
MORE ABOUT LISTS

LECTURE 04-2

JIM FIX, REED COLLEGE CSCI 121

MONDAY
▸We’ll start lecture with a short quiz

➡ It will be something like Homework 2:

✦ still some Python scripting (input and print)

✦if and if-else statements

✦while loops

LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸Given a list of integers, build a new list of its squares.
def squares(xs):  
 i = 0
 sqxs = []  
 while i < len(xs):
 sq = xs[i] ** 2  
 sqxs.append(sq)
 i += 1  
 return sqxs  

SQUARES FUNCTION
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸Given a list of integers, build a new their squares.
def all_with_func(xs, f):  
 i = 0
 ys = []  
 while i < len(xs):
 y = f(xs[i])  
 ys.append(y)
 i += 1  
 return ys

def squares(ls):

 def square(x):
 return x * x

 return all_with_func(ls,square)  

USING A MORE GENERIC FUNCTION
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸Given a list of integers, update entries with their squares.
def square_all(xs):  
 i = 0  
 while i < len(xs):
 xs[i] = xs[i] ** 2
 i += 1  
  

SQUARING PROCEDURE
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸Given a list of integers, update entries with their squares.
def square_all(xs):  
 i = 0  
 while i < len(xs):
 x = xs.pop(i)
 xs.insert(i, x*x)
 i += 1  
  

SQUARING PROCEDURE
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸Given a list of integers, update entries with their squares.
def square_all(xs):  
 i = 0  
 while i < len(xs):
 x = xs.pop(i) # a bit too much
 xs.insert(i, x*x) # <-- here!
 i += 1  
  

SQUARING PROCEDURE
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸Given a list of integers, update entries with their squares.
def square_all(xs):  
 i = 0  
 while i < len(xs):
 xs[i] = xs[i] ** 2 # <- just update at i
 i += 1  
  

SQUARING PROCEDURE
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸ List creation via listing:
[3,1,7] []

▸Accessing contents by index; list length:
xs[3] xs[-1] len(xs)

▸Updating contents by indexed assignment:
xs[3] = 5

▸Modifying/mutating a list object:
 xs.append(5) xs.extend([8,9,10]) xs.insert(2,357)  
 xs.pop() del xs[6]

▸Checking membership, content equality, object identity:
 3 in xs xs == [1,2,3] xs is ys

▸Scan according to index using a while loop:
 i = 0  
 while i < len(xs):  
 print(xs[i])  
 i = i + 1

PYTHON LIST SUMMARY
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸ List creation via listing:
[3,1,7] []

▸Accessing contents by index; list length:
xs[3] xs[-1] len(xs)

▸Updating contents by indexed assignment:
xs[3] = 5

▸Modifying/mutating a list object:
 xs.append(5) xs.extend([8,9,10]) xs.insert(2,357)  
 xs.pop() del xs[6]

▸Checking membership, content equality, object identity:
 3 in xs xs == [1,2,3] xs is ys

▸Scan according to index using a while loop:
 i = 0  
 while i < len(xs):  
 print(xs[i])  
 i = i + 1

PYTHON LIST SUMMARY
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸ List creation:
[3,1,7] []

▸Accessing its contents:
xs[3] xs[-1] len(xs)

▸Modyifying its contents:
xs[3] = 5

▸Changing the length of a list object:
 xs.append(5) xs.extend([8,9,10]) xs.insert(2,357)  
 xs.pop() del xs[6]

▸Checking membership, content equality, object identity:
 3 in xs xs == [1,2,3] xs is ys

▸Scanning using a while loop:
 i = 0  
 while i < len(xs):  
 print(xs[i])  
 i = i + 1

PYTHON LIST SUMMARY
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸We can build new lists from other list's contents using + and *:
>>> [1,2,17] + [111,8]  
[1, 2, 17, 111, 8]
>>> [1,2,17] * 4  
[1, 2, 17, 1, 2, 17, 1, 2, 17, 1, 2, 17]
>>> [1,2,17] + []  
[1, 2, 17]
>>> [] + [1,2,17]  
[1, 2, 17]
>>> [1,2,17] * 1  
[1, 2, 17]
>>> [1,2,17] * 0  
[]
>>> [] * 4  
[]
>>> [] + []  
[]
 

LIST "ARITHMETIC"
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸Given a list of integers, build a new list of its squares.
def squares(xs):  
 i = 0
 sqxs = []  
 while i < len(xs):
 sq = xs[i] ** 2  
 sqxs.append(sq)
 i += 1  
 return sqxs  

SQUARES FUNCTION
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸Given a list of integers, build a new list of its squares.
def squares(xs):  
 i = 0
 sqxs = []  
 while i < len(xs):
 sq = xs[i] ** 2  
 sqxs = sqxs + [sq]
 i += 1  
 return sqxs  

REDO OF SQUARES FUNCTION USING +
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸Given a list of integers, build a new list of its squares.
def squares(xs):  
 i = 0
 sqxs = []  
 while i < len(xs):
 sq = xs[i] ** 2  
 sqxs = sqxs + [sq]
 i += 1  
 return sqxs  

REDO OF SQUARES FUNCTION USING +
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸Given a list of integers, build a new list of its squares from back to front:
def squares(xs):  
 i = len(xs) - 1
 sqxs = []  
 while i >= 0:
 sq = xs[i] ** 2  
 sqxs = [sq] + sqxs
 i -= 1  
 return sqxs  

ANOTHER REDO OF SQUARES FUNCTION USING +
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸Given a list of integers, build a new list of its squares from back to front:
def squares(xs):  
 i = len(xs) - 1
 sqxs = []  
 while i >= 0:
 sq = xs[i] ** 2  
 sqxs = [sq] + sqxs
 i -= 1  
 return sqxs  

ANOTHER REDO OF SQUARES FUNCTION USING +
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸ This does not update its list parameter to store its squares!!!
def square_all(xs):  
 i = 0
 old_xs = xs
 xs = []  
 while i < len(old_xs):
 sq = old_xs[i] ** 2  
 xs = xs + [sq]
 i += 1  

BROKEN SQUARING PROCEDURE
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸ This does not update its list parameter to store its squares!!!
def square_all(xs):  
 i = 0
 old_xs = xs
 xs = []  
 while i < len(old_xs):
 sq = old_xs[i] ** 2  
 xs = xs + [sq]
 i += 1

▸ Instead it creates a new list object and uses xs to refer to it instead.
▸ The code keeps creating new, longer lists, and uses xs to refer to them.

 

BROKEN SQUARING PROCEDURE
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸

PYTHON TUTOR FOR LISTS
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸A function that counts the digits of a non-negative integer
def digit_counts(n):  
 …

▸Here it is in use:
>>> digit_counts(1561107)
[1, 3, 0, 0, 0, 1, 1, 1, 0, 0]
>>>

EXAMPLE LIST FUNCTION
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸A function that counts the digits of a positive integer
def digit_counts(n):
 counts = [0] * 10  
 while n > 0:
 digit = n % 10
 counts[digit] += 1
 n = n // 10
 return counts

▸Here it is in use:
>>> digit_counts(1561107)
[1, 3, 0, 0, 0, 1, 1, 1, 0, 0]
>>>

EXAMPLE LIST FUNCTION
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸A function that counts the digits of a positive integer
def digit_counts(n):
 counts = [0] * 10  
 while n > 0:
 digit = n % 10
 counts[digit] += 1
 n = n // 10
 return counts

▸Here it is in use:
>>> digit_counts(1561107)
[1, 3, 0, 0, 0, 1, 1, 1, 0, 0]
>>>

EXAMPLE LIST FUNCTION
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸We can build new lists by copying portions of other lists:
>>> xs = [45,1,8,17,100,6]
>>> xs  
[45, 1, 8, 17, 100, 6]  
>>> xs[2:5] # Build a new list from the 2,3,4 slice.  
[8, 17, 100]  
>>> xs[2:4] # Build a new list from the 2,3 slice.  
[8, 17]  
>>> xs[:4] # Build a new list from the 0,1,2,3 slice. 
[45, 1, 8, 17]  
>>> xs[4:] # Build a new list from the 4,5 slice.  
[100, 6]  
>>> ys = xs[:] # Build a new list as a full copy.  
>>> xs[1] = 121  
>>> xs  
[45, 121, 8, 17, 100, 6]  
>>> ys  
[45, 1, 8, 17, 100, 6]  

LIST "SLICING"
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸Here is an example where we “slice out” an item:
def list_without(xs, index):  
 …

▸Here it is in use:
>>> xs = [1,10,100,1000,10000]
>>> list_without(xs, 3)
[1, 10, 100, 10000]

EXAMPLE WITH SLICING
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸Here is an example where we “slice out” an item:
def list_without(xs, index):  
 …

▸Here it is in use. It should not change the list it is given:
>>> xs = [1,10,100,1000,10000]
>>> list_without(xs, 3)
[1, 10, 100, 10000]
>>> xs
[1, 10, 100, 1000, 10000]

EXAMPLE WITH SLICING
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸Here is an example where we “slice out” an item:
def list_without(xs, index):  
 return xs[:index] + xs[index+1:]

▸Here it is in use:
>>> xs = [1,10,100,1000,10000]
>>> list_without(xs, 3)
[1, 10, 100, 10000]
>>> xs
[1, 10, 100, 1000, 10000]

EXAMPLE WITH SLICING
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸Here we obtain a list of slices:
def all_consecutives(xs):  
 i = 0
 cs = []
 while i < len(xs) - 1:
 cs.append(xs[i:i+2])
 i += 1
 return cs

▸Here it is in use:
>>> xs = [1,10,100,1000]
>>> all_consecutives(xs)
[[1, 10], [10, 100], [100, 1000]]

EXAMPLE WITH SLICING
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸Here we obtain a list of slices:
def all_consecutives(xs):  
 i = 0
 cs = []
 while i < len(xs) - 1:
 cs.append(xs[i:i+2])
 i += 1
 return cs

▸Here it is in use:
>>> xs = [1,10,100,1000]
>>> all_consecutives(xs)
[[1, 10], [10, 100], [100, 1000]]

EXAMPLE WITH SLICING
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸Here we obtain a list of slices:
def all_consecutives(xs):  
 i = 0
 cs = []
 while i < len(xs) - 1:
 cs.append(xs[i:i+2])
 i += 1
 return cs

▸Here it is in use:
>>> xs = [1,10,100,1000]
>>> all_consecutives(xs)
[[1, 10], [10, 100], [100, 1000]]

EXAMPLE WITH SLICING
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸ Lists can be stored within other lists.
>>> lls = [[45,19],[8],[17,100,6],[]]
>>> lls[2]  
[17, 100, 6]
>>> lls[2][0]  
17
>>> lls[2][0] = 7777
>>> lls
[[45, 19], [8], [7777, 100, 6], []]  
>>> lls[0].pop()  
19  
>>> lls[0].extend([0,0,0])  
>>> lls  
[[45, 19, 0, 0, 0], [8], [7777, 100, 6], []] 
>>> lls.append([5,4,3,2])  
>>> lls
[[45, 19, 0, 0, 0], [8], [7777, 100, 6], [], [5, 4, 3, 2]]

LISTS OF LISTS
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸Here is an example where we make a list of slices:
def all_prefixes(xs):  
 …

 
 
 
 
 
 
 

▸Here it is in use:
>>> xs = [1,10,100, 1000]
>>> all_prefixes(xs)
[[], [1], [1, 10], [1, 10, 100], [1, 10, 100, 1000]]

ALL PREFIXES
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸Here is an example where we make a list of slices:
def all_prefixes(xs):  
 pfxs = []
 i = 0
 while i <= len(xs):
 pfxs.append(xs[:i])
 i += 1
 return pfxs
 
 
 
 
 

▸Here it is in use:
>>> xs = [1,10,100, 1000]
>>> all_prefixes(xs)
[[], [1], [1, 10], [1, 10, 100], [1, 10, 100, 1000]]

ALL PREFIXES
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸Here is another example where we make a list of slices.
▸We write it to use +

def all_prefixes(xs):  
 pfxs = []
 i = 0
 while i <= len(xs):
 pfxs = pfxs + [xs[:i]]
 i += 1
 return pfxs
 
 
 
 
 

▸Here it is in use:
>>> xs = [1,10,100, 1000]
>>> all_prefixes(xs)
[[], [1], [1, 10], [1, 10, 100], [1, 10, 100, 1000]]

ALL PREFIXES
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸Here is another example where we make a list of slices.
▸We write it to use +

def all_prefixes(xs):  
 pfxs = []
 i = 0
 while i <= len(xs):
 pfxs = pfxs + xs[:i]
 i += 1
 return pfxs
 
 
 

▸Here it is in use:
>>> xs = [1,10,100, 1000]
>>> all_prefixes(xs)
????

ALL PREFIXES BROKEN
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸Here is another example where we make a list of slices.
▸We write it to use +

def all_prefixes(xs):  
 pfxs = []
 i = 0
 while i <= len(xs):
 pfxs = pfxs + xs[:i]
 i += 1
 return pfxs
 
 
 
 
 

▸Here it is in use:
>>> xs = [1,10,100, 1000]
>>> all_prefixes(xs)
[1, 1, 10, 1, 10, 100, 1, 10, 100, 1000]

ALL PREFIXES BROKEN
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸A list of lists is often used to represent a matrix (or a table) of values:
 0 1 2 3 4
 5 6 7 8 9  
10 11 12 13 14  
 

▸Here is how we might store this data:
>>> table = [[0, 1, 2, 3, 4],[5, 6, 7, 8, 9], [10,11,12,13,14]]
>>>

MATRIX REPRESENTATION
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸A list of lists is often used to represent a matrix (or a table) of values:
 0 1 2 3 4
 5 6 7 8 9  
10 11 12 13 14  
 

▸Here is how we might store this data:
>>> table = [[0, 1, 2, 3, 4],[5, 6, 7, 8, 9], [10,11,12,13,14]]
>>> print(????)

MATRIX REPRESENTATION
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸A list of lists is often used to represent a matrix (or a table) of values:
 0 1 2 3 4
 5 6 7 8 9  
10 11 12 13 14  
 

▸Here is how we might store this data:
>>> table = [[0, 1, 2, 3, 4],[5, 6, 7, 8, 9], [10,11,12,13,14]]
>>> print(table[2][3])
13
>>>

MATRIX REPRESENTATION
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸A list of lists is often used to represent a matrix (or a table) of values:
 0 1 2 3 4
 5 6 7 8 9  
10 11 12 13 14  
 

▸Here is how we might store this data:
>>> table = [[0, 1, 2, 3, 4],[5, 6, 7, 8, 9], [10,11,12,13,14]]
>>> print(table[2][3])
13
>>> table[0][1] = 77

MATRIX REPRESENTATION
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸A list of lists is often used to represent a matrix (or a table) of values:
 0 77 2 3 4
 5 6 7 8 9  
10 11 12 13 14  
 

▸Here is how we might store this data:
>>> table = [[0, 1, 2, 3, 4],[5, 6, 7, 8, 9], [10,11,12,13,14]]
>>> print(table[2][3])
13
>>> table[0][1] = 77

MATRIX REPRESENTATION
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸ List creation via enumeration, concatenation, repetition, slicing:
[3,1,7] [] [1,2]+[3,4,5] [1,2]*4 xs[3:5] xs[3:] xs[:]

▸Accessing contents by index; list length:
xs[3] xs[-1] len(xs)

▸Updating contents by indexed assignment:
xs[3] = 5

▸Modifying/mutating a list object:
 xs.append(5) xs.extend([8,9,10]) xs.insert(2,357)  
 xs.pop() del xs[6]

▸Checking membership, content equality, object identity:
 3 in xs xs == [1,2,3] xs is ys

▸Scan according to index using a while loop:
 i = 0  
 while i < len(xs):  
 print(xs[i])  
 i = i + 1

PYTHON LIST SUMMARY ENHANCED
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸ This procedure outputs the contents of a list.
 def output_using_while(xs):
 i = 0  
 while i < len(xs):  
 print(xs[i])  
 i = i + 1  

▸ This procedure also outputs the contents of a list.
 def output_using_for(xs):
 for x in xs:  
 print(x)

TWO PRINTING PROCEDURES
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸ This function returns a list of the even values:
 def only_the_evens(xs):
 es = []
 for x in xs:  
 if x % 2 == 0:
 es.append(x)
 return es

ONLY THE EVENS
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸ This function returns the list of squares:
 def squares(xs):
 sqxs = []
 for x in xs:  
 sqxs.append(x*x)
 return sqxs

SQUARES REVISTED
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸Creating a new list by enumeration, concatenation, repetition, slicing:
[3,1,7] [] [1,2]+[3,4,5] [1,2]*4 xs[3:5] xs[3:] xs[:]

▸Accessing contents:
xs[3] xs[-1] len(xs)

▸Updating contents:
xs[3] = 5

▸Resizing a list object:
 xs.append(5) xs.extend([8,9,10]) xs.insert(2,357)  
 xs.pop() del xs[6]

▸Checking membership, content equality, object identity:
 3 in xs xs == [1,2,3] xs is ys

▸Scan a list using a while loop.
▸ Loop through the contents using a for loop.

PYTHON LIST SUMMARY ENHANCED WITH FOR
LECTURE 04-2: MORE ABOUT PYTHON LISTS

▸

PYTHON TUTOR FOR LISTS
LECTURE 04-2: MORE ABOUT PYTHON LISTS

MONDAY
▸We’ll start lecture with a short quiz

➡ It will be something like Homework 2:

✦ still some Python scripting (input and print)

✦if and if-else statements

✦while loops

LECTURE 04-2: MORE ABOUT PYTHON LISTS

