS c1ass account:

»Here is Account in use;:

>>> a = Account (100)

>>> a.balance

100

>>> a.rate

0.02

>>> a.deposit (50)

COMMENTARY

|
|

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):
self.balance *= 1.0 + rate|

==

» This expression requests execution of a method.
+Similar syntax: object . method-name (...arguments...)
» This behaves a lot like a function call.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: ACCOUNT CLASS c1ass account:

»Here is Account in use;:

>>> a = Account (100)

>>> a.balance

100

>>> a.rate

0.02

>>> a.deposit (50)

COMMENTARY

|

|

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):
self.balance *= 1.0 + rate|

==

» This expression requests execution of a method.
+Similar syntax: object . method-name (...arguments...)
» This behaves a lot like a function call.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: ACCOUNT CLASS c1ass account:

|
|

rate = .02
»Here iIs Account in use: ..

def 1inait_(self, a t):
>>> a = Account(100) self.balance = t
>>> a.balance
100 | :

def deposit(self, amount):
>>> a.rate self.balance += amount
0.02 |
>>> a.deposit (50) def payInterest(self):

self.balance *= 1.0 + rate}

COMMENTARY
» This expression requests execution of a method.
+Similar syntax: object . method-name (...arguments...)
» This behaves a lot like a function call.
= The argument value is passed as the parameter amount.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: ACCOUNT CLASS ciass account: N

»Here is Account in use;:

>>> a = Account(100)
>>> a.balance

100

>>> a.rate

0.02

>>> a.deposit (50)

COMMENTARY

|
|

rate = .02

def init_ (s , amount) :
self.bala = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):

self.balance *= 1.0 + rate|

==

» This expression requests execution of a method.
+Similar syntax: object . method-name (...arguments...)
» This behaves a lot like a function call.
= The message receiver object is passed as self.

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: ACCOUNT CLASS c1ass account:

»Here is Account in use;:

>>> a = Account(100)
>>> a.balance

100

>>> a.rate

0.02

>>> a.deposit (50)
>>> a.paylInterest()

COMMENTARY

|
|

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, unt) :
self.balance ount

def payInterest (self):
self.balance *= 1.0 + rate|

==

» This expression requests execution of a method.
+Similar syntax: object. method-name (...arquments...)
» Methods with no arguments just have a receiver parameter sel £.

EXAMPLE: ACCOUNT CLASS c1ass account:

Here is Account In use:

>>> a = Account (100)
>>> a.balance

100

>>> a.rate

0.02

>>> a.deposit (50)
>>> Account.rate
0.02

COMMENTARY

ﬂ

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):

self.balance *= 1.0 + rate|

E— = = ==

In a way, a class is like an object. It can have attributes.
There is only one “class object”, so only one Account . rate
But there is a different balance for every Account instance.

|
|

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

EXAMPLE: ACCOUNT CLASS

»Here is Account in use;

>>> a = Account(100)

>>> a.balance

100

>>> a.rate

0.02

>>> a.deposit (50)

>>> Account.rate

0.02

>>> Account.deposit(a,10)

COMMENTARY

|

'class Account:
f

|

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):

self.balance *= 1.0 + rate|

==

*You can also call an instance's method using its class name:
+Syntax: class-name . instance-method-name (receiver , arguments)

EXAMPLE: ACCOUNT CLASS c1ass account:

Here is Account In use:

>>> a = Account(100)

>>> a.balance

100

>>> a.rate

0.02

>>> a.deposit (50)

>>> Account.rate

0.02

>>> Account.deposit(a,10)

COMMENTARY

|

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):

self.balance *= 1.0 + rate|

E— — = ==

You can also call an instance's method using its class name:

Syntax: class-name . instance-method-name (receiver, arguments)

Iltis as if deposit isafunction attached to the Account class.

J
)

EXAMPLE: ACCOUNT CLASS c1ass account:

Here is Account In use:

>>> a = Account(100)

>>> a.balance

100

>>> a.rate

0.02

>>> a.deposit (50)

>>> Account.rate

0.02

>>> Account.deposit(a,10)

COMMENTARY

u;

rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def payInterest(self):

self.balance *= 1.0 + rate|

E— — = ==

You can also call an instance's method using its class name:

Syntax: class-name . instance-method-name (receiver, arguments)

You pass the receiver as the first argument to that “function.”

!
)

LECTURE 07-1: OBJECT ORIENTATION WITH INHERITANCE

SUMMARY: ACCOUNT CLASS

» Here is the class definition of a new Account type:

class Account:
interest rate = .02
def init (self, amount):
self.balance = amount
def deposit(self, amount):
self.balance += amount
def payInterest(self):
self.balance *= 1.0 + self.interest rate
def getBalance(self):
return self.balance

»Here is Account in use;
>>> a = Account(150)

>>> a.deposit (50)
>>> a.payInterest()
>>> a.getBalance()
204.0

AN ACCOUNT CLASS HIERARCHY

We can build hierarchies of different accounts:

Accoug:\\\
Checking Savings

/

PromotionalChecking

We make subclasses that inherit the attributes of their "superclasses"
A savings account has all the info and operations of an Account.
But it has features and behavior more specific to checking accounts

This is called subclass specialization.
We extend the superclass with additional attributes.
It also overrides some of the behavior it inherits from Account.

LECTURE 07-1: CLASS INHERITANCE

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT

class Account:

interest rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

def payInterest(self):

self.balance *= 1.0 + self.interest rate

class Savings (Account):
interest rate = 0.04
withdraw fee = 1.0
def withdraw(self, amount):
Account.withdraw(self, amount + self.withdraw fee)

LECTURE 07-1: CLASS INHERITANCE

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT

class Account:

interest rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

def payInterest(self):

self.balance *= 1.0 + self.interest rate

class Savings (Account) : #inherit the methods and class variables of Account
interest rate = 0.04
withdraw fee = 1.0
def withdraw(self, amount):
Account.withdraw(self, amount + self.withdraw fee)

LECTURE 07-1: CLASS INHERITANCE

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT

class Account:

interest rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

def payInterest(self):

self.balance *= 1.0 + self.interest rate

class Savings (Account):
interest rate = 0.04 #overrides the class variable inherited from Account
withdraw fee = 1.0
def withdraw(self, amount):
Account.withdraw(self, amount + self.withdraw fee)

LECTURE 07-1: CLASS INHERITANCE

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT

class Account:

interest rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

def payInterest(self):

self.balance *= 1.0 + self.interest rate

class Savings (Account):
interest rate = 0.04
withdraw fee = 1.0 #extendswith aspecializing class variable
def withdraw(self, amount):
Account.withdraw(self, amount + self.withdraw fee)

LECTURE 07-1: CLASS INHERITANCE

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT

class Account:

interest rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

def payInterest(self):

self.balance *= 1.0 + self.interest rate

class Savings (Account):
interest rate = 0.04
withdraw fee = 1.0
def withdraw(self, amount): #overridesa method inherited from Account

Account.withdraw(self, amount + self.withdraw fee)

LECTURE 07-1: CLASS INHERITANCE

INHERITANCE EXAMPLE: A SAVINGS ACCOUNT

class Account:

interest rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

def payInterest(self):

self.balance *= 1.0 + self.interest rate

class Savings (Account):
interest rate = 0.04
withdraw fee = 1.0
def withdraw(self, amount): #overridesa method inherited from Account

Account.withdraw(self, amount + self.withdraw fee)
explicitly invokes the method of its superclass

LECTURE 07-1: CLASS INHERITANCE

ACCOUNT VERSUS SAVINGS

»Here is Account in use:
>>> a = Account(100)

>>> a.balance

100.0

>>> a.payInterest()
>>> a.balance

102.0

>>> a.withdraw(20)
>>> a.balance

82.0

»Here is Savings in use:
>>> a = Savings (100)

>>> a.balance

100.0

>>> a.payInterest ()
>>> a.balance

104.0

>>> a.withdraw(20)
>>> a.balance

83.0

LECTURE 07-1: CLASS INHERITANCE

INHERITANCE EXAMPLE: A CHECKING ACCOUNT

class Account:

interest rate = .02

def init (self, amount):
self.balance = amount

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

def payInterest(self):

self.balance *= 1.0 + self.interest rate
class Checking(Account):
min balance = 1000.0
def payInterest(self):

if self.balance >= self.min balance:
Account.payInterest (self)

LECTURE 07-1: CLASS INHERITANCE

CHECKING ACCOUNT INTERACTION

»Here is Checking in use:

>>> a = Checking(1000.0)
>>> a.balance

1000.0

>>> a.paylInterest()

>>> a.balance

1040.0

>>> a.withdraw(50.0)
>>> a.balance

990.0

>>> a.payInterest()
>>> a.balance

990.0

LECTURE 07-1: CLASS INHERITANCE

INHERITANCE EXAMPLE: A PROMOTIONAL CHECKING ACCOUNT

class Checking(Account):
min balance = 1000.0
def payInterest(self):
if self.balance >= self.min balance:
Account.payInterest (self)
class PromotionalChecking(Checking):
reward = 50
def init (self,amount):

Checking. init_ (self,amount+self.reward)
#The code above explicitly uses the initializer code from Checking

LECTURE 07-1: CLASS INHERITANCE

INHERITANCE EXAMPLE: A PROMOTIONAL CHECKING ACCOUNT

class Checking(Account):
min balance = 1000.0

def payInterest(self):
if self.balance >= self.min balance:
Account.payInterest (self)

class PromotionalChecking(Checking):
reward = 50

def init (self,amount):
super(). init (amount+self.reward)
The code above uses the initializer code from Checking that was inherited from Account
Using super() references self as though it is an instance of its superclass

OBJECT TAKEAWAYS

New object types are defined with class.
Within the class you define these things:
__init
other methods

Method parameters are sel £ followed by the others.
Object dot notation:

Methods are called using receiver.method(...)

Object attributes are accessed by receiver.variable

We use sel £ . notation inside a method to access these things too.
New instances are built with class-name (.. .)

OBJECT TAKEAWAYS

New object types are defined with class.
Within the class you define these things:
__init
other methods
(maybe) class attributes
Method parameters are sel £ followed by the others.
Object dot notation:
Methods are called using receiver.method(...)
Object attributes are accessed by receiver.variable
We use sel £ . notation inside a method to access these things too.
New instances are built with class-name (.. .)

LECTURE 07-1: CLASS INHERITANCE

INHERITANCE TAKEAWAYS

» A class inherits from its superclass with

= class class-name (super-class-name):
»You can call the superclass initializer with the syntax:

= super-class-name. init (self,...)
»You can call the superclass methods with the syntax:

= super-class-name.method(self,...)
»Subclasses inherit the methods of their superclass.

»They can be specialized in two ways:
* You can add additional attributes and methods.
* You can override super-class methods.

