
DATA ABSTRACTIONS
& OBJECT-ORIENTATION

LECTURE 07-2

JIM FIX, REED COLLEGE CSCI 121

▸In-Class Quiz: Monday, March 10th
• closed note, closed computer, hand-written
• Topic covered:
➡ lists and dictionaries

QUIZ NEXT MONDAY
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸In-Class Midterm Exam: Monday, March 17th
• closed note, closed computer, hand-written
• about 5 problems similar to quiz and homework problems
• Topics covered:
➡ scripting, including input and print
➡ int and str operations
➡ function and procedure def; return; the None value
➡ conditional if-else statements; while loops; bool
➡ (basic) list and dictionary use

• I will post a practice exam next week.
• I will post a practice exam solution on Friday, March 14th.

MONDAY BEFORE BREAK
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Project 2 due: Friday, March 21st
• ciphers

JUST BEFORE BREAK
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Today:
• inventing your own data structures and data types
• object-oriented programming in Python
▸Reading: on Python object-orientation

➡ PP Ch 3
➡ TP Ch 12, 14-16
➡ CP Ch 2.5-2.8

TODAY
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

Idea: invent new operations and actions that constitute your program

▸We use the def statement to define functions and procedures
•We give them meaningful and memorable names.
•We take care to make them broadly useful.

▸Good definitions enhance code modularity
• They can be made part of a library used by several programs.
•Makes code collaboration easier and larger programs easier to write.

FUNCTIONAL/PROCEDURAL ABSTRACTION
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Functions/procedures create a useful barrier of abstraction.
•Make code easier to read
• You need not know all the details.
•Only need to know the function's interface and behavior.

def remove_all(x, someList):
 """Modifies list, removing elements equal to the value.”""

 ...messy code details here and below...

FUNCTIONAL/PROCEDURAL ABSTRACTION
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

Idea: invent a new data object that your program needs.

▸Determine its features and components.
➡ These are its attributes.

▸Consider the operations you’d like it to support.
• e.g. access, queries, look-ups, checks, changes, actions, activities, ...
➡ These are its methods.

DATA ABSTRACTION
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

Idea: invent a new data object that your program needs.

▸Determine its features and components.
➡ These are its attributes.

▸Consider the operations you’d like it to support.
• e.g. access, queries, look-ups, checks, changes, actions, activities, ...
➡ These are its methods.

▸Sometimes the object is a collection, organized in a useful way.
➡ In that case it’s a data structure.

▸Python provides a few: strings, lists, dictionaries, “tuples” (e.g. pairs).
▸Others: vectors, stacks, queues, linked lists, trees, graphs, …

DATA ABSTRACTION
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

Idea: invent a new data object that your program needs.

▸Can be special purpose, geared for a specific application or algorithm.
• Lists and dictionaries can sometimes be too generic, featureless.
•Can write code that reads how you think about your program's activity.
• This is the data analog to functional abstraction.

▸Some data abstractions have universal value, can be reused.
➡ A good design saves programming effort in the future

▸Abstraction forces a modular design.
➡ It makes code easier to understand; easier to get right.
➡ May even be useful elsewhere.

DATA ABSTRACTION: ADVANTAGES
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We can represent a rational number in Python with a list
➡ It stores two items: its integer numerator and denominator.

▸Here are some basic operations on our rational number object:
• Make a new rational number (an object constructor):

def createRational(n, d):
 return [n, d]

• Get the numerator (object's accessor or “getter”):
def numerator(r):
 return r[0]

• Get the denominator (another “getter”):
def denominator(r):
 return r[1]

EXAMPLE: RATIONAL NUMBER OBJECT
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We can build operations that work with rational number objects:

• We can invent rational number multiplication:
def rationalProduct(r, s):
 newNumerator = numerator(r) * numerator(s)  
 newDenominator = denominator(r) * denominator(s)
 return createRational(newNumerator, newDenominator)

EXAMPLE: RATIONAL NUMBER OBJECT

3
4

___ *
2
3

___ = ???

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We can build operations that work with rational number objects:

• We can invent rational number multiplication:
def rationalProduct(r, s):
 newNumerator = numerator(r) * numerator(s)  
 newDenominator = denominator(r) * denominator(s)
 return createRational(newNumerator, newDenominator)

EXAMPLE: RATIONAL NUMBER OBJECT

3
4

___ *
2
3

___ =
4 * 3

_______3 * 2 =

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We can build operations that work with rational number objects:

• We can invent rational number multiplication:
def rationalProduct(r, s):
 newNumerator = numerator(r) * numerator(s)  
 newDenominator = denominator(r) * denominator(s)
 return createRational(newNumerator, newDenominator)

EXAMPLE: RATIONAL NUMBER OBJECT

3
4

___ *
2
3

___ =
4 * 3

_______3 * 2 =
12
___6

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We can build operations that work with rational number objects:

• We can invent rational number addition:
def rationalSum(r, s):
 nr = numerator(r)
 ns = numerator(s)  
 dr = denominator(r)
 ds = denominator(s)
 newNumerator = nr * ds + ns * dr
 newDenominator = ds * dr
 return createRational(newNumerator,newDenominator)

EXAMPLE: RATIONAL NUMBER OBJECT

3
4

___ +
2
3

___ = ???

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We can build operations that work with rational number objects:

• We can invent rational number addition:
def rationalSum(r, s):
 nr = numerator(r)
 ns = numerator(s)  
 dr = denominator(r)
 ds = denominator(s)
 newNumerator = nr * ds + ns * dr
 newDenominator = ds * dr
 return createRational(newNumerator,newDenominator)

EXAMPLE: RATIONAL NUMBER OBJECT

3
4

___ +
2
3

___ =
4 * 3

_______3 * 3
4 * 3

_______4 * 2+

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We can build operations that work with rational number objects:

• We can invent rational number addition:
def rationalSum(r, s):
 nr = numerator(r)
 ns = numerator(s)  
 dr = denominator(r)
 ds = denominator(s)
 newNumerator = nr * ds + ns * dr
 newDenominator = ds * dr
 return createRational(newNumerator,newDenominator)

EXAMPLE: RATIONAL NUMBER OBJECT

3
4

___ +
2
3

___ =
4 * 3

_______3 * 3
4 * 3

_______4 * 2+

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We can build operations that work with rational number objects:

• We can invent rational number addition:
def rationalSum(r, s):
 nr = numerator(r)
 ns = numerator(s)  
 dr = denominator(r)
 ds = denominator(s)
 newNumerator = nr * ds + ns * dr
 newDenominator = ds * dr
 return createRational(newNumerator,newDenominator)

EXAMPLE: RATIONAL NUMBER OBJECT

3
4

___ +
2
3

___ =
4 * 3

_____________3 * 3 + 4 * 2

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We can build operations that work with rational number objects:

• We can invent rational number addition:
def rationalSum(r, s):
 nr = numerator(r)
 ns = numerator(s)  
 dr = denominator(r)
 ds = denominator(s)
 newNumerator = nr * ds + ns * dr
 newDenominator = ds * dr
 return createRational(newNumerator, newDenominator)

EXAMPLE: RATIONAL NUMBER OBJECT

3
4

___ +
2
3

___ =
4 * 3

_____________3 * 3 + 4 * 2 ____=
12
17

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We can build operations that work with rational number objects:

 
 

• We can check whether two rational numbers are the same:
def areSameRationals(r, s):
 nr = numerator(r)
 dr = denominator(r)
 ns = numerator(s)
 ds = denominator(s)
 return (nr*ds == ns*dr)

EXAMPLE: RATIONAL NUMBER OBJECT

a
b

___ ==
c
d

___ whenever a*d == c*b

LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We can build operations that work with rational number objects:
• We can invent ways of displaying and reporting rational numbers

def stringOfRational(r):  
 ntext = str(numerator(r))  
 dtext = str(denominator(r))
 return ntext + “/“ + dtext  

def outputRational(r):
 print(stringOfRational(r))  

• Other operations: subtraction, division, conversion to float, ...

EXAMPLE: RATIONAL NUMBER OBJECT
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸With these defined, here is an interaction:
>>> a = createRational(1, 3)
>>> b = createRational(1, 2)
>>> c = rationalSum(a, rationalProduct(b, a))
>>> outputRational(c)
9 / 18

▸Here, we are relying on functional abstraction to provide data abstraction.
➡ The function calls hide the underlying representation.

• This allows us to change that underlying implementation easily:
➡We can enhance or rewrite the underlying code...
➡ ...with no change to the “client” code that relies on it.

▸Provides an abstraction barrier that makes code maintainable.
➡ The details are hidden from the code that uses the object.

OUR RATIONAL NUMBER OBJECT IN ACTION
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We change our constructor from this...
def createRational(n, d):
 return [n, d]

▸ ...to this, which simplifies the numerator and denominator with the GCD:
def createRational(n, d):
 g = GCD(n,d) # Find greatest common divisor
 return [n//g, d//g]  

▸Our script doesn't need to change, but the object's behavior is improved:
>>> a = createRational(1, 3)
>>> b = createRational(1, 2)
>>> c = rationalSum(a, rationalProduct(b, a))
>>> outputRational(c)
1 / 2

EXAMPLE: AN ENHANCED RATIONAL NUMBER OBJECT
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Note that we could use a dictionary instead:
def createRational(n, d):
 g = GCD(n,d)
 return {“numerator": n//g, “denominator": d//g}

def numerator(r):
 return r["numerator"]  
 
def denominator(r):
 return r[“denominator"]

▸No changes below and elsewhere because we used the getters and the constructor!
def rationalSum(r, s):
 nr = numerator(r)
 ns = numerator(s)  
 dr = denominator(r)
 ds = denominator(s)
 newNumerator = nr * ds + ns * dr
 newDenominator = ds * dr
 return createRational(newNumerator, newDenominator)

EXAMPLE: RATIONAL OBJECT USING A DICTIONARY INSTEAD
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is a gift card object's use:
>>> gc = createGiftCard(100)
>>> spend(gc,20)
80
>>> spend(gc,45)
35
>>> spend(gc,50)
'Insufficient funds'
>>> spend(gc,20)
15

EXAMPLE: A GIFT CARD OBJECT
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We could use a dictionary to represent a gift card:
def createGiftCard(amount):
 return {"balance":amount}
 
 

EXAMPLE: GIFT CARD OBJECT USING A DICTIONARY
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We could use a dictionary to represent a gift card:
def createGiftCard(amount):
 return {"balance":amount}

def spend(giftCard,amount):
 balance = giftCard["balance"]
 if amount > balance:
 return “Insufficient funds”
 balance -= amount
 # update the object's info
 giftCard["balance"] = balance
 return balance  
 

EXAMPLE: GIFT CARD OBJECT USING A DICTIONARY
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We could use a dictionary to represent a gift card:
def createGiftCard(amount):
 return {"balance":amount}

def spend(giftCard,amount):
 balance = giftCard["balance"]
 if amount > balance:
 return “Insufficient funds”
 balance -= amount
 # update the object's info
 giftCard["balance"] = balance
 return balance

def addFunds(giftCard,amount):
 giftCard["balance"] += amount
 return giftCard["balance"]
 
 

EXAMPLE: GIFT CARD OBJECT USING A DICTIONARY
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸We made a gift card object that responds to two kinds of request:
➡ We could spend money from the card.
➡ We could add funds to the card.

• We built these as two different functions.

GIFT CARD SUMMARY
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸spend and addFunds are messages to which gift card objects respond.
▸ Their code are the gift card's methods for handling each request.
▸ The suite of messages that an object supports is its interface.

OBJECT TERMINOLOGY
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Many languages support coding up data abstractions in this style.
➡ They allow you to invent your own type of object.
➡ They let you define its attributes, the information each object stores.
➡ They allow you to define a set of operations on that type.

• Your code is organized as a class definition for that object type.

OBJECT ORIENTATION
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸ These are called class-based object-oriented languages.
➡Python is an example, as is C++ and Java.

▸Object-oriented languages have special syntax for:
➡ constructors
➡ attribute access
➡method definition

OBJECT ORIENTATION
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is the class definition of a new GiftCard type:

class GiftCard:

 def __init__(self, amount): # used by the constructor
 self.balance = amount

 def addFunds(self, amount): # a method definition
 self.balance = self.balance + amount
 return self.balance

 def spend(self, amount): # another method definition
 if amount > self.balance:
 return “Insufficient funds”
 self.balance = self.balance – amount
 return self.balance
 

 

EXAMPLE: GIFT CARD CLASS
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is the class definition of a new GiftCard type:

class GiftCard:

 def __init__(self, amount): # used by the constructor
 self.balance = amount

 def addFunds(self, amount): # a method definition
 self.balance = self.balance + amount
 return self.balance

 def spend(self, amount): # another method definition
 if amount > self.balance:
 return “Insufficient funds”
 self.balance = self.balance – amount
 return self.balance

 def getBalance(self): # a balance “getter”
 return self.balance
 

EXAMPLE: GIFT CARD CLASS
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Here is a gift card object's use, assuming there is a "GiftCard.py" file:
 
>>> from GiftCard import GiftCard
>>> gc = GiftCard(100) # use the constructor; it calls __init__
>>> gc.spend(20)
80
>>> gc.spend(45)
35
>>> gc.spend(50)
'Insufficient funds'
>>> gc.getBalance()
35
>>> gc.addFunds(20)
55
>>> gc.spend(50)
5
>>> gc.balance # Python lets a client access attributes EEK!
5

EXAMPLE: USING A GIFT CARD OBJECT
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

Here is our rational number data structure as an object class
class Rational:
 def __init__(self,n,d):
 if d < 0:
 n *= -1
 d *= -1
 g = GCD(n,d)
 self.numerator = n // g
 self.denominator = d // g

 def getNumerator(self):
 return self.numerator

 def getDenominator(self):
 return self.denominator

EXAMPLE: RATIONAL NUMBER CLASS
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

We can define multiplication of rational numbers as we did before:

class Rational:
 def __init__(self,n,d): ...
 def getNumerator(self): ...
 def getDenominator(self): ...

 def times(self,other):
 sn = self.getNumerator()
 sd = self.getDenominator()
 on = other.getNumerator()
 od = other.getDenominator()
 return Rational(sn*on, sd*od)

EXAMPLE: RATIONAL NUMBER ADDITION METHOD
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

We can define addition of rational numbers as we did before:

class Rational:
 def __init__(self,n,d): ...
 def getNumerator(self): ...
 def getDenominator(self): ...
 def times(self,other): ...
 def plus(self,other):
 sn = self.getNumerator()
 sd = self.getDenominator()
 on = other.getNumerator()
 od = other.getDenominator()
 return Rational(sn*od + on*sd, sd*od)

EXAMPLE: RATIONAL NUMBER ADDITION METHOD
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸With these defined, here is an interaction:
>>> a = Rational(1, 3)
>>> a.asString()
'1 / 3'
>>> b = Rational(1, 2)
>>> ba = b.times(a)
>>> ba.asString()
'1 / 6'
>>> c = a.plus(ba)
>>> c.asString()
'1 / 2'

OUR RATIONAL NUMBER OBJECT IN ACTION
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸Wouldn't this be great to see instead?
>>> a = Rational(1, 3)
>>> a
1 / 3
>>> b = Rational(1, 2)
>>> b * a
1 / 6
>>> a + b * a
1 / 2

OUR RATIONAL NUMBER OBJECT IN ACTION
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

Python has "special methods" that provide hooks to using operator syntax:
class Rational:
 def __init__(self,n,d): ...
 ...

 # defines r1 * r2
 def __mul__(self,other):
 sn = self.getNumerator()
 sd = self.getDenominator()
 on = other.getNumerator()
 od = other.getDenominator()
 return Rational(sn*on, sd*od)

EXAMPLE: DEFINING THE TIMES OPERATION
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

class Rational:
 def __init__(self,n,d): ...
 def getNumerator(self): ...
 def getDenominator(self): ...
 def __mul__(self,other): ...

 # defines r1 + r2
 def __add__(self,other):
 sn = self.getNumerator()
 sd = self.getDenominator()
 on = other.getNumerator()
 od = other.getDenominator()
 return Rational(sn*od + on*sd, sd*od)

EXAMPLE: DEFINING THE PLUS OPERATION
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

Python has "special methods" for lots of built-in syntax.
▸They are surrounded by a double underscore (_)
▸Documented at this technical page:

➡ https://docs.python.org/3/reference/datamodel.html#special-method-names
▸Nice overview here:

➡ https://www.pythonlikeyoumeanit.com/Module4_OOP/Special_Methods.html

Example:
 def __mul__(self,other):
 ...
▸ Defines x * y to mean x.__mul__(y)

SPECIAL METHODS
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

Python has "special methods" for lots of built-in syntax.
▸They are surrounded by a double underscore (_)
▸Documented at this technical page:

➡ https://docs.python.org/3/reference/datamodel.html#special-method-names
▸Nice overview here:

➡ https://www.pythonlikeyoumeanit.com/Module4_OOP/Special_Methods.html

Example:
 def __eq__(self,other):
 ...
▸ Defines x == y to mean x.__eq__(y)

SPECIAL METHODS
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

Python has "special methods" for lots of built-in syntax.
▸They are surrounded by a double underscore (_)
▸Documented at this technical page:

➡ https://docs.python.org/3/reference/datamodel.html#special-method-names
▸Nice overview here:

➡ https://www.pythonlikeyoumeanit.com/Module4_OOP/Special_Methods.html

Example:
 def __getitem__(self,index):
 ...
▸ Defines x[i] to mean x.__getitem__(i)

SPECIAL METHODS
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

Python has "special methods" for lots of built-in syntax.
▸They are surrounded by a double underscore (_)
▸Documented at this technical page:

➡ https://docs.python.org/3/reference/datamodel.html#special-method-names
▸Nice overview here:

➡ https://www.pythonlikeyoumeanit.com/Module4_OOP/Special_Methods.html

Example:
 def __str__(self):
 ...
▸ Defines str(x) to mean x.__str__()
▸ Also used for print(x). It means print(x.__str__())

SPECIAL METHODS
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

Python has "special methods" for lots of built-in syntax.
▸They are surrounded by a double underscore (_)
▸Documented at this technical page:

➡ https://docs.python.org/3/reference/datamodel.html#special-method-names
▸Nice overview here:

➡ https://www.pythonlikeyoumeanit.com/Module4_OOP/Special_Methods.html

Example:
 def __repr__(self):
 ...
▸ Defines the string "representation" of an object.

SPECIAL METHODS
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

Python has "special methods" for lots of built-in syntax.
▸They are surrounded by a double underscore (_)
▸Documented at this technical page:

➡ https://docs.python.org/3/reference/datamodel.html#special-method-names
▸Nice overview here:

➡ https://www.pythonlikeyoumeanit.com/Module4_OOP/Special_Methods.html

Example:
 def __repr__(self):
 ...
▸ Used by the interpreter to display the object's value, like so:

>>> Rational(27, 33)
9 / 11

SPECIAL METHODS
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

▸New object types are defined with class.
▸Within the class you define these things:
•__init__
• other methods
▸Method parameters are self followed by the others.
▸Object dot notation:
•Methods are called using receiver.method(...)
•Object attributes are accessed by receiver.variable
•We use self. notation inside a method to access these things too.
▸New instances are built with class-name(...)

OBJECT TAKEAWAYS
LECTURE 06-2: CLASS INHERITANCE

▸We will build hierarchies of different classes that relate to each other:

▸We make subclasses that inherit the attributes of their "superclasses"
• A Checking account has all the info and operations of an Account.
• But it might also have "specialized" features and behavior.

✦ It might have additional attributes.
✦ It might override the behavior it inherits.

NEXT TIME
LECTURE 06-2: DATA ABSTRACTION AND OBJECT-ORIENTATION

Account

Checking Savings

PromotionalChecking

