PYTHON LISTS

LECTURE 04-1

JIM FIX, REED COLLEGE CSCI 121

A NEED FOR DATA STRUCTURES

We're limited in our coding if we can store values only using individual
variables.

A NEED FOR DATA STRUCTURES

We're limited in our coding if we can store values only using individual
variables.

What if we want to process...
...afile full of data? ...a web site full of statistics? ...a collection of items?

Suppose for example, a user enters in some arbitrary number of values...
With single variables, we can't name all of them.

A NEED FOR DATA STRUCTURES

We're limited in our coding if we can store values only using individual
variables.

What if we want to process...
...afile full of data? ...a web site full of statistics? ...a collection of items?

Suppose for example, a user enters in some arbitrary number of values...
With single variables, we can't name all of them.

Languages provide data structures to hold collections of values.
Python has two built into the language:
Python lists and Python dictionaries.

LECTURE 04-1: LISTS

OUR FIRST DATA STRUCTURE: PYTHON LISTS

» Python lets you represent sequences of data values:

>>> xs = [2, 3, 7, 15, 100]
>>> XS

[2, 3, 7, 15, 100]

>>> xs[3]

15

>>> xs[0]

2

>>> len(xs)

5

OUR FIRST DATA STRUCTURE: PYTHON LISTS

Python lets you represent sequences of data values:

>>> xs = [2, 3, 7, 15, 100]
>>> XS

>>> xs[3]
>>> xs[0]

>>> len(xs)

This is a built-in data structure called a Python /ist.
Alist is a sequence of numbered data slots, starting at 0.
Each slot stores a value.
A slot can be accessed by its index.
Alist has a length.

LECTURE 04-1: LISTS

MODIFYING A LIST'S CONTENTS

» A Python list is mutable. This means that its contents can be changed.

>>> xs

[2, 3, 7, 15, 100]

>>> xs[3]

15

>>> xs[3] = 200

>>> xs[3]

200

>>> xS

[2, 3, 7, 200, 100]
>>> xs[0] = xs[2] + xs[4]
>>> xS

[107, 3, 7, 200, 100]
>>> xs[4] = 1000

>>> xS

[107, 3, 7, 200, 1000]

LIST INDEXING

You have to be careful when accessing a list; need to be mindful of its length.

>>> xs = [2, 3, 71, 15, 100]
>>> XS

>>> xs[5]
error!

Using a negative index allows you to access backward from the end of the list:
>>> xs[-1]

>>> xs[-2]

>>> xs[-5]

>>> xs[-6]
error!

LECTURE 04-1: LISTS

LISTS CAN BE PASSED TO FUNCTIONS

» Afunction that averages the values in a list:

def average(numbers):

LECTURE 04-1: LISTS

LISTS CAN BE PASSED TO FUNCTIONS

» The function below averages the valuesin a list:

def average(numbers):
numbers is assumed to be a list of floats
if len(numbers) ==
We’ll define the average value of [] as None
return None

compute their sum

sum = 0.0

index = 0

while index < len(numbers)
sum = sum + numbers[index]
index = index + 1

take their average
return sum / len(numbers)

LECTURE 04-1: LISTS

LISTS CAN BE PASSED TO FUNCTIONS

» The function below averages the valuesin a list:

def average(numbers):
numbers is assumed to be a list of floats
if len(numbers) ==
We’ll define the average value of [] as None
return None

compute their sum

sum = 0.0

index = 0

while index < len(numbers) This is a typical IOOp

sum = sum + numbers[index] for scanning a list
index = index + 1 .

take their average
return sum / len(numbers)

LECTURE 04-1: LISTS

LISTS CAN BE PASSED TO FUNCTIONS

» The function below averages the valuesin a list:

def average (numbers):
if len(numbers) == O:
return None

sum = 0.0

index = 0

while index < len(numbers)
sum = sum + numbers|[index]
index = index + 1

return sum / len(numbers)

»Hereitis in use:

>>> xs = [2.0, 3.5, 7.5, 10.0]
>>> average (xs)

11.5
>>>

LECTURE 04-1: LISTS

LISTS CAN BE PASSED TO FUNCTIONS

» The function below averages the valuesin a list:

def average (numbers):
if len(numbers) ==
return None

sum = 0.0

index = 0

while index < len(numbers)
sum = sum + numbers|[index]
index = index + 1

return sum / len(numbers)

»Hereitis in use:

>>> xs = [2.0, 3.5, 7.5, 10.0]
>>> average (xs)
11.5

>>> average([])
>>>

LECTURE 04-1: LISTS

EXAMPLE LIST FUNCTION

» A function that if a list's contents read the same backwards as forwards:

def is palindrome(xs):

LECTURE 04-1: LISTS

EXAMPLE LIST FUNCTION

» This checks a list to see if its contents read the same backwards as forwards:

def is palindrome(xs):
hi = len(xs) - 1
lo =0
while hi > lo:
if xs[lo] != xs[hi]:
return False
lo = 1lo + 1
hi = hi -1
return True

LECTURE 04-1: LISTS

EXAMPLE LIST FUNCTION

» This does the same using negative indexing

def is palindrome(xs):
index = 0
middle = len(xs) // 2
while index < middle
if xs[index] != xs[-(index+1l)]:
return False
index = index + 1

return True

LECTURE 04-1: LISTS

EXAMPLE LIST FUNCTION

» A function that checks if two lists hold the same contents, in same order

def same_ contents(xs, ys):

LECTURE 04-1: LISTS

EXAMPLE LIST FUNCTION

» This checks to see if the contents of two lists are the same:

def same_ contents(xs, ys):

if len(xs) != len(ys):
return False
i=0
while i < len(xs):
if xs[i] != ys[i]:
return False
i=1i+1

return True

LECTURE 04-1: LISTS

EXAMPLE LIST FUNCTION

» A function that checks if the value y is stored in list xs:

def contains(y, xs):

LECTURE 04-1: LISTS

EXAMPLE LIST FUNCTION

» This checks to see if the value y is stored in any of the slots of the list xs:

def contains(y, xs):

i=0
while i < len(xs):
if xs[i] == y:
return True
i=1i+1

return False

LECTURE 04-1: LISTS

LIST CONTENT CHECKS

» Python has contains and same contents builtinto its language:

>>> 4 in [1,2,4,8] # Does the list contain an element?

True

>>> 7 in [1,2,4,8]

False

>>> xs = [1,3,4]

>>> ys = [1,3,5]

>>> xs == ys # Are the lists' contents the same?
False

>>> xs = ys

True

>>> ys[2] = 4

>>> Xs == ys

True

>>> xs = ys

False

>>> xs 1is ys # Are they the same list object?
False

» The operators in and == check list contents.

LECTURE 04-1: LISTS

LIST IDENTITY CHECKS

» There is also sometimes a need to check whether you are working with the
same list object.

>>> listl = [1, 3, 4, 8]
>>> list2 = [7, 3, 6]
>>> xs = listl

>>> xs is listl # Are they the same list object?
True

>>> xs is list2

False

>>> xs[2] = xs[2] + 100
>>> listl

[1, 3, 104, 8]

>>>

» The operator is checks list identity.

LECTURE 04-1: LISTS

MODIFYING LISTS: ADDING AND INSERTING

» We can add more slots to a list object:
>>> xs = [13,5,71]

>>> xs

[13, 5, 71]

>>> xs.append(-57) # Adds a new slot to the end.
>>> xS

[13, 5, 71, -57]

>>> xs.extend([7,8,9]) # Adds several slots to the end.
>>> xs

[13, 5, 71, -57, 71, 8, 9]

>>> xs.insert(2,100) # Adds a slot in the middle.

>>> xS

(13, 5, 100, 71, -57, 7, 8, 9]

LECTURE 04-1: LISTS

MODIFYING LISTS: REMOVING

» We can remove slots from a list object:

>>> xs

[13, 5, 100, 71, -57, 7, 8, 9]

>>> xs.pop() # Remove the last slot; return its value.
9

>>> xs

[13, 5, 100, 71, -57, 7, 8]

>>> xs[2]

100

>>> del xs[2] # Remove a slot at a certain index.
>>> xs

[13, 5, 71, -57, 7, 8]

>>> xs[2] # The other items shift left.

71

LECTURE 04-1: LISTS

RETURNING LISTS

» This function builds a list of integers:

def count up(n):
i=1
counts = []
while i <= n:
counts.append (i)
i=1i+1
return counts

>>> count _up(7)
[1, 2, 3, 4[5] 6! 7]

LECTURE 04-1: LISTS

RETURNING LISTS

» This function builds a number's divisor sequence:

def divisor list (number):
sequence = [1]
divisor = 2
while divisor < number:
if number % divisor ==
sequence.append(divisor)
sequence.append (number)
return sequence

>>> divisor list(35)

[1, 5, 7, 35]

>>> divisor list(1)

[1]

>>> divisor list(7)

[1, 7]

>>> divisor list(36)

[1, 2, 3, 4, 6, 9, 12, 18, 26]

LECTURE 04-1: LISTS

PROCEDURES THAT MODIFY A LIST

» This function modifies a list.

def rotate right(xs):
if len(xs) > 1:
last = xs.pop()
xs.insert (0, last)

» Calling rotate_right has the side effect of changing the list you give it:

>>> dsForSixteen divisor list(16)
>>> dsForSixteen

[11 21 41 8! 16]

>>> rotate right (dsForSixteen)

>>> dsForSixteen

[16, 1, 2, 4, 8]

>>> rotate_right (dsForSixteen)

>>> dsForSixteen

[8, 16, 1, 2, 4]

LECTURE 04-1: LISTS

READING FOR PYTHON LISTS

» Reading:
= PP Ch 2.2
=TPCh 9
=CPCh2.3

PYTHON LIST SUMMARY

List description via enumeration/listing:
[3,1,71 []

Accessing contents by index; list length:
xs[3] xs[-1] 1len(xs)

Updating contents by indexed assignment:
xs[3] = 5

Modifying/mutating a list object:

xs .append(5) xs.extend([8,9,10]) xs.insert(2,357)
xs.pop () del xs[6]

Checking membership, content equality, and identity:

3 1in Xxs xs == [1,2,3] Xs 1s ys

Scan using an integer index using awhile loop:
i=0
while i < len(xs):
print (xs[1i])
i=1i+1

