
LISTS & DICTIONARIES

LECTURE 05-2

JIM FIX, REED COLLEGE CSCI 121

▸REMINDER: A checkpoint for Project 1 is due Thursday.
➡Added a Gradescope problem to submit rules.py and demo.py
➡ Just want to see that you've completed three rules.

▸NOTE: I just updated the Project 1 page.
➡ There is an enhanced Grid.py available under "Set Up"...
- Linked as project1-with-save.zip.

➡ These enhancements are described under "Update"...
-Can help you build a richer demo next week.

▸ [[[DEMO of my SOLUTION and also some COOL RULES]]]

MORE ON PROJECT 1: GRID
LECTURE 05-1: LISTS

▸Reading:
➡ TP Ch 8-10
➡CP Ch 2.1-2.4

READING FOR PYTHON LISTS
LECTURE 05-1: LISTS AND DICTIONARIES

▸Python lets you represent sequences of data values:
>>> xs = [2,3,7,15,100]  
>>> xs  
[2, 3, 7, 15, 100]  
>>> xs[3]  
15  
>>> xs[0]  
2  
>>> len(xs)  
5

▸ This is a built-in data structure called a Python list.
➡A list is a sequence of numbered slots; each slot stores a value.
➡Each slot can be accessed by its index, starting at 0.
➡A list has a length.

• A Python list is also our first explicit example of a Python (data) object

OUR FIRST DATA STRUCTURE: PYTHON LISTS
LECTURE 05-1: LISTS

▸A Python list is a mutable data structure.
➡ This means that its contents can be changed.
>>> xs  
[2, 3, 7, 15, 100]  
>>> xs[3]  
15  
>>> xs[3] = 200  
>>> xs[3]  
200
>>> xs  
[2, 3, 7, 200, 100]  
>>> xs[0] = xs[2] + xs[4]
>>> xs  
[107, 3, 7, 200, 100]
>>> xs[4] = 1000  
>>> xs  
[107, 3, 7, 200, 1000]  

MODIFYING A LIST'S CONTENTS
LECTURE 05-1: LISTS

▸You have to be careful when accessing a list; need to be mindful of its length.
>>> xs = [2,3,7,15,100]
>>> xs  
[2, 3, 7, 15, 100]  
>>> xs[5]  
error!

▸Using a negative index allows you to access backward from the end of the list:
>>> xs[-1]
100
>>> xs[-2]
15  
>>> xs[-5]  
2  
>>> xs[-6]  
error!  
 

LIST INDEXING
LECTURE 05-1: LISTS

▸ This checks a list to see if its contents read the same backwards as forwards:
def is_palindrome(xs):  
 hi = len(xs)-1  
 lo = 0  
 while hi > lo:  
 if xs[lo] != xs[hi]:  
 return False  
 lo = lo + 1  
 hi = hi - 1  
 return True  

EXAMPLE LIST FUNCTION
LECTURE 05-1: LISTS

▸ This does the same using negative indexing
def is_palindrome(xs):  
 index = 0  
 middle = len(xs) // 2  
 while index < middle  
 if xs[index] != xs[-(index+1)]:  
 return False  
 index = index + 1  
 return True  

EXAMPLE LIST FUNCTION
LECTURE 05-1: LISTS

▸ This checks to see if the contents of two lists are the same:
def same_contents(xs,ys):  
 if len(xs) != len(ys):  
 return False  
 i = 0  
 while i < len(xs):  
 if xs[i] != ys[i]:  
 return False  
 i = i + 1  
 return True  

EXAMPLE LIST FUNCTION
LECTURE 05-1: LISTS

▸ This checks to see if the value y is stored in any of the slots of the list xs:
def contains(y,xs):  
 i = 0  
 while i < len(xs):  
 if xs[i] == y:  
 return True  
 i = i + 1  
 return False  

EXAMPLE LIST FUNCTION
LECTURE 05-1: LISTS

▸Python has contains and same_contents built into its language:
>>> 4 in [1,2,4,8] # Does the list contain an element?  
True
>>> 7 in [1,2,4,8]  
False  
>>> xs = [1,3,4]
>>> ys = [1,3,5]  
>>> xs == ys # Are the lists' contents the same?  
False
>>> xs != ys  
True  
>>> ys[2] = 4  
>>> xs == ys  
True
>>> xs != ys  
False
>>> xs is ys # Are they the same list object?  
False

▸ The operators in and == check contents. The operator is checks list identity.

LIST CONTENT CHECKS
LECTURE 05-1: LISTS

▸We can add more slots to a list object:
>>> xs = [13,5,71]
>>> xs  
[13, 5, 71]  
>>> xs.append(-57) # Adds a new slot to the end.  
>>> xs  
[13, 5, 71, -57]
>>> xs.extend([7,8,9]) # Adds several slots to the end.  
>>> xs  
[13, 5, 71, -57, 7, 8, 9]
>>> xs.insert(2,100) # Adds a slot in the middle.  
>>> xs  
[13, 5, 100, 71, -57, 7, 8, 9]  

MODIFYING LISTS: ADDING AND INSERTING
LECTURE 05-1: LISTS

▸We can remove slots from a list object:
>>> xs  
[13, 5, 100, 71, -57, 7, 8, 9]
>>> xs.pop() # Remove the last slot; return its value.
9
>>> xs  
[13, 5, 100, 71, -57, 7, 8]
>>> xs[2]  
100
>>> del xs[2] # Remove a slot at a certain index.
>>> xs  
[13, 5, 71, -57, 7, 8]
>>> xs[2] # The other items shift left.  
71  
 

MODIFYING LISTS: REMOVING
LECTURE 05-1: LISTS

▸ This function builds a list of integers:
def count_up(n):  
 i = 1  
 counts = []  
 while i <= n:  
 counts.append(i)  
 i = i + 1  
 return counts  

>>> count_up(7)  
[1, 2, 3, 4, 5, 6, 7]

EXAMPLE LIST FUNCTION
LECTURE 05-1: LISTS

▸ This function builds a number's divisor sequence:
def divisor_list(number):  
 sequence = [1]  
 divisor = 2  
 while divisor < number:  
 if number % divisor == 0:  
 sequence.append(divisor)  
 sequence.append(number)  
 return sequence  

>>> divisor_list(35)  
[1, 5, 7, 35]
>>> divisor_list(1)  
[1]
>>> divisor_list(7)  
[1, 7]
>>> divisor_list(36)  
[1, 2, 3, 4, 6, 9, 12, 18, 26]

EXAMPLE LIST FUNCTION
LECTURE 05-1: LISTS

▸ This function modifies a list.
def rotate_right(xs):  
 if len(xs) > 1:  
 last = xs.pop()  
 xs.insert(0,last)  

▸Calling rotate_right has the side effect of changing the list you give it:
>>> dsForSixteen = divisors_list(16)
>>> dsForSixteen  
[1, 2, 4, 8, 16]
>>> rotate_right(csForSix)
>>> csForSix  
[16, 1, 2, 4, 8]
>>> rotate_right(csForSix)
>>> csForSix  
[8, 16, 1, 2, 4]

EXAMPLE LIST PROCEDURE
LECTURE 05-1: LISTS

▸ List creation via enumeration, concatenation, repetition, slicing:
[3,1,7] [] [1,2]+[3,4,5]

▸Accessing contents by index; list length:
xs[3] xs[-1] len(xs)

▸Updating contents by indexed assignment:
xs[3] = 5

▸Modifying/mutating a list object:
 xs.append(5) xs.extend([8,9,10]) xs.insert(2,357)  
 xs.pop() del xs[6]

▸Checking membership, content equality, object identity:
 3 in xs xs == [1,2,3] xs is ys

▸Scan according to index using a while loop:
 i = 0  
 while i < len(xs):  
 print(xs[i])  
 i = i + 1

PYTHON LIST SUMMARY
LECTURE 05-1: LISTS

▸We can build new lists from other list's contents using + and *:
>>> [1,2,17] + [111,8]  
[1, 2, 17, 111, 8]
>>> [1,2,17] * 4  
[1, 2, 17, 1, 2, 17, 1, 2, 17, 1, 2, 17]
>>> [1,2,17] + []  
[1, 2, 17]
>>> [] + [1,2,17]  
[1, 2, 17]
>>> [1,2,17] * 1  
[1, 2, 17]
>>> [1,2,17] * 0  
[]
>>> [] * 4  
[]
>>> [] + []  
[]
 

LIST "ARITHMETIC"
LECTURE 05-1: LISTS

▸We can build new lists by copying portions of other lists:
>>> xs = [45,1,8,17,100,6]
>>> xs  
[45, 1, 8, 17, 100, 6]  
>>> xs[2:5] # Build a new list from the 2,3,4 slice.  
[8, 17, 100]  
>>> xs[2:4] # Build a new list from the 2,3 slice.  
[8, 17]  
>>> xs[:4] # Build a new list from the 0,1,2,3 slice. 
[45, 1, 8, 17]  
>>> xs[4:] # Build a new list from the 4,5 slice.  
[100, 6]  
>>> ys = xs[:] # Build a new list as a full copy.  
>>> xs[1] = 121  
>>> xs  
[45, 121, 8, 17, 100, 6]  
>>> ys  
[45, 1, 8, 17, 100, 6]  

LIST "SLICING"
LECTURE 05-1: LISTS

▸ Lists can be stored within other lists.
>>> lls = [[45,19],[8],[17,100,6],[]]
>>> lls[2]  
[17, 100, 6]
>>> lls[2][0]  
17
>>> lls[2][0] = 7777
>>> lls
[[45, 19] ,[8] ,[7777, 100, 6], []]  
>>> lls[0].pop()  
19  
>>> lls[0].extend([0,0,0])  
>>> lls  
[[45,19,0,0,0],[8],[7777,100,6],[]]  
>>> lls.append([5,4,3,2])  
>>> lls
[[45, 19, 0, 0, 0], [8], [7777, 100, 6], [], [5, 4, 3, 2]]

LISTS OF LISTS
LECTURE 05-1: LISTS

▸ List creation via enumeration, concatenation, repetition, slicing:
[3,1,7] [] [1,2]+[3,4,5] [1,2]*4 xs[3:5] xs[3:] xs[:]

▸Accessing contents by index; list length:
xs[3] xs[-1] len(xs)

▸Updating contents by indexed assignment:
xs[3] = 5

▸Modifying/mutating a list object:
 xs.append(5) xs.extend([8,9,10]) xs.insert(2,357)  
 xs.pop() del xs[6]

▸Checking membership, content equality, object identity:
 3 in xs xs == [1,2,3] xs is ys

▸Scan according to index using a while loop:
 i = 0  
 while i < len(xs):  
 print(xs[i])  
 i = i + 1

PYTHON LIST SUMMARY ENHANCED
LECTURE 05-1: LISTS

▸ This procedure outputs the contents of a list.
 def output_using_while(xs):
 i = 0  
 while i < len(xs):  
 print(xs[i])  
 i = i + 1  

▸ This procedure also outputs the contents of a list.
 def output_using_for(xs):
 for x in xs:  
 print(x)

TWO PRINTING PROCEDURES
LECTURE 05-1: LISTS

▸ List creation via enumeration, concatenation, repetition, slicing:
[3,1,7] [] [1,2]+[3,4,5] [1,2]*4 xs[3:5] xs[3:] xs[:]

▸Accessing contents by index; list length:
xs[3] xs[-1] len(xs)

▸Updating contents by indexed assignment:
xs[3] = 5

▸Modifying/mutating a list object:
 xs.append(5) xs.extend([8,9,10]) xs.insert(2,357)  
 xs.pop() del xs[6]

▸Checking membership, content equality, object identity:
 3 in xs xs == [1,2,3] xs is ys

▸Scan according to index using a while loop.
▸ Loop through the contents using a for loop.

PYTHON LIST SUMMARY ENHANCED WITH FOR
LECTURE 05-1: LISTS

▸Python lets you store a collection of associations
>>> d = {"bob":35, "mel":24, "betty":29}  
>>> d  
{'bob': 35, 'mel': 24, 'betty': 29}  
>>> d['bob']  
35  
>>> d['mel']  
24  

▸ This is a built-in data structure called a Python dictionary.
➡A dictionary contains a collection of entries.
➡ The left part of each entry is called its key.
➡ The right part is that key's associated value.
➡ There is at most one entry for a key.

• A Python dictionary is our 2nd explicit example of a Python (data) object

OUR SECOND DATA STRUCTURE: PYTHON DICTIONARIES
LECTURE 05-1: DICTIONARIES

▸Python lets you store a collection of associations
>>> d = {"bob":35, "mel":24, "betty":29}  
>>> d  
{'bob': 35, 'mel': 24, 'betty': 29}  
>>> d['bob']  
35  
>>> d['mel']  
24  

▸ This is a built-in data structure called a Python dictionary.
➡ It's also called a "key-value mapping", or sometimes just a "map".
➡Sometimes it's called a "hash table" or just "hashmap"

• In some languages, you mimic a dictionary with an "association list:"
d = [[“bob”, 35], [“mel”,24], [“betty”,29]]

OUR SECOND DATA STRUCTURE: PYTHON DICTIONARIES
LECTURE 05-1: DICTIONARIES

▸A Python dictionary is also a mutable data structure.
➡ You can add new key-value pairs, or modify the associated value to a key.
➡ The syntax for adding a new entry and updating an existing entry is the

same
>>> d = {"bob":35, "mel":24, "betty":29}  
>>> d  
{'bob': 35, 'mel': 24, 'betty': 29}  
>>> d['mel']  
24
>>> d['mel'] = 25
>>> d['mel']  
25  
>>> d  
{'bob': 35, 'mel': 25, 'betty': 29}  
>>> d['lou'] = 87  
>>> d  
{'bob': 35, 'mel': 24, 'betty': 29, 'lou': 87}  

MODIFYING A DICTIONARY'S CONTENTS
LECTURE 05-1: DICTIONARIES

>>> d = {"bob":35, "mel":24, "betty":29, "lou": 87}
>>> 'mel' in d # Does the dictionary contain a key?  
True
>>> 'jim' in d  
False  
>>> 35 in d  
False
>>> e = {"lou": 87,"mel":24, "betty":29, "bob":35} 
>>> e == d # Are the dictionary's contents the same? 
True
>>> e is d # Are they the same object?  
False
>>> len(d) # Get the number of entries.  
4

DICTIONARY CONTENT CHECKS
LECTURE 05-1: DICTIONARIES

>>> d = {}
>>> d['bob'] = 35
>>> d['betty'] = 29
>>> d['mel'] = 24
>>> d  
{'bob': 35, 'mel': 24, 'betty': 29}
>>> del d['betty']  
>>> d  
{'bob': 35, 'mel': 24}

BUILDING AND MODIFYING A DICTIONARY
LECTURE 05-1: DICTIONARIES

>>> d = {}
>>> d = {“bob”:35, “betty”:29, “mel”:24}
>>> for k in d:
... print(k + ” -> ” + str(d[k]))
...
bob -> 35  
betty -> 29  
mel -> 24
>>>  

▸A for loop runs through the keys of the dictionary.
➡ You can then look up the associated value.

LOOPING
LECTURE 05-1: DICTIONARIES

▸ List creation via enumeration of some associations:
{'a':89,'b':4} {}

▸Accessing contents by key; dictionary size:
d['a'] len(d)

▸Updating an entry’s associated value with key re-assignment:
d['a'] = 88

▸Modifying/mutating a dictionary to add/remove entries:
 d['c'] = 111  
 del d['b']

▸Checking key inclusion, content equality, object identity:
 'a' in d d == {'e':78} d1 is d2
▸ Loop through the keys using a for loop.

PYTHON DICTIONARY SUMMARY
LECTURE 05-1: DICTIONARIES

▸We can build new lists from other list's contents using + and *:
>>> [1,2,17] + [111,8]  
[1, 2, 17, 111, 8]
>>> [1,2,17] * 4  
[1, 2, 17, 1, 2, 17, 1, 2, 17, 1, 2, 17]
>>> [1,2,17] + []  
[1, 2, 17]
>>> [] + [1,2,17]  
[1, 2, 17]
>>> [1,2,17] * 1  
[1, 2, 17]
>>> [1,2,17] * 0  
[]
>>> [] * 4  
[]
>>> [] + []  
[]
 

LIST "ARITHMETIC"
LECTURE 05-1: LISTS

▸We can build new lists by copying portions of other lists:
>>> xs = [45,1,8,17,100,6]
>>> xs  
[45, 1, 8, 17, 100, 6]  
>>> xs[2:5] # Build a new list from the 2,3,4 slice.  
[8, 17, 100]  
>>> xs[2:4] # Build a new list from the 2,3 slice.  
[8, 17]  
>>> xs[:4] # Build a new list from the 0,1,2,3 slice. 
[45, 1, 8, 17]  
>>> xs[4:] # Build a new list from the 4,5 slice.  
[100, 6]  
>>> ys = xs[:] # Build a new list as a full copy.  
>>> xs[1] = 121  
>>> xs  
[45, 121, 8, 17, 100, 6]  
>>> ys  
[45, 1, 8, 17, 100, 6]  

LIST "SLICING"
LECTURE 05-1: LISTS

▸ Lists can be stored within other lists.
>>> lls = [[45,19],[8],[17,100,6],[]]
>>> lls[2]  
[17, 100, 6]
>>> lls[2][0]  
17
>>> lls[2][0] = 7777
>>> lls
[[45, 19] ,[8] ,[7777, 100, 6], []]  
>>> lls[0].pop()  
19  
>>> lls[0].extend([0,0,0])  
>>> lls  
[[45,19,0,0,0],[8],[7777,100,6],[]]  
>>> lls.append([5,4,3,2])  
>>> lls
[[45, 19, 0, 0, 0], [8], [7777, 100, 6], [], [5, 4, 3, 2]]

LISTS OF LISTS
LECTURE 05-1: LISTS

▸ List creation via enumeration, concatenation, repetition, slicing:
[3,1,7] [] [1,2]+[3,4,5] [1,2]*4 xs[3:5] xs[3:] xs[:]

▸Accessing contents by index; list length:
xs[3] xs[-1] len(xs)

▸Updating contents by indexed assignment:
xs[3] = 5

▸Modifying/mutating a list object:
 xs.append(5) xs.extend([8,9,10]) xs.insert(2,357)  
 xs.pop() del xs[6]

▸Checking membership, content equality, object identity:
 3 in xs xs == [1,2,3] xs is ys

▸Scan according to index using a while loop:
 i = 0  
 while i < len(xs):  
 print(xs[i])  
 i = i + 1

PYTHON LIST SUMMARY
LECTURE 05-1: LISTS

▸ This procedure outputs the contents of a list.
 def output_using_while(xs):
 i = 0  
 while i < len(xs):  
 print(xs[i])  
 i = i + 1  

▸ This procedure also outputs the contents of a list.
 def output_using_for(xs):
 for x in xs:  
 print(x)

TWO PRINTING PROCEDURES
LECTURE 05-1: LISTS

▸ List creation via enumeration, concatenation, repetition, slicing:
[3,1,7] [] [1,2]+[3,4,5] [1,2]*4 xs[3:5] xs[3:] xs[:]

▸Accessing contents by index; list length:
xs[3] xs[-1] len(xs)

▸Updating contents by indexed assignment:
xs[3] = 5

▸Modifying/mutating a list object:
 xs.append(5) xs.extend([8,9,10]) xs.insert(2,357)  
 xs.pop() del xs[6]

▸Checking membership, content equality, object identity:
 3 in xs xs == [1,2,3] xs is ys

▸Scan according to index using a while loop.
▸ Loop through the contents using a for loop.

PYTHON LIST SUMMARY
LECTURE 05-1: LISTS

▸Python lets you store a collection of associations
>>> d = {"bob":35, "mel":24, "betty":29}  
>>> d  
{'bob': 35, 'mel': 24, 'betty': 29}  
>>> d['bob']  
35  
>>> d['mel']  
24  

▸ This is a built-in data structure called a Python dictionary.
➡A dictionary contains a collection of entries.
➡ The left part of each entry is called its key.
➡ The right part is that key's associated value.
➡ There is at most one entry for a key.

• A Python dictionary is our 2nd explicit example of a Python (data) object

OUR SECOND DATA STRUCTURE: PYTHON DICTIONARIES
LECTURE 05-2: DICTIONARIES

▸Python lets you store a collection of associations
>>> d = {"bob":35, "mel":24, "betty":29}  
>>> d  
{'bob': 35, 'mel': 24, 'betty': 29}  
>>> d['bob']  
35  
>>> d['mel']  
24  

▸ This is a built-in data structure called a Python dictionary.
➡ It's also called a "key-value mapping", or sometimes just a "map".
➡Sometimes it's called a "hash table" or just "hashmap"

• In some languages, you mimic a dictionary with an "association list:"
d = [[“bob”, 35], [“mel”,24], [“betty”,29]]

OUR SECOND DATA STRUCTURE: PYTHON DICTIONARIES
LECTURE 05-2: DICTIONARIES

▸A Python dictionary is also a mutable data structure.
➡ You can add new key-value pairs, or modify the associated value to a key.
➡ The syntax for adding a new entry and updating an existing entry is the

same
>>> d = {"bob":35, "mel":24, "betty":29}  
>>> d  
{'bob': 35, 'mel': 24, 'betty': 29}  
>>> d['mel']  
24
>>> d['mel'] = 25
>>> d['mel']  
25  
>>> d  
{'bob': 35, 'mel': 25, 'betty': 29}  
>>> d['lou'] = 87  
>>> d  
{'bob': 35, 'mel': 24, 'betty': 29, 'lou': 87}  

MODIFYING A DICTIONARY'S CONTENTS
LECTURE 05-2: DICTIONARIES

>>> d = {"bob":35, "mel":24, "betty":29, "lou": 87}
>>> 'mel' in d # Does the dictionary contain a key?  
True
>>> 'jim' in d  
False  
>>> 35 in d  
False
>>> e = {"lou": 87,"mel":24, "betty":29, "bob":35} 
>>> e == d # Are the dictionary's contents the same? 
True
>>> e is d # Are they the same object?  
False
>>> len(d) # Get the number of entries.  
4

DICTIONARY CONTENT CHECKS
LECTURE 05-2: DICTIONARIES

>>> d = {}
>>> d['bob'] = 35
>>> d['betty'] = 29
>>> d['mel'] = 24
>>> d  
{'bob': 35, 'mel': 24, 'betty': 29}
>>> del d['betty']  
>>> d  
{'bob': 35, 'mel': 24}

BUILDING AND MODIFYING A DICTIONARY
LECTURE 05-2: DICTIONARIES

>>> d = {}
>>> d = {“bob”:35, “betty”:29, “mel”:24}
>>> for k in d:
... print(k + ” -> ” + str(d[k]))
...
bob -> 35  
betty -> 29  
mel -> 24
>>>  

▸A for loop runs through the keys of the dictionary.
➡ You can then look up the associated value.

LOOPING
LECTURE 05-2: DICTIONARIES

▸ List creation via enumeration of some associations:
{'a':89,'b':4} {}

▸Accessing contents by key; dictionary size:
d['a'] len(d)

▸Updating an entry’s associated value with key re-assignment:
d['a'] = 88

▸Modifying/mutating a dictionary to add/remove entries:
 d['c'] = 111  
 del d['b']

▸Checking key inclusion, content equality, object identity:
 'a' in d d == {'e':78} d1 is d2
▸ Loop through the keys using a for loop.

PYTHON DICTIONARY SUMMARY
LECTURE 05-2: DICTIONARIES

