
LIST EXAMPLES;
DICTIONARIES

LECTURE 06-1

JIM FIX, REED COLLEGE CSCI 121

▸REMINDER: Project 1 is due Thursday.
➡ I will add a Gradescope problem to submit your
- rules.py
- demo.py

▸NOTE: There will be a short quiz this Wednesday 10/5 in lecture
➡ It will cover functions, procedures, and loops (Homework 3 and 4)

▸Today:
• list slicing example: split_by function

• list of lists example: transpose_of function

•for loop

• Python dictionaries

COURSE INFO
LECTURE 05-1: LISTS

▸Reading:
➡ TP Ch 8-10
➡CP Ch 2.1-2.4

READING
LECTURE 05-1: LISTS AND DICTIONARIES

▸ List creation via enumeration, concatenation, repetition, slicing:
[3,1,7] [] [1,2]+[3,4,5]

▸Accessing contents by index; list length:
xs[3] xs[-1] len(xs)

▸Updating contents by indexed assignment:
xs[3] = 5

▸Modifying/mutating a list object:
 xs.append(5) xs.extend([8,9,10]) xs.insert(2,357)  
 xs.pop() del xs[6]

▸Checking membership, content equality, object identity:
 3 in xs xs == [1,2,3] xs is ys

▸Scan according to index using a while loop:
 i = 0  
 while i < len(xs):  
 print(xs[i])  
 i = i + 1

PYTHON LIST SUMMARY
LECTURE 05-1: LISTS

▸We can build new lists by copying portions of other lists:
>>> xs = [45,1,8,17,100,6]
>>> xs  
[45, 1, 8, 17, 100, 6]  
>>> xs[2:5] # Build a new list from the 2,3,4 slice.  
[8, 17, 100]  
>>> xs[2:4] # Build a new list from the 2,3 slice.  
[8, 17]  
>>> xs[:4] # Build a new list from the 0,1,2,3 slice. 
[45, 1, 8, 17]  
>>> xs[4:] # Build a new list from the 4,5 slice.  
[100, 6]  
>>> ys = xs[:] # Build a new list as a full copy.  
>>> xs[1] = 121  
>>> xs  
[45, 121, 8, 17, 100, 6]  
>>> ys  
[45, 1, 8, 17, 100, 6]  

LIST "SLICING"
LECTURE 05-1: LISTS

▸ Lists can be stored within other lists.
>>> lls = [[45,19],[8],[17,100,6],[]]
>>> lls[2]  
[17, 100, 6]
>>> lls[2][0]  
17
>>> lls[2][0] = 7777
>>> lls
[[45, 19] ,[8] ,[7777, 100, 6], []]  
>>> lls[0].pop()  
19  
>>> lls[0].extend([0,0,0])  
>>> lls  
[[45,19,0,0,0],[8],[7777,100,6],[]]  
>>> lls.append([5,4,3,2])  
>>> lls
[[45, 19, 0, 0, 0], [8], [7777, 100, 6], [], [5, 4, 3, 2]]

LISTS OF LISTS
LECTURE 05-1: LISTS

▸ List creation via enumeration, concatenation, repetition, slicing:
[3,1,7] [] [1,2]+[3,4,5] [1,2]*4 xs[3:5] xs[3:] xs[:]

▸Accessing contents by index; list length:
xs[3] xs[-1] len(xs)

▸Updating contents by indexed assignment:
xs[3] = 5

▸Modifying/mutating a list object:
 xs.append(5) xs.extend([8,9,10]) xs.insert(2,357)  
 xs.pop() del xs[6]

▸Checking membership, content equality, object identity:
 3 in xs xs == [1,2,3] xs is ys

▸Scan according to index using a while loop:
 i = 0  
 while i < len(xs):  
 print(xs[i])  
 i = i + 1

PYTHON LIST SUMMARY ENHANCED
LECTURE 05-1: LISTS

▸ This procedure outputs the contents of a list.
 def output_using_while(xs):
 i = 0  
 while i < len(xs):  
 print(xs[i])  
 i = i + 1  

▸ This procedure also outputs the contents of a list.
 def output_using_for(xs):
 for x in xs:  
 print(x)

TWO PRINTING PROCEDURES
LECTURE 05-1: LISTS

▸ List creation via enumeration, concatenation, repetition, slicing:
[3,1,7] [] [1,2]+[3,4,5] [1,2]*4 xs[3:5] xs[3:] xs[:]

▸Accessing contents by index; list length:
xs[3] xs[-1] len(xs)

▸Updating contents by indexed assignment:
xs[3] = 5

▸Modifying/mutating a list object:
 xs.append(5) xs.extend([8,9,10]) xs.insert(2,357)  
 xs.pop() del xs[6]

▸Checking membership, content equality, object identity:
 3 in xs xs == [1,2,3] xs is ys

▸Scan according to index using a while loop.
▸ Loop through the contents using a for loop.

PYTHON LIST SUMMARY ENHANCED WITH FOR
LECTURE 05-1: LISTS

▸Python lets you store a collection of associations
>>> d = {"bob":35, "mel":24, "betty":29}  
>>> d  
{'bob': 35, 'mel': 24, 'betty': 29}  
>>> d['bob']  
35  
>>> d['mel']  
24  

▸ This is a built-in data structure called a Python dictionary.
➡A dictionary contains a collection of entries.
➡ The left part of each entry is called its key.
➡ The right part is that key's associated value.
➡ There is at most one entry for a key.

• A Python dictionary is our 2nd explicit example of a Python (data) object

OUR SECOND DATA STRUCTURE: PYTHON DICTIONARIES
LECTURE 06-1: DICTIONARIES

▸Python lets you store a collection of associations
>>> d = {"bob":35, "mel":24, "betty":29}  
>>> d  
{'bob': 35, 'mel': 24, 'betty': 29}  
>>> d['bob']  
35  
>>> d['mel']  
24  

▸ This is a built-in data structure called a Python dictionary.
➡ It's also called a "key-value mapping", or sometimes just a "map".
➡Sometimes it's called a "hash table" or just "hashmap"

• In some languages, you mimic a dictionary with an "association list:"
d = [[“bob”, 35], [“mel”,24], [“betty”,29]]

OUR SECOND DATA STRUCTURE: PYTHON DICTIONARIES
LECTURE 06-1: DICTIONARIES

▸A Python dictionary is also a mutable data structure.
➡ You can add new key-value pairs, or modify the associated value to a key.
➡ The syntax for adding a new entry and updating an existing entry is the

same
>>> d = {"bob":35, "mel":24, "betty":29}  
>>> d  
{'bob': 35, 'mel': 24, 'betty': 29}  
>>> d['mel']  
24
>>> d['mel'] = 25
>>> d['mel']  
25  
>>> d  
{'bob': 35, 'mel': 25, 'betty': 29}  
>>> d['lou'] = 87  
>>> d  
{'bob': 35, 'mel': 24, 'betty': 29, 'lou': 87}  

MODIFYING A DICTIONARY'S CONTENTS
LECTURE 06-1: DICTIONARIES

>>> d = {"bob":35, "mel":24, "betty":29, "lou": 87}
>>> 'mel' in d # Does the dictionary contain a key?  
True
>>> 'jim' in d  
False  
>>> 35 in d  
False
>>> e = {"lou": 87,"mel":24, "betty":29, "bob":35} 
>>> e == d # Are the dictionary's contents the same? 
True
>>> e is d # Are they the same object?  
False
>>> len(d) # Get the number of entries.  
4

DICTIONARY CONTENT CHECKS
LECTURE 06-1: DICTIONARIES

>>> d = {}
>>> d['bob'] = 35
>>> d['betty'] = 29
>>> d['mel'] = 24
>>> d  
{'bob': 35, 'mel': 24, 'betty': 29}
>>> del d['betty']  
>>> d  
{'bob': 35, 'mel': 24}

BUILDING AND MODIFYING A DICTIONARY
LECTURE 06-1: DICTIONARIES

>>> d = {}
>>> d = {“bob”:35, “betty”:29, “mel”:24}
>>> for k in d:
... print(k + ” -> ” + str(d[k]))
...
bob -> 35  
betty -> 29  
mel -> 24
>>>  

▸A for loop runs through the keys of the dictionary.
➡ You can then look up the associated value.

LOOPING
LECTURE 06-1: DICTIONARIES

▸ List creation via enumeration of some associations:
{'a':89,'b':4} {}

▸Accessing contents by key; dictionary size:
d['a'] len(d)

▸Updating an entry’s associated value with key re-assignment:
d['a'] = 88

▸Modifying/mutating a dictionary to add/remove entries:
 d['c'] = 111  
 del d['b']

▸Checking key inclusion, content equality, object identity:
 'a' in d d == {'e':78} d1 is d2
▸ Loop through the keys using a for loop.

PYTHON DICTIONARY SUMMARY
LECTURE 06-1: DICTIONARIES

