
RECURSION

LECTURE 06-2

JIM FIX, REED COLLEGE CSCI 121

▸Consider this procedure:
def outputCount(count)
 print(count)
 outputCount(count - 1)

 

▸What does this do?
>>> outputCount(10)
????

LECTURE 06-2: RECURSION

AN INTERESTING PROCEDURE

▸Consider this procedure:
def outputCount(count)
 print(count)
 outputCount(count - 1)

 

▸It counts down from 10
>>> outputCount(10)
10  
9
8
...

▸But then it keeps going!

AN INTERESTING PROCEDURE
LECTURE 06-2: RECURSION

▸Consider this procedure:
def outputCount(count)
 print(count)
 outputCount(count - 1)

 

▸It counts down from 10
>>> outputCount(10)
10  
9
8
...

▸But then it keeps going!
▸The calls stack up, deeper and deeper, until Python's "maximum recursion

depth" gets reached and Python bails with an error.

AN INTERESTING PROCEDURE
LECTURE 06-2: RECURSION

▸Consider this procedure:
def outputCount(count)
 print(count)
 outputCount(count - 1)

 

▸It counts down from 10
>>> outputCount(10)
10  
9
8
...

▸But then it keeps going!
▸Can we re-write it so it only counts down to 1?

AN INTERESTING PROCEDURE
LECTURE 06-2: RECURSION

▸Yes. Here is the rewrite:
def outputCount(count)
 print(count)
 if count > 1:
 outputCount(count - 1)

▸It counts down from 10 and stops.
>>> outputCount(10)
10  
9
8
7
6
5
4
3
2
1
>>>

COUNTING DOWN TO 1
LECTURE 06-2: RECURSION

▸A function or procedure that "calls itself" is recursive.
▸Here, I've rewritten it for (perhaps) a decent explanation

def countDownFrom(start)
 if start == 1:
 print(1)
 elif start > 1:
 print(start)
 countDownFrom(start - 1)

▸You can think of it this way, describing the procedure for counting down to 1:
"When asked to count down from 1 down to 1, just say "one." When asked to count
down from a number larger than 1, just say the starting number. And then follow
this same procedure for counting down from its predecessor."

A RECURSIVE PROCEDURE
LECTURE 06-2: RECURSION

▸ This code counts from count down to 1.
def outputCount(count)
 print(count)
 if count > 1:
 outputCount(count - 1)

▸Its procedure to count from 10, down, relies on the procedure to count from 9.
>>> outputCount(10)
10  
9
8
7
6
5
4
3
2
1
>>>

COUNTING DOWN TO 1

These are just the lines of outputCount(9).

LECTURE 06-2: RECURSION

▸How about this procedure, with just one change:
def outputCountTweaked(count)
 print(count)
 if count > 1:
 outputCount(count - 1)
 print(count)

▸What does it do?
>>> outputCountTweaked(5)
????

THE SAME, WITH A SMALL TWEAK
LECTURE 06-2: RECURSION

▸How about this procedure, with just one change:
def outputCountTweaked(count)
 print(count)
 if count > 1:
 outputCount(count - 1)
 print(count)

▸It prints the numbers from 5 down to 1, then counts back up again:
>>> outputCountTweaked(5)
5
4
3
2
1
1
2
3
4
5
>>>

THE SAME, WITH A SMALL TWEAK
LECTURE 06-2: RECURSION

▸How about this procedure, with just one change:
def outputCountTweaked(count)
 print(count)
 if count > 1:
 outputCount(count - 1)
 print(count)

▸It prints the numbers from 5 down to 1, then counts back up again:
>>> outputCountTweaked(5)
5
4
3
2
1
1
2
3
4
5
>>>

THE SAME, WITH A SMALL TWEAK

This is just the lines of outputCountTweaked(4).

LECTURE 06-2: RECURSION

▸How about this procedure, with just one change:
def outputCountTweaked(count)
 print(count)
 if count > 1:
 outputCount(count - 1)
 print(count)

▸Why? Recall that function and procedure calls "stack up"...
>>> outputCountTweaked(5)
5
4
3
2
1
1
2
3
4
5
>>>

THE SAME, WITH A SMALL TWEAK

This is just the lines of outputCountTweaked(4).

▸... and so the call with count of 5 waits for the
call for 4 to finish, then prints it's second 5.

LECTURE 06-2: RECURSION

RECURSION
▸A procedure or function that calls itself is recursive.

➡ Some clever algorithms are naturally expressed this way.

➡ The general programming technique is recursion.

▸Reading on recursion:

✦ TP 4.9-4.11, 5.5

✦CP 1.7

LECTURE 06-2: RECURSION

▸Recursive procedures are very common in computer science. They are
sometimes a natural way of expression an algorithm.

▸Here is a procedure for sorting a collection of items:
"Pick an item from that collection. Divide the rest into a collection of
things that come before that item, and a collection of things that come
after it. Follow this same procedure to sort each of those collections into
an order, and put the chosen item between those two orderings."

RECURSIVE PROCEDURES
LECTURE 06-2: RECURSION

▸Recursive procedures are very common in computer science. They are sometimes a
natural way of expression an algorithm.

▸Here is a procedure for sorting a collection of items:
"Pick an item from that collection. Partition the other items into a collection of
things that come before that item, and a collection of things that come after it.
Follow this same procedure to sort each of those collections into an order, and
put the chosen item between those two orderings."

▸Here is a procedure for sorting a collection of items:
"Split the collection into two collections, arbitrarily. Follow this same procedure
to sort each of those collections into an order. Merge those two orderings."

RECURSIVE PROCEDURES
LECTURE 06-2: RECURSION

▸Both of these sorting algorithms are famous. The first is called "quick sort."
▸ The quick sort procedure for sorting a collection of items:

"Pick an item from that collection. Partition the other items into a collection of
things that come before that item, and a collection of things that come after it.
Follow this same quick sort procedure to sort each of those collections into
an order, and put the extra item between those two orderings."

▸Here is a Python procedure that mimics the above:
def quick_sort(items):
 item = choose_item(items)
 befores, afters = partition(items,item)  
 sorted_befores = quick_sort(befores)
 sorted_afters = quick_sort(afters)
 return sorted_befores + [item] + sorted_afters  
 

TWO FAMOUS SORTING ALGORITHMS IN PYTHON
LECTURE 06-2: RECURSION

▸Both of these sorting algorithms are famous. The first is called "quick sort."
▸ The quick sort procedure for sorting a collection of items:

"Pick an item from that collection. Partition the other items into a collection of
things that come before that item, and a collection of things that come after it.
Follow this same quick sort procedure to sort each of those collections into
an order, and put the extra item between those two orderings."

▸Here is a Python procedure that mimics the above:
def quick_sort(items):
 item = choose_item(items)
 befores, afters = partition(items,item)  
 sorted_befores = quick_sort(befores)
 sorted_afters = quick_sort(afters)
 return sorted_befores + [item] + sorted_afters

▸ It is not quite correct! It doesn't properly recognize the "bottom case".

TWO FAMOUS SORTING ALGORITHMS IN PYTHON
LECTURE 06-2: RECURSION

▸Both of these sorting algorithms are famous. The first is called "quick sort."
▸ The quick sort procedure for sorting a collection of items:

"Pick an item from that collection. Partition the other items into a collection of
things that come before that item, and a collection of things that come after it.
Follow this same quick sort procedure to sort each of those collections into
an order, and put the extra item between those two orderings."

▸Here is the correct Python procedure that mimics the above:
def quick_sort(items):
 if len(items) == 0: # nothing to sort
 return []
 item = choose_item(items)
 befores, afters = partition(items,item)  
 sorted_befores = quick_sort(befores)
 sorted_afters = quick_sort(afters)
 return sorted_befores + [item] + sorted_afters

TWO FAMOUS SORTING ALGORITHMS IN PYTHON
LECTURE 06-2: RECURSION

▸Handling an empty list is called a base case of this recursive algorithm.
➡A base case is typically an "easy enough to handle" case.

▸ The other kind of case is called a recursive case.
➡ It is any case that is handled by procedure calling itself.
➡When it calls itself, it typically hands itself an "easier" case to handle.

A RECURSIVE PROCEDURE
LECTURE 06-2: RECURSION

▸Note that we could have used 0 as the base case for our count down code:
def countDownFrom(start)
 if start == 0:
 return
 else:
 print(start)
 countDownFrom(start - 1)

BASE CASE VERSUS RECURSIVE CASE
LECTURE 06-2: RECURSION

▸ The base case is when someone counts down from 0:
def countDownFrom(start)
 if start == 0:
 return # Do nothing when start is 0
 else:
 print(start)
 countDownFrom(start - 1)

BASE CASE VERSUS RECURSIVE CASE
LECTURE 06-2: RECURSION

▸Our recursive case is when someone counts down from a positive number
def countDownFrom(start)
 if start == 0:
 return
 else:
 print(start) # Print the number then...
 countDownFrom(start - 1) # count from one below it.

BASE CASE VERSUS RECURSIVE CASE
LECTURE 06-2: RECURSION

▸Both of these sorting algorithms are famous. The second is called "merge sort."

▸Here is the merge sort procedure for sorting a collection of items:
Split the collection into two collections.
Follow this same merge sort procedure to sort each of those collections into an order.
Merge these two orderings"

▸Here is a Python procedure that mimics the above:
def merge_sort(items):
 if len(items) == 0: # nothing to sort
 return []
 part1, part2 = split(items)  
 sorted1 = merge_sort(part1)
 sorted1 = merge_sort(part2)
 return merge(sorted1, sorted2)

▸ .

THE SECOND RECURSIVE SORT: MERGE SORT
LECTURE 06-2: RECURSION

▸Both of these sorting algorithms are famous. The second is called "merge sort."

▸Here is the merge sort procedure for sorting a collection of items:
Split the collection into two collections.
Follow this same merge sort procedure to sort each of those collections into an order.
Merge these two orderings"

▸Here is a Python procedure that mimics the above:
def merge_sort(items):
 if len(items) == 0: # nothing to sort
 return []
 part1, part2 = split(items)  
 sorted1 = merge_sort(part1)
 sorted1 = merge_sort(part2)
 return merge(sorted1, sorted2)

▸We will look at these sorts more carefully in the second half of the course.

THE SECOND RECURSIVE SORT: MERGE SORT
LECTURE 06-2: RECURSION

▸ Let's invent a recursive function.
▸Suppose we wanted to write Python code that computes this sum:

1 + 2 + 3 + ... + 99 + 100 == ????

▸And we want it to work for any value of n, not just up to 100.

RECURSIVE FUNCTIONS
LECTURE 06-2: RECURSION

▸ Let's invent a recursive function.
▸Suppose we wanted to write Python code that computes this sum:

1 + 2 + 3 + ... + (n-1) + n == ????

▸And we want it to work for any value of n, not just up to 100.

def sumUpTo(n):
 ????

RECURSIVE FUNCTIONS
LECTURE 06-2: RECURSION

▸ Let's invent a recursive function.
▸Suppose we wanted to write Python code that computed this sum:

(1 + 2 + 3 + ... + (n-1)) + n == ????

▸We see that the sum up to n relies on computing the sum up to n-1.
▸So we try this:

def sumUpTo(n):
 return sumUpTo(n-1) + n

RECURSIVE FUNCTIONS
LECTURE 06-2: RECURSION

▸ Let's invent a recursive function.
▸Suppose we wanted to write Python code that computed this sum:

(1 + 2 + 3 + ... + (n-1)) + n == ????

▸We see that the sum up to n relies on computing the sum up to n-1
▸So we try this:

def sumUpTo(n):
 return sumUpTo(n-1) + n

▸But this turns out to have the same problem as our first count code.
➡ There's no base case to stop the "unwinding" of the sum.

RECURSIVE FUNCTIONS
LECTURE 06-2: RECURSION

▸ Let's invent a recursive function.
▸Suppose we wanted to write Python code that computed this sum:

(1 + 2 + 3 + ... + (n-1)) + n == ????

▸Here is working code that has 1 as the base case
def sumUpTo(n):  
 if n == 1:
 return 1
 else:
 return sumUpTo(n-1) + n

RECURSIVE FUNCTIONS
LECTURE 06-2: RECURSION

▸ Let's invent a recursive function.
▸Suppose we wanted to write Python code that computed this sum:

(1 + 2 + 3 + ... + (n-1)) + n == ????

▸ This one considers non-positive sums as "trivially 0":
def sumUpTo(n):  
 if n <= 0:
 return 0
 else:
 return sumUpTo(n-1) + n

RECURSIVE FUNCTIONS
LECTURE 06-2: RECURSION

▸Defined recursively how are we to think of an expression like what's below?
>>> sumUpTo(5)

▸

RECURSION AS SUBSTITUTION
LECTURE 06-2: RECURSION

▸Defined recursively how are we to think of an expression like what's below?
>>> sumUpTo(5)

▸ I imagine some series of rewriting steps, or substitutions, so this is like:
>>> sumUpTo(4) + 5

▸

RECURSION AS SUBSTITUTION
LECTURE 06-2: RECURSION

▸Defined recursively how are we to think of an expression like what's below?
>>> sumUpTo(5)

▸ I imagine some series of rewriting steps, or substitutions, so this is like:
>>> sumUpTo(4) + 5

▸which is like
>>> (sumUpTo(3) + 4) + 5

▸

RECURSION AS SUBSTITUTION
LECTURE 06-2: RECURSION

▸Defined recursively how are we to think of an expression like what's below?
>>> sumUpTo(5)

▸ I consider some series of rewriting steps, or substitutions, so this is like:
>>> sumUpTo(4) + 5

▸which is like
>>> (sumUpTo(3) + 4) + 5

▸which is like
>>> ((sumUpTo(2) + 3) + 4) + 5

▸And so on...

RECURSION AS SUBSTITUTION
LECTURE 06-2: RECURSION

▸Defined recursively how are we to think of an expression like what's below?
>>> sumUpTo(5)

▸ I consider some series of rewriting steps, or substitutions, so this is like:
>>> sumUpTo(4) + 5

▸which is like
>>> (sumUpTo(3) + 4) + 5

▸which is like
>>> ((sumUpTo(2) + 3) + 4) + 5

▸And so on. So sumUpTo(5) is this sum:
>>> (((((0) + 1) + 2) + 3) + 4) + 5

▸ It is the recursion, unwound down to the base case. And so:
>>> sumUpTo(5)  
15

RECURSION AS SUBSTITUTION
LECTURE 06-2: RECURSION

PYTHON'S EXECUTION OF A RECURSIVE FUNCTION
▸ Let's take a look at Python's execution of this script:

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

number = int(input("Number? "))
print(sumUpTo(number))

number: 3

global frame

LECTURE 06-2: RECURSION

PYTHON'S EXECUTION OF A RECURSIVE FUNCTION
▸ Let's take a look at Python's execution of this script:

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

number = int(input("Number? "))
print(sumUpTo(number))

number: 3
global frame

LECTURE 06-2: RECURSION

PYTHON'S EXECUTION OF A RECURSIVE FUNCTION
▸ Let's take a look at Python's execution of this script:

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

number = int(input("Number? "))
print(sumUpTo(number))

number: 3
global frame

LECTURE 06-2: RECURSION

PYTHON'S EXECUTION OF A RECURSIVE FUNCTION
▸ Let's take a look at Python's execution of this script:

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

number = int(input("Number? "))
print(sumUpTo(number))

number: 3
global frame

n: 3
sumUpTo(3) frame

LECTURE 06-2: RECURSION

PYTHON'S EXECUTION OF A RECURSIVE FUNCTION
▸ Let's take a look at Python's execution of this script:

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

number = int(input("Number? "))
print(sumUpTo(number))

number: 3
global frame

n: 3
sumUpTo(3) frame

LECTURE 06-2: RECURSION

PYTHON'S EXECUTION OF A RECURSIVE FUNCTION
▸ Let's take a look at Python's execution of this script:

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

number = int(input("Number? "))
print(sumUpTo(number))

number: 3
global frame

n: 3
sumUpTo(3) frame

n: 2
sumUpTo(2) frame

LECTURE 06-2: RECURSION

PYTHON'S EXECUTION OF A RECURSIVE FUNCTION
▸ Let's take a look at Python's execution of this script:

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

number = int(input("Number? "))
print(sumUpTo(number))

number: 3
global frame

n: 3
sumUpTo(3) frame

n: 2
sumUpTo(2) frame

LECTURE 06-2: RECURSION

PYTHON'S EXECUTION OF A RECURSIVE FUNCTION
▸ Let's take a look at Python's execution of this script:

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

number = int(input("Number? "))
print(sumUpTo(number))

number: 3
global frame

n: 3
sumUpTo(3) frame

n: 2
sumUpTo(2) frame

n: 1
sumUpTo(1) frame

LECTURE 06-2: RECURSION

PYTHON'S EXECUTION OF A RECURSIVE FUNCTION
▸ Let's take a look at Python's execution of this script:

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

number = int(input("Number? "))
print(sumUpTo(number))

number: 3
global frame

n: 3
sumUpTo(3) frame

n: 2
sumUpTo(2) frame

n: 1
sumUpTo(1) frame

LECTURE 06-2: RECURSION

PYTHON'S EXECUTION OF A RECURSIVE FUNCTION
▸ Let's take a look at Python's execution of this script:

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

number = int(input("Number? "))
print(sumUpTo(number))

number: 3
global frame

n: 3
sumUpTo(3) frame

n: 2
sumUpTo(2) frame

n: 1
sumUpTo(1) frame

n: 0
sumUpTo(0) frameLECTURE 06-2: RECURSION

PYTHON'S EXECUTION OF A RECURSIVE FUNCTION
▸ Let's take a look at Python's execution of this script:

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

number = int(input("Number? "))
print(sumUpTo(number))

number: 3
global frame

n: 3
sumUpTo(3) frame

n: 2
sumUpTo(2) frame

n: 1
sumUpTo(1) frame

n: 0
returning 0

sumUpTo(0) frameLECTURE 06-2: RECURSION

PYTHON'S EXECUTION OF A RECURSIVE FUNCTION
▸ Let's take a look at Python's execution of this script:

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

number = int(input("Number? "))
print(sumUpTo(number))

number: 3
global frame

n: 3
sumUpTo(3) frame

n: 2
sumUpTo(2) frame

n: 1
returning 1

sumUpTo(1) frame

n: 0
returning 0

sumUpTo(0) frameLECTURE 06-2: RECURSION

PYTHON'S EXECUTION OF A RECURSIVE FUNCTION
▸ Let's take a look at Python's execution of this script:

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

number = int(input("Number? "))
print(sumUpTo(number))

number: 3
global frame

n: 3
sumUpTo(3) frame

n: 2
returning 3

sumUpTo(2) frame

n: 1
returning 1

sumUpTo(1) frame

LECTURE 06-2: RECURSION

PYTHON'S EXECUTION OF A RECURSIVE FUNCTION
▸ Let's take a look at Python's execution of this script:

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

number = int(input("Number? "))
print(sumUpTo(number))

number: 3
global frame

n: 3
returning 6

sumUpTo(3) frame

n: 2
returning 3

sumUpTo(2) frame

LECTURE 06-2: RECURSION

PYTHON'S EXECUTION OF A RECURSIVE FUNCTION
▸ Let's take a look at Python's execution of this script:

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

number = int(input("Number? "))
print(sumUpTo(number))

number: 3
global frame

n: 3
returning 6

sumUpTo(3) frame

LECTURE 06-2: RECURSION

PYTHON'S EXECUTION OF A RECURSIVE FUNCTION
▸ Let's take a look at Python's execution of this script:

 
 
 
 
 
 
 
 
 
 
 
 
 

def sumUpTo(n):  
 if n <= 0:
 return 0
 return sumUpTo(n-1) + n

number = int(input("Number? "))
print(sumUpTo(number))

number: 3
global frame

Outputs 6 to the console.

LECTURE 06-2: RECURSION

▸Consider the following integer sequence:
➡ It starts with a 1.
➡ The second number is also a 1.

THE FIBONACCI FUNCTION

1, 1,

LECTURE 06-2: RECURSION

▸Consider the following integer sequence:
➡ It starts with a 1.
➡ The second number is also a 1.
➡ The next number is the sum of the previous two.

THE FIBONACCI FUNCTION

1, 1, 2,

LECTURE 06-2: RECURSION

▸Consider the following integer sequence:
➡ It starts with a 1.
➡ The second number is also a 1.
➡ The next number is the sum of the previous two.
➡And so are the rest of the numbers.

THE FIBONACCI FUNCTION

1, 1, 2, 3,

LECTURE 06-2: RECURSION

▸Consider the following integer sequence:
➡ It starts with a 1.
➡ The second number is also a 1.
➡ The next number is the sum of the previous two.
➡And so are the rest of the numbers.

THE FIBONACCI FUNCTION

1, 1, 2, 3, 5,

LECTURE 06-2: RECURSION

▸Consider the following integer sequence:
➡ It starts with a 1.
➡ The second number is also a 1.
➡ The next number is the sum of the previous two.
➡And so are the rest of the numbers.

THE FIBONACCI FUNCTION

1, 1, 2, 3, 5, 8,

LECTURE 06-2: RECURSION

▸Consider the following integer sequence:
➡ It starts with a 1.
➡ The second number is also a 1.
➡ The next number is the sum of the previous two.
➡And so are the rest of the numbers.

▸ This is the Fibonacci sequence, and it has lots of interesting properties.
▸ Let's just write its code.

THE FIBONACCI FUNCTION

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

LECTURE 06-2: RECURSION

▸Consider the following integer sequence:
➡ It starts with a 1.
➡ The second number is also a 1.
➡ The next number is the sum of the previous two.
➡And so are the rest of the numbers.

▸ This is the Fibonacci sequence, and it has lots of interesting properties.
▸ Let's just write its code as a Python function:

def fibonacci(n):  
 if n == 1 or n == 2:
 return 1
 else:
 return fibonacci(n-2) + fibonacci(n-1)

THE FIBONACCI FUNCTION

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

LECTURE 06-2: RECURSION

▸ (in Terminal)

DEMO OF "NOISY" RECURSIVE FUNCTIONS
LECTURE 06-2: RECURSION

SUMMARY
▸Functions and procedures can call other functions and procedures.

➡ They can also call themselves. This makes them recursive.

▸Each active function has its local variables stored in its call frame.

➡ With recursion, several call frames for the same-named function stack up.

➡ Each call has a different value for the parameter in each frame.

▸Recursive functions are designed to handle two cases:

• a recursive case: this leads the function to call itself

➡ usually a (slightly) simpler case

• a base case: this stops the "unwinding" or "deepening" of the recursive calls

➡ they are (usually) easy cases; immediately return a result

▸The tricky part is learning to express algorithms in this way. Homework 7.

LECTURE 06-2: RECURSION

