
LOOPS

LECTURE 04-1

JIM FIX, REED COLLEGE CSCI 121

UPCOMING COURSE EVENTS
▸This coming Wednesday, 9/21, our first QUIZ:

➡ On Python scripting, conditional statements, and integer arithmetic.

➡ 20 minutes; in-class; closed-note; written code.

LECTURE 04-1: LOOPS

LOOPS
▸Reading: TP Ch 5, CP Ch 1.5

▸A while statement can be used to repeat some code.

▸ The template below gives the syntax of a while loop statement:
lines of "set up" code to execute first
while condition-expression:
 lines of "loop body" code to execute if the condition holds
 ...
lines of "follow up" code to execute once the condition no longer holds

LECTURE 04-1: LOOPS

▸ This example script counts from 101 down to 1:
print(“This program will count down by 10.”)
count = 51  
while count > 1:  
 print(str(count) + ”...")
 count = count - 10  
print(“1!!!!”)

▸Output of the script above:
51...  
41...  
31...  
21...  
11...  
1!!!!

▸NOTE: hit [CTRL-c] to terminate the Python script's execution. 

SIMPLE EXAMPLE
LECTURE 04-1: LOOPS

▸ The template below gives the syntax of a while loop statement:
lines of "set up" code to execute first
while condition-expression:
 lines of "loop body" code to execute if the condition holds
 ...
lines of "follow up" code to execute once the condition no longer holds

▸Here is how Python executes this code:

1. Executes the set up code.

2. It evaluates the condition. If False it skips to Step 5.

3. Otherwise, if True, it evaluates the loop body's code.

4. It goes back to Step 2.

5. It executes the follow up, and subsequent, code.

EXECUTION OF A WHILE LOOP
LECTURE 04-1: LOOPS

▸ The while template and what it means.
▸Definite versus indefinite loops.

➡countdown.py, guess.py, guess6.py
▸ Infinite loops happen.

➡Hit [CTRL-c] to terminate a runaway script.
▸Using boolean conditions to control loops.
▸Using break and continue.
▸Nested loops.

SOME LOOP ISSUES TO COVER
LECTURE 04-1: LOOPS

▸ This example script counts from 101 down to 1:
print("This program will count down to 1 by an amount.")
start = int(input("Enter a value to start near: "))
decrement = int(input("Enter an amount to step down: "))
#
print("Ready? Counting down to 1:")
input("[Hit RETURN]")
#
count = start - ((start - 1) % decrement)
while count > 1:
 #
 print(str(count) + "...", end='')
 sys.stdout.flush()
 time.sleep(1)
 #
 count = count - decrement

print("1!!!!!")  

COUNTING DOWN, GENERALIZED, GIVING PAUSE
LECTURE 04-1: LOOPS

▸Some terminology:
• "Count up to 6." and "Count up to the input value." are examples of

definite loops.
• "Get an input until they've entered something valid." is an example of an

indefinite loop. The number of repetitions isn't known.

▸An example of the second kind of coding:
def get_float(prompt):  
 return float(input(prompt))  

def get_area():  
 a = get_float(“Circle area? “)  
 while a < 0.0:  
 a = get_float(“Not an area. Try again:”)  
 return a

DEFINITE VS. INDEFINITE LOOPS
LECTURE 04-1: LOOPS

▸Some terminology:
• "Count up to 6." and "Count up to the input value." are examples of

definite loops.
• "Get an input until they've entered something valid." is an example of an

indefinite loop. The number of repetitions isn't known.

▸An example of the second kind of coding:
def get_float(prompt):  
 return float(input(prompt))  

def get_area():  
 a = get_float(“Circle area? “)  
 while a < 0.0:  
 a = get_float(“Not an area. Try again:”)  
 return a

DEFINITE VS. INDEFINITE LOOPS

Note that the loop body might not run at all!

LECTURE 04-1: LOOPS

▸ This example script engages the user in a guessing game:

number = random.randint(1,100)
print("I have chosen a random number from 1 to 100.")
print("Try and guess what it is.")

guess = int(input("Your guess? "))
while guess != number:
 if guess > number:
 print("That guess was too high!")
 else:
 print("That guess was too low!")
 guess = int(input("What's your next guess? "))

print("You got it right! Great job.")  

GUESSING GAME
LECTURE 04-1: LOOPS

▸Of course you can put a conditional statement within a loop's body.
 count = 0  
 while count < 6:  
 if count % 2 == 0:  
 print(str(count) + ” is even.”)  
 else:  
 print(str(count) + ” is odd.”)  
 count = count + 1  
 print(“Done.”)

▸Output of the script above:
0 is even.
1 is odd.  
2 is even.
3 is odd.
4 is even.
5 is odd.
Done.

NESTING CONTROL STATEMENTS WITHIN A LOOP
LECTURE 04-1: LOOPS

▸ This example script engages the user in a more challenging guessing game:
number = random.randint(1,100)
print("I have chosen a random number from 1 to 100.")
print("Try and guess what it is.")

guess = int(input("Your guess? "))
guesses = 1
while guesses < 6 and guess != number:
 if guess > number:
 print("That guess was too high!")
 else:
 print("That guess was too low!")
 guess = int(input("What's your next guess? "))
 guesses = guesses + 1

if guess == number:
 print("You got it right! Great job.")
else:
 print("Oh, so sorry. You ran out of guesses.")
 print("The number was "+str(number)+".")
 

GUESSING GAME WITH 6 GUESSES
LECTURE 04-1: LOOPS

▸Nested loops are a common programming pattern:
a = 0  
while a < 6:  
 b = 0  
 while b < 8:  
 print(str(a)+str(b),end=“ ”)  
 b = b + 1  
 print()  
 a = a + 1  
print(“Done.”)

▸What does this do???

NESTING A LOOP WITHIN A LOOP
LECTURE 04-1: LOOPS

▸Nested loops are a common programming pattern:
a = 0  
while a < 6:  
 b = 0  
 while b < 8:  
 print(str(a)+str(b),end=“ ”)  
 b = b + 1  
 print()  
 a = a + 1  
print(“Done.”)

▸It outputs a sequence of digit pairs, separated by spaces:
00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
Done.

NESTING A LOOP WITHIN A LOOP
LECTURE 04-1: LOOPS

▸Nested loops are a common programming pattern:
a = 0  
while a < 6:  
 b = 0  
 while b < 8:  
 print(str(a)+str(b),end=“ ”)  
 b = b + 1  
 print()  
 a = a + 1  
print(“Done.”)

▸It outputs a sequence of digit pairs, separated by spaces:
00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
Done.

NESTING A LOOP WITHIN A LOOP

Inner loop, along with set-up/follow-up

LECTURE 04-1: LOOPS

▸Nested loops are a common programming pattern:
a = 0  
while a < 6:  
 b = 0  
 while b < 8:  
 print(str(a)+str(b),end=“ ”)  
 b = b + 1  
 print()  
 a = a + 1  
print(“Done.”)

▸It outputs a sequence of digit pairs, separated by spaces:
00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
Done.

NESTING A LOOP WITHIN A LOOP

Inner loop, along with set-up/follow-up

Outer loop, along with set-up/follow-up

LECTURE 04-1: LOOPS

▸Nested loops are a common programming pattern:
a = 0  
while a < 6:  
 b = 0  
 while b < 8:  
 print(str(a)+str(b),end=“ ”)  
 b = b + 1  
 print()  
 a = a + 1  
print(“Done.”)

▸It outputs a sequence of digit pairs, separated by spaces:
00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
Done.

NESTING A LOOP WITHIN A LOOP

Executed once for each value of a.

Inner loop, along with set-up/follow-up

Outer loop, along with set-up/follow-up

LECTURE 04-1: LOOPS

▸Here is another way of writing the counting loop.
 print(“Counting from 0 to 5:”)  
 count = 0  
 while True:  
 if count >= 6:  
 break  
 print(count)  
 count = count + 1  
 print(“Done.”)

▸ The code uses a break statement to jump down to the follow-up code.
▸If within several loops, it jumps to just after the innermost one.
▸This is an artificial example
▸Using break statements can sometimes make code more readable than

code that expresses all the "break out" or stopping conditions.

BREAKING OUT OF A LOOP
LECTURE 04-1: LOOPS

▸Using break to express other break-out conditions: 
 while count < 6:  
 if somethingElseMakesMeStop(...)  
 break  
 ...  
 count = count + 1  
 print(“Done.”)
▸ I worry that break can sometimes be missed by other coders.
▸ I usually prefer using explicit break-out conditions instead, like so: 
 done = False  
 while !done and count < 6:  
 if somethingElseMakesMeStop(...)  
 done = True  
 if not done:  
 ...  
 count = count + 1  
 print(“Done.”)

USING CONDITION VARIABLES TO GOVERN LOOPING
LECTURE 04-1: LOOPS

▸Using break to express other break-out conditions: 
 while count < 6:  
 if somethingElseMakesMeStop(...)  
 break  
 ...  
 count = count + 1  
 print(“Done.”)
▸ I worry that break can sometimes be missed by other coders.
▸ I usually prefer using explicit break-out conditions instead, like so: 
 done = False  
 while !done and count < 6:  
 if somethingElseMakesMeStop(...)  
 done = True  
 if not done:  
 ...  
 count = count + 1  
 print(“Done.”)

USING CONDITION VARIABLES TO GOVERN LOOPING

PLEASE use break sparingly, and with taste.

LECTURE 04-1: LOOPS

▸ This procedure uses return to exit its loop and the procedure: 
def countUpTo(n)  
 count = 1  
 while True:  
 if count > n:  
 return  
 print(count)  
 count = count + 1  

▸ The return statement breaks out of the loop and returns back to the

place where countUpTo was called. 

USING RETURN WITHIN A LOOP
LECTURE 04-1: LOOPS

SUMMARY
▸The while loop statement expresses iterative code.

➡ Allows you to perform a series of actions until a condition holds.

➡ The negation of this terminating condition is the loop's condition.

▸It's possible for the code to loop forever. This is an infinite loop.

▸Counting loops are common examples of definite loops.

▸Loops that iterate an undetermined number of times are indefinite.

LECTURE 04-1: LOOPS

SUMMARY (CONT'D)
▸Loop bodies can contain other control statements:

• For example, you can have if statements or other while statements.

• If another loop statement is inside, then it is a nested loop.

• If a break statement, we can jump out of the loop mid-body.

• If a return statement, we exit the loop and the function/procedure.

LECTURE 04-1: LOOPS

PROJECT 1: GAME OF LIFE AND IMAGE PROCESSING
▸Posted on the web at jimfix.github.io/csci121/assign/project1.html

▸It is a grid simulation.

▸It is also an image processing platform.

▸You'll write functions that compute a grid cell's value.

➡ Based on its current value, from 0 to 100.

➡ Based on its neighboring cell's values, also from 0 to 100.

▸Applied successively over the entire grid, you obtain interesting behavior.

(DEMO)

▸Start looking at it!!! Play with the existing rule code.

▸It's due Monday, October 3rd at 1pm.

LECTURE 04-1: LOOPS

▸On some systems running Project 1 causes an error at the code line:
from tkinter import *

▸ This is the Python graphics library we use, and apparently isn't installed.

▸For a Mac or a Windows machine :
• Enter the Terminal command:
pip3 install tk

▸For those few using WSL on Windows:
• Enter the terminal command:
sudo apt install python3-tk

• Install a (free) tool called MobaXterm.
• Run MobaXterm and create a "New session..." of type WSL.
• Run the Grid program inside that terminal session

PROJECT 1 NEEDS TKINTER
LECTURE 04-1: LOOPS

ADVANCED STUFF

