LOOP BREAK;
LISTS

LECTURE 05-1

JIM FIX, REED COLLEGE CSCI 121

COURSE LOGISTICS AND ADMINISTRIVIA

A checkpoint of Project 1 is due Thursday
Will post Gradescope sites for submitting rules . py and demo . py
Just want to see that you've completed three rules.

Quiz #1 on "hours:minutesXM" back today. People generally did well!

BREAKING OUT OF A LOOP

Here is another way of writing the counting loop.

print (“Counting from 0O to 5:”)
count = 0
while True:

if count >= 6:

break

print (count)

count = count + 1
print (“Done."”)

The code uses a break statement to jump down to the follow-up code.
If within several loops, it jumps to just after the innermost one.

This is an artificial example

Using break statements can sometimes make code more readable than
code that expresses all the "break out" or stopping conditions.

LECTURE 05-1: BREAKING OUT

USING CONDITION VARIABLES TO GOVERN LOOPING

» Using break to express other break-out conditions:

while count < 6:
if somethingElseMakesMeStop(...)
break

count = count + 1
print (“Done."”)

» | worry that break can sometimes be missed by other coders.
» 1 usually prefer using explicit break-out conditions instead, like so:

done = False
while !done and count < 6:
if somethingElseMakesMeStop(...)
done = True
i1f not done:

count = count + 1
print (“Done."”)

LECTURE 05-1: BREAKING OUT

USING CONDITION VARIABLES TO GOVERN LOOPING

» Using break to express other break-out conditions:

while count < 6:
if somethingElseMakesMeStop(...)

PLEASE use break sparingly, and with taste.

count = count + 1
print (“Done."”)

» | worry that break can sometimes be missed by other coders.
» 1 usually prefer using explicit break-out conditions instead, like so:

done = False
while !done and count < 6:
if somethingElseMakesMeStop(...)
done = True
if not done:

count = count + 1
print (“Done."”)

USING RETURN WITHIN A LOOP

This procedure uses return to exit its loop and the procedure:

def countUpTo(n)
count = 1
while True:
if count > n:
return
print (count)
count = count + 1

The return statement breaks out of the loop and returns back to the
place where countUpTo was called.

A NEED FOR DATA STRUCTURES

We're limited in our coding if we can store values only using individual
variables.

What if we want to process...
...afile full of data? ...a web site full of statistics? ...a collection of items?

Suppose for example, a user enters in some arbitrary number of values...
With single variables, we can't name all of them.

Languages provide data structures to hold collections of values.
Python has two built into the language:
Python lists and Python dictionaries.

OUR FIRST DATA STRUCTURE: PYTHON LISTS

Python lets you represent sequences of data values:

>>> xs = [2,3,7,15,100]
>>> XS

>>> xs[3]
>>> xs[0]
>>> len(xs)
This is a built-in data structure called a Python [ist.
Alist is a sequence of numbered slots; each slot stores a value.
Each slot can be accessed by its index, starting at 0.

Alist has a length.
A Python list is also our first explicit example of a Python (data) object

LECTURE 05-1: LISTS

MODIFYING A LIST'S CONTENTS

» A Python list is a mutable data structure.
= This means that its contents can be changed.

>>> xS

[2, 3, 7, 15, 100]
>>> xs[3]
15

>>> xs[3]
>>> xs[3]
200

>>> xs
[2, 3, 7, 200, 100]

>>> xs[0] = xs[2] + xs[4]
>>> Xxs

[107, 3, 7, 200, 100]

>>> xs[4] = 1000

>>> xs

[107, 3, 7, 200, 1000]

200

LIST INDEXING

You have to be careful when accessing a list; need to be mindful of its length.

>>> xs = [2,3,7,15,100]
>>> XS

>>> xs[5]
error!

Using a negative index allows you to access backward from the end of the list:
>>> xs[-1]

>>> xs[-2]

>>> xs[-5]

>>> xs[-6]
error!

LECTURE 05-1: LISTS

EXAMPLE LIST FUNCTION

» This checks a list to see if its contents read the same backwards as forwards:

def is palindrome(xs):
hi = len(xs)-1
lo =0
while hi > lo:
if xs[lo] != xs[hi]:
return False
lo = 1lo + 1
hi = hi -1
return True

LECTURE 05-1: LISTS

EXAMPLE LIST FUNCTION

» This does the same using negative indexing

def is palindrome(xs):
index = 0
middle = len(xs) // 2
while index < middle
if xs[index] != xs[-(index+1l)]:
return False
index = index + 1

return True

LECTURE 05-1: LISTS

EXAMPLE LIST FUNCTION

» This checks to see if the contents of two lists are the same:

def same_ contents(xs,ys):

if len(xs) != len(ys):
return False
i=0
while i < len(xs):
if xs[i] != ys[i]:
return False
i=1i+1

return True

LECTURE 05-1: LISTS

EXAMPLE LIST FUNCTION

» This checks to see if the value y is stored in any of the slots of the list xs:

def contains(y,xs):

i=0
while i < len(xs):
if xs[i] == y:
return True
i=1i+1

return False

LECTURE 05-1: LISTS

LIST CONTENT CHECKS

» Python has contains and same contents builtinto its language:

>>> 4 in [1,2,4,8] # Does the list contain an element?

True

>>> 7 in [1,2,4,8]

False

>>> xs = [1,3,4]

>>> vys = [1,3,5]

>>> xs == ys # Are the lists' contents the same?
False

>>> xs = ys

True

>>> ys[2] = 4

>>> Xs == ys

True

>>> xs = ys

False

>>> xs 1is ys # Are they the same list object?
False

» The operators in and == check contents. The operator is checks list identity.

LECTURE 05-1: LISTS

MODIFYING LISTS: ADDING AND INSERTING

» We can add more slots to a list object:
>>> xs = [13,5,71]

>>> xs

[13, 5, 71]

>>> xs.append(-57) # Adds a new slot to the end.
>>> xS

[13, 5, 71, -57]

>>> xs.extend([7,8,9]) # Adds several slots to the end.
>>> xs

[13, 5, 71, -57, 71, 8, 9]

>>> xs.insert(2,100) # Adds a slot in the middle.

>>> xS

(13, 5, 100, 71, -57, 7, 8, 9]

LECTURE 05-1: LISTS

MODIFYING LISTS: REMOVING

» We can remove slots from a list object:

>>> xs

[13, 5, 100, 71, -57, 7, 8, 9]

>>> xs.pop() # Remove the last slot; return its value.
9

>>> xs

[13, 5, 100, 71, -57, 7, 8]

>>> xs[2]

100

>>> del xs[2] # Remove a slot at a certain index.
>>> xs

[13, 5, 71, -57, 7, 8]

>>> xs[2] # The other items shift left.

71

LECTURE 05-1: LISTS

EXAMPLE LIST FUNCTION

» This function builds a list of integers:

def count up(n):
i=1
counts = []
while i <= n:
counts.append (i)
i=1i+1
return counts

>>> count _up(7)
[1, 2, 3, 4[5] 6! 7]

LECTURE 05-1: LISTS

EXAMPLE LIST FUNCTION

» This function builds a number's divisor sequence:

def divisor list (number):
sequence = [1]
divisor = 2
while divisor < number:
if number % divisor ==
sequence.append(divisor)
sequence.append (number)
return sequence

>>> divisor list(35)

[1, 5, 7, 35]

>>> divisor list(1)

[1]

>>> divisor list(7)

[1, 7]

>>> divisor list(36)

[1, 2, 3, 4, 6, 9, 12, 18, 26]

LECTURE 05-1: LISTS

EXAMPLE LIST PROCEDURE

» This function modifies a list.

def rotate right(xs):
if len(xs) > 1:
last = xs.pop()
xs.insert (0, last)

» Calling rotate_right has the side effect of changing the list you give it:

>>> dsForSixteen
>>> dsForSixteen
[1, 2, 4, 8, 16]
>>> rotate right (csForSix)
>>> csForSix

[16, 1, 2, 4, 8]

>>> rotate right (csForSix)
>>> csForSix

[8, 16, 1, 2, 4]

divisors list (16)

PYTHON LIST SUMMARY

List creation via enumeration, concatenation, repetition, slicing:
[3,1,7] []1 1[1,2]+[3,4,5]

Accessing contents by index; list length:

xs[3] xs[-1] 1len(xs)

Updating contents by indexed assignment:

xs[3] = 5

Modifying/mutating a list object:

xs .append(5) xs.extend([8,9,10]) xs.insert(2,357)
xs.pop () del xs[6]

Checking membership, content equality, object identity:

3 in xs xs == [1,2,3] Xs 1s ys
Scan according to index using awhile loop:
i=0

while i < len(xs):
print(xs[i])
i=1i+1

