DATA ABSTRACTIONS
& OBJECT-ORIENTATION

LECTURE 07-2

JIM FIX, REED COLLEGE CSCI 121

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

QUIZ NEXT MONDAY

»In-Class Quiz: Monday, March 10th
* closed note, closed computer, hand-written
* Topic covered:
= lists and dictionaries

MONDAY BEFORE BREAK

In-Class Midterm Exam: Monday, March 17th

closed note, closed computer, hand-written

about 5 problems similar to quiz and homework problems

Topics covered:
scripting, including input and print
int and str operations
function and procedure de f; return; the None value
conditional 1 f-else statements; while loops; bool
(basic) list and dictionary use

| will post a practice exam next week.

| will post a practice exam solution on Friday, March 14th.

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

JUST BEFORE BREAK

»Project 2 due: Friday, March 21st
o ciphers

3-Mar-25

10-Mar-25

17-Mar-25

Date Week Monday (Lecture)

the call stack revisited
fibonacci, instrumented

§ Quiz #3 on lists and dictionaries
inheritance

§ Exam on Homework 1-5
scripting, conditionals, loops, functions,
lists, dictionaries

SPRING BREAK

Tuesday (Lab)

¢ Homework 6 out
"recursion"
» Homework 5 due

¢ Homework 7 out
"classes and inheritance'
» Homework 6 due

!

e Homework 8 out
"higher order functions"
» Homework 7 due

SPRING BREAK

Wednesday (Lecture)

objects and classes

lambda
higher order functions

environment diagrams
linked list traversal; insertion
« Project 3 "hawk/dove" out

SPRING BREAK

Thursday Friday

» Project 2 due

SPRING BREAK

TODAY

Today:
inventing your own data structures and data types
object-oriented programming in Python
Reading: on Python object-orientation
PP Ch 3
TP Ch 12, 14-16
CPCh2.5-2.8

FUNCTIONAL/PROCEDURAL ABSTRACTION

Idea: invent new operations and actions that constitute your program

We use the de £ statement to define functions and procedures
We give them meaningful and memorable names.
We take care to make them broadly useful.

Good definitions enhance code modularity
They can be made part of a used by several programs.
Makes code collaboration easier and larger programs easier to write.

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

FUNCTIONAL/PROCEDURAL ABSTRACTION

» Functions/procedures create a useful barrier of abstraction.
* Make code easier to read
* You need not know all the details.
* Only need to know the function's interface and behavior.

def remove all(x, someList):
"""Modifies list, removing elements equal to the value.”""

...messy code details here and below...

DATA ABSTRACTION

Idea: invent a new data object that your program needs.

Determine its features and components.
These are its attributes.

Consider the operations you'd like it to support.
e.g. access, queries, look-ups, checks, changes, actions, activities, ...
These are its methods.

DATA ABSTRACTION

Idea: invent a new data object that your program needs.

Determine its features and components.
These are its attributes.

Consider the operations you'd like it to support.
e.g. access, queries, look-ups, checks, changes, actions, activities, ...
These are its methods.

Sometimes the object is a collection, organized in a useful way.
In that case it's a data structure.

Python provides a few: strings, lists, dictionaries, “tuples” (e.g. pairs).

Others: vectors, stacks, queues, linked lists, trees, graphs, ...

DATA ABSTRACTION: ADVANTAGES

Idea: invent a new data object that your program needs.

Can be special purpose, geared for a specific application or algorithm.
Lists and dictionaries can sometimes be too generic, featureless.
Can write code that reads how you think about your program's activity.
This is the data analog to functional abstraction.

Some data abstractions have universal value, can be reused.
A good design saves programming effort in the future
Abstraction forces a modular design.
It makes code easier to understand; easier to get right.
May even be useful elsewhere.

EXAMPLE: RATIONAL NUMBER OBJECT

We can represent a rational number in Python with a list
It stores two items: its integer numerator and denominator.

Here are some basic operations on our rational number object:
Make a new rational number (an object constructor):

def createRational(n, d):
return [n, d]

Get the numerator (object's accessor or "getter”):

def numerator(r):
return r[0]

Get the denominator (another “getter”):

def denominator(r):
return r[1l]

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: RATIONAL NUMBER OBJECT

»We can build operations that work with rational number objects:

3 2

= s = = 277
4 3

* We can invent rational number multiplication:

def rationalProduct(r, s):
newNumerator = numerator(r) * numerator(s)
newDenominator = denominator(r) * denominator(s)
return createRational (newNumerator, newDenominator)

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: RATIONAL NUMBER OBJECT

»We can build operations that work with rational number objects:

3 2 3*2

—_— Y — =

4 3 4*3

* We can invent rational number multiplication:

def rationalProduct(r, s):
newNumerator = numerator(r) * numerator(s)
newDenominator = denominator(r) * denominator(s)
return createRational (newNumerator, newDenominator)

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: RATIONAL NUMBER OBJECT

»We can build operations that work with rational number objects:

3 2 3*2 6

—_— Y — =

4 3 a+*3 12

* We can invent rational number multiplication:

def rationalProduct(r, s):
newNumerator = numerator(r) * numerator(s)
newDenominator = denominator(r) * denominator(s)
return createRational (newNumerator, newDenominator)

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: RATIONAL NUMBER OBJECT

»We can build operations that work with rational number objects:

3 .
— + — = 2?7?

4 3

» We can invent rational number addition:

def rationalSum(r, s):

nr = numerator(r)
ns = numerator(s)
dr = denominator(r)
ds = denominator(s)

newNumerator = nr * ds + ns * dr
newDenominator = ds * dr
return createRational (newNumerator,newDenominator)

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: RATIONAL NUMBER OBJECT

»We can build operations that work with rational number objects:

3 2 3* 4 * 2
— + — = +
4 4 * 4*3

» We can invent rational number addition:

def rationalSum(r, s):

nr = numerator(r)
ns = numerator(s)
dr = denominator(r)
ds = denominator(s)

newNumerator = nr * ds + ns * dr
newDenominator = ds * dr
return createRational (newNumerator,newDenominator)

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: RATIONAL NUMBER OBJECT

»We can build operations that work with rational number objects:

3 2 3*3 4 *2
=l

+=

4 3 4*3 4*3

» We can invent rational number addition:

def rationalSum(r, s):

nr = numerator(r)
ns = numerator(s)
dr = denominator(r)
ds = denominator(s)

newNumerator = nr * ds + ns * dr
newDenominator = ds * dr
return createRational (newNumerator,newDenominator)

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: RATIONAL NUMBER OBJECT

»We can build operations that work with rational number objects:

3 2 3*3+4*2

+=

4 3 4*3

» We can invent rational number addition:

def rationalSum(r, s):

nr = numerator(r)
ns = numerator(s)
dr = denominator(r)
ds = denominator(s)

newNumerator = nr * ds + ns * dr
newDenominator = ds * dr
return createRational (newNumerator,newDenominator)

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: RATIONAL NUMBER OBJECT

»We can build operations that work with rational number objects:

3 p. 3*3+4*2 17

+=

2 3 4*3 12

» We can invent rational number addition:

def rationalSum(r, s):

nr = numerator(r)
ns = numerator(s)
dr = denominator(r)
ds = denominator(s)

newNumerator = nr * ds + ns * dr
newDenominator = ds * dr
return createRational (newNumerator, newDenominator)

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: RATIONAL NUMBER OBJECT

»We can build operations that work with rational number objects:

whenever axd == cxb

» We can check whether two rational numbers are the same:

def areSameRationals(r, s):

nr = numerator(r)
dr = denominator(r)
ns = numerator(s)
ds = denominator(s)

return (nr*ds == ns*dr)

EXAMPLE: RATIONAL NUMBER OBJECT

We can build operations that work with rational number objects:

We can invent ways of displaying and reporting rational numbers

def stringOfRational(r):
ntext str (numerator(r))
dtext str (denominator(r))
return ntext + “/“ + dtext

def outputRational(r):
print (stringOfRational(r))

Other operations: subtraction, division, conversionto £loat,...

OUR RATIONAL NUMBER OBJECT IN ACTION

With these defined, here is an interaction:

>>> a = createRational(l, 3)

>>> b createRational (1, 2)

>>> ¢ rationalSum(a, rationalProduct (b, a))
>>> outputRational (c¢)

Here, we are relying on functional abstraction to provide data abstraction.
The function calls hide the underlying representation.
This allows us to change that underlying implementation easily:
We can enhance or rewrite the underlying code...
..with no change to the “client” code that relies on it.

Provides an abstraction barrier that makes code maintainable.
The details are hidden from the code that uses the object.

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: AN ENHANCED RATIONAL NUMBER OBJECT

» We change our constructor from this...

def createRational(n, d):
return [n, d]

»...to this, which simplifies the numerator and denominator with the GCD:

def createRational(n, d):
g = GCD(n,d) # Find greatest common divisor

return [n//g, d//g]

» Qur script doesn't need to change, but the object's behavior is improved:

>>> a = createRational(l, 3)

>>> b createRational(1l, 2)

>>> ¢ = rationalSum(a, rationalProduct(b, a))
>>> outputRational (c)

1/ 2

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: RATIONAL OBJECT USING A DICTIONARY INSTEAD

» Note that we could use a dictionary instead:

def createRational(n, d):
g = GCD(n,d)
return {“numerator"”: n//g, “denominator": d//g}

def numerator(r):
return r["numerator"]

def denominator(r):
return r[“denominator’]

» No changes below and elsewhere because we used the getters and the constructor!

def rationalSum(r, s):

nr = numerator(r)
ns = numerator(s)
dr = denominator(r)
ds = denominator(s)

newNumerator = nr * ds + ns * dr
newDenominator = ds * dr
return createRational (newNumerator, newDenominator)

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: A GIFT CARD OBJECT

» Here is a gift card object's use:

>>> gc = createGiftCard(100)
>>> spend(gc,20)

80

>>> spend(gc,45)

35

>>> spend(gc,50)
'Insufficient funds'

>>> spend(gc,20)

15

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: GIFT CARD OBJECT USING A DICTIONARY

» We could use a dictionary to represent a gift card:

def createGiftCard(amount):
return {"balance":amount}

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: GIFT CARD OBJECT USING A DICTIONARY

» We could use a dictionary to represent a gift card:

def createGiftCard(amount):
return {"balance":amount}

def spend(giftCard,amount):
balance = giftCard["balance"]
if amount > balance:

return “Insufficient funds”

balance -= amount
update the object's info
giftCard|["balance"”"] = balance
return balance

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: GIFT CARD OBJECT USING A DICTIONARY

» We could use a dictionary to represent a gift card:

def createGiftCard(amount):
return {"balance":amount}

def spend(giftCard,amount):
balance = giftCard["balance"]
if amount > balance:

return “Insufficient funds”

balance -= amount
update the object's info
giftCard|["balance"”"] = balance
return balance

def addFunds(giftCard,amount):
giftCard["balance”] += amount
return giftCard["balance"]

GIFT CARD SUMMARY

We made a gift card object that responds to two kinds of request:
We could spend money from the card.
We could add funds to the card.
We built these as two different functions.

OBJECT TERMINOLOGY

spend and addFunds are messages to which gift card objects respond.
Their code are the gift card's methods for handling each request.
The suite of messages that an object supports is its interface.

OBJECT ORIENTATION

Many languages support coding up data abstractions in this style.
hey allow you to invent your own type of object.

They let you define its attributes, the information each object stores.
They allow you to define a set of operations on that type.

Your code is organized as a class definition for that object type.

OBJECT ORIENTATION

These are called class-based object-oriented languages.
Python is an example, as is C++ and Java.

Object-oriented languages have special syntax for:
constructors
attribute access
method definition

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: GIFT CARD CLASS

» Here is the class definition of a new GiftCard type:

class GiftCard:

def init_(self, amount): # used by the constructor
self.balance = amount

def addFunds(self, amount): # a method definition
self.balance = self.balance + amount
return self.balance

def spend(self, amount): # another method definition
if amount > self.balance:
return “Insufficient funds”
self.balance = self.balance — amount
return self.balance

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: GIFT CARD CLASS

» Here is the class definition of a new GiftCard type:

class GiftCard:

def

def

def

def

__init__ (self, amount): # used by the constructor

self.balance = amount

addFunds (self, amount): # a method definition
self.balance = self.balance + amount
return self.balance

spend (self, amount): # another method definition
if amount > self.balance:
return “Insufficient funds”
self.balance = self.balance — amount
return self.balance

getBalance(self): # a balance “getter”
return self.balance

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: USING A GIFT CARD OBJECT

» Here is a gift card object's use, assuming there is a "ciftcard.py" file:

>>> from GiftCard import GiftCard

>>> gc = GiftCard(100) # use the constructor; it calls _ init
>>> gc.spend(20)

80

>>> gc.spend(45)

35

>>> gc.spend(50)
'Insufficient funds
>>> gc.getBalance()
35

>>> gc.addFunds (20)
55

>>> gc.spend(50)

5

>>> gc.balance # Python lets a client access attributes EEK!
5

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: RATIONAL NUMBER CLASS

Here is our rational number data structure as an object class

class Rational:
def 1init_ (self,n,d):
if d < O:
n *= -1
d *= -1
g = GCD(n,d)
self.numerator = n
self.denominator =

// g
d // g

def getNumerator(self):
return self.numerator

def getDenominator(self):
return self.denominator

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: RATIONAL NUMBER ADDITION METHOD

We can define multiplication of rational numbers as we did before:

class Rational:
def init_ (self,n,d):
def getNumerator(self):
def getDenominator(self):

def times(self,other):
sn = self.getNumerator ()
sd = self.getDenominator ()
on other.getNumerator ()
od = other.getDenominator ()
return Rational (sn*on, sd*od)

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: RATIONAL NUMBER ADDITION METHOD

We can define addition of rational numbers as we did before:

class Rational:
def init_ (self,n,d):
def getNumerator(self):
def getDenominator(self):
def times (self,other):

def plus(self,other):
sn = self.getNumerator ()
sd = self.getDenominator()
on other.getNumerator ()
od = other.getDenominator ()
return Rational(sn*od + on*sd, sd*od)

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

OUR RATIONAL NUMBER OBJECT IN ACTION

» With these defined, here is an interaction:

>>> a = Rational(1l, 3)
>>> a.asString()

‘1 / 3

>>> b = Rational(1l, 2)
>>> ba = b.times(a)
>>> ba.asString()

'1/ 6'

>>> ¢ = a.plus(ba)

>>> c.asString()

‘1 / 2

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

OUR RATIONAL NUMBER OBJECT IN ACTION

»Wouldn't this be great to see instead?

>>> a = Rational(1l, 3)
>>>
1/
>>>
>>>

1/
>>>

1/

Rational (1, 2)
a

+ b * a

N 6D T W
*

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: DEFINING THE TIMES OPERATION

Python has "special methods" that provide hooks to using operator syntax:

class Rational:
def init (self,n,d):

defines rl * r2

def mul (self,other):
sn = self.getNumerator ()
sd self.getDenominator ()
on = other.getNumerator ()
od = other.getDenominator ()

return Rational (sn*on, sd*od)

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

EXAMPLE: DEFINING THE PLUS OPERATION

class Rational:
def init (self,n,d):
def getNumerator(self):
def getDenominator(self):
def mul (self,other):

defines rl + r2
def @ add__ (self,other):
sn = self.getNumerator ()
sd = self.getDenominator ()
on other.getNumerator ()
od = other.getDenominator ()
return Rational(sn*od + on*sd, sd*od)

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

SPECIAL METHODS

Python has "special methods" for lots of built-in syntax.
»They are surrounded by a double underscore (_)

» Documented at this technical page:
= https://docs.python.org/3/reference/datamodel.html#special-method-names

»Nice overview here:
= https://www.pythonlikeyoumeanit.com/Module4_0OOP/Special_Methods.html

Example:
def mul (self,other):

» Definesx * y tomeanx. mul (y)

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

SPECIAL METHODS

Python has "special methods" for lots of built-in syntax.
»They are surrounded by a double underscore (_)

» Documented at this technical page:
= https://docs.python.org/3/reference/datamodel.html#special-method-names

»Nice overview here:
= https://www.pythonlikeyoumeanit.com/Module4_0OOP/Special_Methods.html

Example:
def eq (self,other):

» Definesx == y tomeanx. eq (y)

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

SPECIAL METHODS

Python has "special methods" for lots of built-in syntax.
»They are surrounded by a double underscore (_)

» Documented at this technical page:
= https://docs.python.org/3/reference/datamodel.html#special-method-names

»Nice overview here:
= https://www.pythonlikeyoumeanit.com/Module4_0OOP/Special_Methods.html

Example:
def getitem (self,index):

» Definesx[i] tomeanx. getitem (i)

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

SPECIAL METHODS

Python has "special methods" for lots of built-in syntax.
»They are surrounded by a double underscore (_)

» Documented at this technical page:
= https://docs.python.org/3/reference/datamodel.html#special-method-names

»Nice overview here:
= https://www.pythonlikeyoumeanit.com/Module4_0OOP/Special_Methods.html

Example:
def str (self):

» Definesstr(x) tomeanx. str ()

» Alsoused forprint (x).ltmeans print (x. str ())

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

SPECIAL METHODS

Python has "special methods" for lots of built-in syntax.
»They are surrounded by a double underscore (_)

» Documented at this technical page:
= https://docs.python.org/3/reference/datamodel.html#special-method-names

»Nice overview here:
= https://www.pythonlikeyoumeanit.com/Module4_0OOP/Special_Methods.html

Example:
def repr (self):

» Defines the string "representation” of an object.

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

SPECIAL METHODS

Python has "special methods" for lots of built-in syntax.
»They are surrounded by a double underscore (_)

» Documented at this technical page:
= https://docs.python.org/3/reference/datamodel.html#special-method-names

»Nice overview here:
= https://www.pythonlikeyoumeanit.com/Module4_0OOP/Special_Methods.html

Example:
def repr (self):

» Used by the interpreter to display the object's value, like so:

>>> Rational (27, 33)
9 / 11

OBJECT TAKEAWAYS

New object types are defined with class.
Within the class you define these things:
__init
other methods
Method parameters are sel £ followed by the others.
Object dot notation:
Methods are called using receiver .method (.. .)
Object attributes are accessed by receiver.variable
We use sel£. notation inside a method to access these things too.
New instances are built with class-name (.. .)

NEXT TIME

We will build hierarchies of different classes that relate to each other:
Account

YRR

Checking Savings

/

PromotionalChecking

We make subclasses that inherit the attributes of their "superclasses"
A Checking account has all the info and operations of an Account.
But it might also have "specialized" features and behavior.
It might have additional attributes.
It might override the behavior it inherits.

