
PYTHON LISTS

LECTURE 04-1

JIM FIX, REED COLLEGE CSCI 121

▸We're limited in our coding if we can store values only using individual
variables.

A NEED FOR DATA STRUCTURES
LECTURE 04-1: LISTS

▸We're limited in our coding if we can store values only using individual
variables.

▸What if we want to process...
...a file full of data? ...a web site full of statistics? ...a collection of items?

▸Suppose for example, a user enters in some arbitrary number of values...
➡With single variables, we can't name all of them.

A NEED FOR DATA STRUCTURES
LECTURE 04-1: LISTS

▸We're limited in our coding if we can store values only using individual
variables.

▸What if we want to process...
...a file full of data? ...a web site full of statistics? ...a collection of items?

▸Suppose for example, a user enters in some arbitrary number of values...
➡With single variables, we can't name all of them.

▸ Languages provide data structures to hold collections of values.
• Python has two built into the language:
➡Python lists and Python dictionaries.

A NEED FOR DATA STRUCTURES
LECTURE 04-1: LISTS

▸Python lets you represent sequences of data values:
>>> xs = [2, 3, 7, 15, 100]  
>>> xs  
[2, 3, 7, 15, 100]  
>>> xs[3]  
15  
>>> xs[0]  
2  
>>> len(xs)  
5

OUR FIRST DATA STRUCTURE: PYTHON LISTS
LECTURE 04-1: LISTS

▸Python lets you represent sequences of data values:
>>> xs = [2, 3, 7, 15, 100]  
>>> xs  
[2, 3, 7, 15, 100]  
>>> xs[3]  
15  
>>> xs[0]  
2  
>>> len(xs)  
5

▸ This is a built-in data structure called a Python list.
➡A list is a sequence of numbered data slots, starting at 0.
➡Each slot stores a value.
➡A slot can be accessed by its index.
➡A list has a length.

OUR FIRST DATA STRUCTURE: PYTHON LISTS
LECTURE 04-1: LISTS

▸A Python list is mutable. This means that its contents can be changed.
>>> xs  
[2, 3, 7, 15, 100]  
>>> xs[3]  
15  
>>> xs[3] = 200  
>>> xs[3]  
200
>>> xs  
[2, 3, 7, 200, 100]  
>>> xs[0] = xs[2] + xs[4]
>>> xs  
[107, 3, 7, 200, 100]
>>> xs[4] = 1000  
>>> xs  
[107, 3, 7, 200, 1000]  

MODIFYING A LIST'S CONTENTS
LECTURE 04-1: LISTS

▸You have to be careful when accessing a list; need to be mindful of its length.
>>> xs = [2, 3, 7, 15, 100]
>>> xs  
[2, 3, 7, 15, 100]  
>>> xs[5]  
error!

▸Using a negative index allows you to access backward from the end of the list:
>>> xs[-1]
100
>>> xs[-2]
15  
>>> xs[-5]  
2  
>>> xs[-6]  
error!  
 

LIST INDEXING
LECTURE 04-1: LISTS

▸A function that averages the values in a list:

def average(numbers):  
 …

LISTS CAN BE PASSED TO FUNCTIONS
LECTURE 04-1: LISTS

▸ The function below averages the values in a list:

def average(numbers):  
 # numbers is assumed to be a list of floats  
 if len(numbers) == 0:
 # We’ll define the average value of [] as None
 return None

 # compute their sum
 sum = 0.0
 index = 0
 while index < len(numbers)  
 sum = sum + numbers[index]  
 index = index + 1

 # take their average  
 return sum / len(numbers)  

LISTS CAN BE PASSED TO FUNCTIONS
LECTURE 04-1: LISTS

▸ The function below averages the values in a list:

def average(numbers):  
 # numbers is assumed to be a list of floats  
 if len(numbers) == 0:
 # We’ll define the average value of [] as None
 return None

 # compute their sum
 sum = 0.0
 index = 0
 while index < len(numbers)  
 sum = sum + numbers[index]  
 index = index + 1

 # take their average  
 return sum / len(numbers)  

LISTS CAN BE PASSED TO FUNCTIONS

This is a typical loop
for scanning a list.

LECTURE 04-1: LISTS

▸ The function below averages the values in a list:
def average(numbers):  
 if len(numbers) == 0:
 return None

 sum = 0.0
 index = 0
 while index < len(numbers)  
 sum = sum + numbers[index]  
 index = index + 1  
 return sum / len(numbers)  

▸Here it is in use:
>>> xs = [2.0, 3.5, 7.5, 10.0]  
>>> average(xs)
11.5
>>>
 

LISTS CAN BE PASSED TO FUNCTIONS
LECTURE 04-1: LISTS

▸ The function below averages the values in a list:
def average(numbers):  
 if len(numbers) == 0:
 return None

 sum = 0.0
 index = 0
 while index < len(numbers)  
 sum = sum + numbers[index]  
 index = index + 1  
 return sum / len(numbers)  

▸Here it is in use:
>>> xs = [2.0, 3.5, 7.5, 10.0]  
>>> average(xs)
11.5
>>> average([])
>>>  

LISTS CAN BE PASSED TO FUNCTIONS
LECTURE 04-1: LISTS

▸A function that if a list’s contents read the same backwards as forwards:
def is_palindrome(xs):  
 …

EXAMPLE LIST FUNCTION
LECTURE 04-1: LISTS

▸ This checks a list to see if its contents read the same backwards as forwards:
def is_palindrome(xs):  
 hi = len(xs) - 1  
 lo = 0  
 while hi > lo:  
 if xs[lo] != xs[hi]:  
 return False  
 lo = lo + 1  
 hi = hi - 1  
 return True  

EXAMPLE LIST FUNCTION
LECTURE 04-1: LISTS

▸ This does the same using negative indexing
def is_palindrome(xs):  
 index = 0  
 middle = len(xs) // 2  
 while index < middle  
 if xs[index] != xs[-(index+1)]:  
 return False  
 index = index + 1  
 return True  

EXAMPLE LIST FUNCTION
LECTURE 04-1: LISTS

▸A function that checks if two lists hold the same contents, in same order
def same_contents(xs, ys):  
 …

EXAMPLE LIST FUNCTION
LECTURE 04-1: LISTS

▸ This checks to see if the contents of two lists are the same:
def same_contents(xs, ys):  
 if len(xs) != len(ys):  
 return False  
 i = 0  
 while i < len(xs):  
 if xs[i] != ys[i]:  
 return False  
 i = i + 1  
 return True  

EXAMPLE LIST FUNCTION
LECTURE 04-1: LISTS

▸A function that checks if the value y is stored in list xs:
def contains(y, xs):  
 …

EXAMPLE LIST FUNCTION
LECTURE 04-1: LISTS

▸ This checks to see if the value y is stored in any of the slots of the list xs:
def contains(y, xs):  
 i = 0  
 while i < len(xs):  
 if xs[i] == y:  
 return True  
 i = i + 1  
 return False  

EXAMPLE LIST FUNCTION
LECTURE 04-1: LISTS

▸Python has contains and same_contents built into its language:
>>> 4 in [1,2,4,8] # Does the list contain an element?  
True
>>> 7 in [1,2,4,8]  
False  
>>> xs = [1,3,4]
>>> ys = [1,3,5]  
>>> xs == ys # Are the lists' contents the same?  
False
>>> xs != ys  
True  
>>> ys[2] = 4  
>>> xs == ys  
True
>>> xs != ys  
False
>>> xs is ys # Are they the same list object?  
False

▸ The operators in and == check list contents.

LIST CONTENT CHECKS
LECTURE 04-1: LISTS

▸ There is also sometimes a need to check whether you are working with the
same list object.
 
 >>> list1 = [1, 3, 4, 8]
>>> list2 = [7, 3, 6]  
>>> xs = list1
>>> xs is list1 # Are they the same list object?  
True
>>> xs is list2  
False
>>> xs[2] = xs[2] + 100
>>> list1
[1, 3, 104, 8]
>>>

▸ The operator is checks list identity.

LIST IDENTITY CHECKS
LECTURE 04-1: LISTS

▸We can add more slots to a list object:
>>> xs = [13,5,71]
>>> xs  
[13, 5, 71]  
>>> xs.append(-57) # Adds a new slot to the end.  
>>> xs  
[13, 5, 71, -57]
>>> xs.extend([7,8,9]) # Adds several slots to the end.  
>>> xs  
[13, 5, 71, -57, 7, 8, 9]
>>> xs.insert(2,100) # Adds a slot in the middle.  
>>> xs  
[13, 5, 100, 71, -57, 7, 8, 9]  

MODIFYING LISTS: ADDING AND INSERTING
LECTURE 04-1: LISTS

▸We can remove slots from a list object:
>>> xs  
[13, 5, 100, 71, -57, 7, 8, 9]
>>> xs.pop() # Remove the last slot; return its value.
9
>>> xs  
[13, 5, 100, 71, -57, 7, 8]
>>> xs[2]  
100
>>> del xs[2] # Remove a slot at a certain index.
>>> xs  
[13, 5, 71, -57, 7, 8]
>>> xs[2] # The other items shift left.  
71  
 

MODIFYING LISTS: REMOVING
LECTURE 04-1: LISTS

▸ This function builds a list of integers:
def count_up(n):  
 i = 1  
 counts = []  
 while i <= n:  
 counts.append(i)  
 i = i + 1  
 return counts  

>>> count_up(7)  
[1, 2, 3, 4, 5, 6, 7]

RETURNING LISTS
LECTURE 04-1: LISTS

▸ This function builds a number's divisor sequence:
def divisor_list(number):  
 sequence = [1]  
 divisor = 2  
 while divisor < number:  
 if number % divisor == 0:  
 sequence.append(divisor)  
 sequence.append(number)  
 return sequence  

>>> divisor_list(35)  
[1, 5, 7, 35]
>>> divisor_list(1)  
[1]
>>> divisor_list(7)  
[1, 7]
>>> divisor_list(36)  
[1, 2, 3, 4, 6, 9, 12, 18, 26]

RETURNING LISTS
LECTURE 04-1: LISTS

▸ This function modifies a list.
def rotate_right(xs):  
 if len(xs) > 1:  
 last = xs.pop()  
 xs.insert(0,last)  

▸Calling rotate_right has the side effect of changing the list you give it:
>>> dsForSixteen = divisor_list(16)
>>> dsForSixteen  
[1, 2, 4, 8, 16]
>>> rotate_right(dsForSixteen)
>>> dsForSixteen  
[16, 1, 2, 4, 8]
>>> rotate_right(dsForSixteen)
>>> dsForSixteen  
[8, 16, 1, 2, 4]

PROCEDURES THAT MODIFY A LIST
LECTURE 04-1: LISTS

▸Reading:
➡PP Ch 2.2
➡ TP Ch 9
➡CP Ch 2.3

READING FOR PYTHON LISTS
LECTURE 04-1: LISTS

▸ List description via enumeration/listing:
[3,1,7] []

▸Accessing contents by index; list length:
xs[3] xs[-1] len(xs)

▸Updating contents by indexed assignment:
xs[3] = 5

▸Modifying/mutating a list object:
 xs.append(5) xs.extend([8,9,10]) xs.insert(2,357)  
 xs.pop() del xs[6]

▸Checking membership, content equality, and identity:
 3 in xs xs == [1,2,3] xs is ys

▸Scan using an integer index using a while loop:
 i = 0  
 while i < len(xs):  
 print(xs[i])  
 i = i + 1

PYTHON LIST SUMMARY
LECTURE 04-1: LISTSLECTURE 04-1: LISTS

