
PROCEDURES; ITERATION

LECTURE 03-1

JIM FIX, REED COLLEGE CSCI 121

▸A function’s code consists of an indented body of statements.
➡ These statements are ones like the top-level ones used in scripts.

▸The function's lines of code compute using the parameter variables.
▸The last line executed is a return statement.

➡It computes a value that gets "handed" back or returned.
▸A function can be called several times within a program’s code.

➡With each call, different values are passed to the function.
 

SUMMARY OF USER-DEFINED FUNCTIONS
LECTURE 03-2: PROCEDURES

▸A function’s code consists of an indented body of statements.
➡ These statements are ones like the top-level ones used in scripts.

▸The function's lines of code compute using the parameter variables.
▸The last line executed is a return statement.

➡It computes a value that gets "handed" back or returned.
▸A function can be called several times within a program’s code.

➡With each call, different values are passed to the function.
▸"Procedures" are like functions, also defined using def.

➡They perform some work but don’t return a value.
 

SUMMARY
LECTURE 03-2: PROCEDURES

▸A function’s code consists of an indented body of statements.
➡ These statements are ones like the top-level ones used in scripts.

▸The function's lines of code compute using the parameter variables.
▸The last line executed is a return statement.

➡It computes a value that gets "handed" back or returned.
▸A function can be called several times within a program’s code.

➡With each call, different values are passed to the function.
▸"Procedures" are like functions, also defined using def.

➡They perform some work but don’t return a value.
➡Sometimes they do work and return a value.

•^^^ This is just my terminology, not Python's.
 

SUMMARY
LECTURE 03-2: PROCEDURES

▸What happens if you (accidentally) forget a case?
def example(value):
 if value > 0:
 return "positive"
 elif value < 0:
 return "negative"

▸What happens in the missing case?
>>> example(3)  
'positive'
>>> example(-4)
'negative'
>>> example(0)
????

MISSING CASES?
LECTURE 03-2: PROCEDURES

▸What happens if you (accidentally) forget a case:
def example(value):
 if value > 0:
 return "positive"
 elif value < 0:
 return "negative"

▸What happens in the missing case?
>>> print(example(3))  
positive
>>> print(example(4))
negative
>>> print(example(0))
None

MISSING CASES
LECTURE 03-2: PROCEDURES

▸What happens if you (accidentally) forget a case:
def example(value):
 if value > 0:
 return "positive"
 elif value < 0:
 return "negative"  

▸What happens in the missing case?
>>> print(repr(example(3)))  
'positive'
>>> print(repr(example(4)))
'negative'
>>> print(repr(example(0)))
'None'

MISSING CASES
LECTURE 03-2: PROCEDURES

▸What happens if you (accidentally) forget a case:
def example(value):
 if value > 0:
 return "positive"
 elif value < 0:
 return "negative"  

▸What happens in the missing case?
>>> print(example(3))  
positive
>>> print(example(4))
negative
>>> print(example(0))
None

▸There is a special Python value None that is implicitly returned.

▸Confusingly, the interpreter does not display the None value.

MISSING CASES
LECTURE 03-2: PROCEDURES

▸What happens if you (accidentally) forget a case:
def example(value):
 if value > 0:
 return "positive"
 elif value < 0:
 return "negative"  

▸What happens in the missing case?
>>> print(example(3))  
positive
>>> print(example(4))
negative
>>> print(example(0))
None

▸There is a special Python value None that is implicitly returned.

▸Make sure in your functions you've an explicit return for every case!

MISSING CASES
LECTURE 03-2: PROCEDURES

▸Python has the same def syntax for defining procedures
➡ This is my term for a "function that does not return a value."
➡ This is also my term for a "function that does some side work like input or print."
➡ They do some stuff, perform some actions.

▸For example
def printBoxTop(size):
 dashes = “-“ * size
 print(“+” + dashes + “+”)  
 
def printBox(width):
 printBoxTop(width)
 print(“|” + (“ “*width) + “|”)
 printBoxTop(width)  

▸Below is its use. It's as if we've invented a printBox statement.
>>> printBox(4)
+----+
| |
+----+
>>>  

PROGRAMMER-DEFINED PROCEDURES
LECTURE 03-2: PROCEDURES

EXAMPLE SCRIPT WITH PROCEDURES
def printBoxTop(size):
 dashes = “-“ * size
 print(“+” + dashes + “+”)  

def greetTheUser(name):
 print(“Hi, “ + name + ”. Nice to meet ya!”)  

def printBox(w):
 printBoxTop(w)
 print(“|” + (“ “ * w) + “|”)
 printBoxTop(w)

user = input(“What’s your name? “)
greetTheUser(user)
print(“I’d like to make you a box.”)
width = int(input(“How wide of a box would you like? “))
printBox(width)
print(“Here is one that is twice as wide:”)
printBox(width * 2)

LECTURE 03-2: PROCEDURES

▸All three of these procedures do the exact same thing:
def greetThenReturn_version1(name):
 print("Hi, " + name + ".")

def greetThenReturn_version2(name):
 print("Hi, " + name + ".")
 return

def greetThenReturn_version3(name):
 print("Hi, " + name + ".")
 return None

 

▸The first implicitly returns None. The first explictly returns but implictly
returns None. The third explicitly returns the None value.

PROCEDURES RETURN THE NONE VALUE
LECTURE 03-2: PROCEDURES

▸Here is some fun with None, and with procedures (that return None):

>>> print("hello")
hello
>>> print(None)
None
>>> "hello"
'hello'
>>> None
>>> 3+4
7
>>> print(print("hello"))
hello
None
>>> greetThenReturnNone("Jim")
Hello, Jim.
>>> print(greetThenReturnNone("Jim"))
Hello, Jim.
None

NONE IS WEIRDLY HANDLED BY THE PYTHON INTERPRETER
LECTURE 03-2: PROCEDURES

▸In Python, procedures are really just functions.
•Python doesn’t distinguish procedures from functions.
• This is just my personal dichotomy, from older languages (Pascal, C).
▸“Function”:
•A function gets passed some parameters, executes, and then returns a result.
•A function is used within an expression.
▸“Procedure”:
•A procedure is something that (typically) performs some action/work, and

typically does not return a value.
•A procedure that returns no value is used as a statement.
•When a procedure’s work is done, Python continues executing after the line

where it was called. (Control “jumps” then returns.)
 

FUNCTIONS VS. PROCEDURES
LECTURE 03-2: PROCEDURES

ITERATION WITH LOOPS
▸We look at code that uses iteration or loop statements.

➡ In Python, these are the while and for statements.

➡ These statements allow us to repeat actions several times.

✦Definite loops: perform an action several times.

✦ Indefinite loops: perform an action until a condition is met.

▸Reading for this week's material:

✦ TP Ch 5

✦CP Ch 1.5

LECTURE 03-2: ITERATION WITH LOOPS

▸Python lets you execute the same statement repeatedly with a while loop
statement. For example:

print(“This line runs once, first.”)  
while True:  
 print(“This line keeps getting run.”)  
print(“This line never runs.”)

▸Output of the script above:
This line runs once, first.  
This line keeps getting run.  
This line keeps getting run.  
This line keeps getting run.  
This line keeps getting run.  
…

▸NOTE: hit [CTRL-c] to terminate the Python script's execution. 

AN INFINITE LOOP
LECTURE 03-2: ITERATION WITH LOOPS

▸ The prior example loops forever. And so does this one:
print(“This line runs once, first.”)  
while True:  
 print(“This line keeps getting run.”)
 print(“And so does this one.”)  
print(“This line never runs.”)

▸Output of the script above:
This line runs once, first.  
This line keeps getting run.  
And so does this one.  
This line keeps getting run.  
And so does this one.  
This line keeps getting run.  
And so does this one.  
…

MORE LOOPING FOREVER
LECTURE 03-2: ITERATION WITH LOOPS

▸ The behavior of that script is like this infinite script:
print(“This line runs once, first.”)  
print(“This line keeps getting run.”)
print(“And so does this one.”)
print(“This line keeps getting run.”)
print(“And so does this one.”)
print(“This line keeps getting run.”)
print(“And so does this one.”)
print(“This line keeps getting run.”)
print(“And so does this one.”)  
...

LOOPING, UNROLLED
LECTURE 03-2: ITERATION WITH LOOPS

▸Well, technically, it's more like this infinite script:
print(“This line runs once, first.”)
if True:  
 print(“This line keeps getting run.”)
 print(“And so does this one.”)
 if True:
 print(“This line keeps getting run.”)
 print(“And so does this one.”)
 if True:
 print(“This line keeps getting run.”)
 print(“And so does this one.”)
 if True:
 ...

print(“This line never runs.”)

LOOPING, UNROLLED
LECTURE 03-2: ITERATION WITH LOOPS

▸ The prior example loops forever. And so does this one:
hellos_said = 0  
while True:  
 print(“Hello!!!”)
 hellos_said = hellos_said + 1
 print(“That was 'hello' #” + str(hellos_said) + ".")  
print(“This line never runs.”)

▸Output of the script above:
Hello!!!  
That was 'hello' #1.  
Hello!!!  
That was 'hello' #2.
Hello!!!  
That was 'hello' #3.
Hello!!!  
That was 'hello' #4.  
…

COUNTING FOREVER
LECTURE 03-2: ITERATION WITH LOOPS

▸Well, technically, it's more like this infinite script:
hellos_said = 0 # sets to 0
if True:  
 print(“Hello!!!”)
 hellos_said = hellos_said + 1 # sets to 1
 print(“That was 'hello' #”+str(hellos_said) + ".")
 if True:
 print(“Hello!!!”)
 hellos_said = hellos_said + 1 # sets to 2
 print(“That was 'hello' #”+str(hellos_said) + ".")
 if True:
 print(“Hello!!!”)
 hellos_said = hellos_said + 1 # sets to 3
 print(“That was 'hello' #”+str(hellos_said) + ".")
 if True:
 ...

COUNTING FOREVER, UNROLLED
LECTURE 03-2: ITERATION WITH LOOPS

▸ This outputs a count from 0 up to 5:
print(“I'm going to count for you.”)
count = 0  
while count < 6:  
 print(count)
 count = count + 1  
print(“I'm done counting now.”)

▸Output of the script above:
I'm going to count for you.  
0
1  
2  
3
4  
5
I'm done counting now.

COUNTING ONLY SO FAR
LECTURE 03-2: ITERATION WITH LOOPS

▸ This outputs a count from 0 up to 2:
print(“I'm going to count for you.”)
count = 0  
while count < 3:  
 print(count)
 count = count + 1  
print(“I'm done counting now.”)

▸Output of the script above:
I'm going to count for you.  
0
1  
2
I'm done counting now.

COUNTING ONLY SO FAR
LECTURE 03-2: ITERATION WITH LOOPS

▸Here is an unrolling of that loop's code:
print("I'm going to count for you.")
count = 0 # sets to 0
if count < 3:  
 print(count)
 count = count + 1 # sets to 1
 if count < 3:
 print(count)
 count = count + 1 # sets to 2
 if count < 3:  
 print(count)
 count = count + 1 # sets to 3
 if count < 3:
 print(count) # never happens
 count = count + 1 # sets to 4; never happens
 if count < 3:
 ...
print("I'm done counting now.")

UNROLLED
LECTURE 03-2: ITERATION WITH LOOPS

▸ This outputs a count from 0 up to some input value:
print(“I'm going to count for you.”)
max = int(input("Enter how far you'd like me to count: "))
count = 0  
while count <= max:  
 print(count)
 count = count + 1  
print(“I'm done counting now.”)

▸Output of the script above:
I'm going to count for you.
Enter how far you'd like me to count: 4  
0
1  
2
3
4
I'm done counting now.

COUNTING ACCORDING TO AN INPUT
LECTURE 03-2: ITERATION WITH LOOPS

▸ The template below gives the syntax of a while loop statement:
lines of statements to execute first
while condition-expression:
 lines of statements to execute if the condition holds
 ...
lines of statements to executed when the condition no longer holds

ANATOMY OF A WHILE LOOP
LECTURE 03-2: ITERATION WITH LOOPS

▸ The template below gives the syntax of a while loop statement:
lines of "set up" statements to execute first
while condition-expression:
 lines of "loop body" statements to execute if the condition holds
 ...
lines of "follow up" to execute when the condition no longer holds

▸Here is how Python executes this code:

1. Executes the set up code.

2. It evaluates the condition. If False it skips to Step 5.

3. Otherwise, if True, it evaluates the loop body's code.

4. It goes back to Step 2.

5. It executes the follow up, and subsequent, code.

EXECUTION OF A WHILE LOOP
LECTURE 03-2: ITERATION WITH LOOPS

▸Here is the standard structure of a "counting loop":
initialize the count to the start-value
while count < one-too-far:
 actions to perform with that particular count value
 increment the count by 1
at this point can now use the fact that count == one-too-far

▸This is an extremely common coding pattern...

➡ PLEASE TAKE THIS TEMPLATE TO HEART!!!!

ANATOMY OF A COUNTING LOOP
LECTURE 03-2: ITERATION WITH LOOPS

▸Some terminology:
• "Count up to 6." and "Count up to the input value." are examples of

definite loops.
• "Get an input until they've entered something valid." is an example of an

indefinite loop. The number of repetitions isn't known.

▸An example of the second kind of coding:
def get_float(prompt):  
 return float(input(prompt))  

def get_area():  
 a = get_float(“Circle area? “)  
 while a < 0.0:  
 a = get_float(“Not an area. Try again:”)  
 return a

DEFINITE VS. INDEFINITE LOOPS
LECTURE 03-2: ITERATION WITH LOOPS

▸Some terminology:
• "Count up to 6." and "Count up to the input value." are examples of

definite loops.
• "Get an input until they've entered something valid." is an example of an

indefinite loop. The number of repetitions isn't known.

▸An example of the second kind of coding:
def get_float(prompt):  
 return float(input(prompt))  

def get_area():  
 a = get_float(“Circle area? “)  
 while a < 0.0:  
 a = get_float(“Not an area. Try again:”)  
 return a

DEFINITE VS. INDEFINITE LOOPS

Note that the loop body might not run at all!

LECTURE 03-2: ITERATION WITH LOOPS

▸Of course you can put a conditional statement within a loop's body.
 count = 0  
 while count < 6:  
 if count % 2 == 0:  
 print(str(count) + ” is even.”)  
 else:  
 print(str(count) + ” is odd.”)  
 count = count + 1  
 print(“Done.”)

▸Output of the script above:
0 is even.
1 is odd.  
2 is even.
3 is odd.
4 is even.
5 is odd.
Done.

NESTING CONTROL STATEMENTS WITHIN A LOOP
LECTURE 03-2: ITERATION WITH LOOPS

▸Nested loops are a common programming pattern:
a = 0  
while a < 6:  
 b = 0  
 while b < 8:  
 print(str(a)+str(b),end=“ ”)  
 b = b + 1  
 print()  
 a = a + 1  
print(“Done.”)

▸What does this do???
0 is even.
1 is odd.  
2 is even.
3 is odd.
4 is even.
5 is odd.
Done.

NESTING A LOOP WITHIN A LOOP
LECTURE 03-2: ITERATION WITH LOOPS

▸Nested loops are a common programming pattern:
a = 0  
while a < 6:  
 b = 0  
 while b < 8:  
 print(str(a)+str(b),end=“ ”)  
 b = b + 1  
 print()  
 a = a + 1  
print(“Done.”)

▸It outputs a sequence of digit pairs, separated by spaces:
00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
Done.

NESTING A LOOP WITHIN A LOOP
LECTURE 03-2: ITERATION WITH LOOPS

▸Nested loops are a common programming pattern:
a = 0  
while a < 6:  
 b = 0  
 while b < 8:  
 print(str(a)+str(b),end=“ ”)  
 b = b + 1  
 print()  
 a = a + 1  
print(“Done.”)

▸It outputs a sequence of digit pairs, separated by spaces:
00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
Done.

NESTING A LOOP WITHIN A LOOP

Inner loop, along with set-up/follow-up

LECTURE 03-2: ITERATION WITH LOOPS

▸Nested loops are a common programming pattern:
a = 0  
while a < 6:  
 b = 0  
 while b < 8:  
 print(str(a)+str(b),end=“ ”)  
 b = b + 1  
 print()  
 a = a + 1  
print(“Done.”)

▸It outputs a sequence of digit pairs, separated by spaces:
00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
Done.

NESTING A LOOP WITHIN A LOOP

Inner loop, along with set-up/follow-up

Outer loop, along with set-up/follow-up

LECTURE 03-2: ITERATION WITH LOOPS

▸Nested loops are a common programming pattern:
a = 0  
while a < 6:  
 b = 0  
 while b < 8:  
 print(str(a)+str(b),end=“ ”)  
 b = b + 1  
 print()  
 a = a + 1  
print(“Done.”)

▸It outputs a sequence of digit pairs, separated by spaces:
00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
Done.

NESTING A LOOP WITHIN A LOOP

Executed once for each value of a.

Inner loop, along with set-up/follow-up

Outer loop, along with set-up/follow-up

LECTURE 03-2: ITERATION WITH LOOPS

▸Here is another way of writing the counting loop.
 print(“Counting from 0 to 5:”)  
 count = 0  
 while True:  
 if count >= 6:  
 break  
 print(count)  
 count = count + 1  
 print(“Done.”)

▸ The code uses a break statement to jump down to the follow-up code.
▸If within several loops, it jumps to just after the innermost one.
▸This is an artificial example
▸Using break statements can sometimes make code more readable than

code that expresses all the "break out" or stopping conditions.

BREAKING OUT OF A LOOP
LECTURE 03-2: ITERATION WITH LOOPS

▸Using break to express other break-out conditions: 
 while count < 6:  
 if somethingElseMakesMeStop(...)  
 break  
 ...  
 count = count + 1  
 print(“Done.”)
▸ I worry that break can sometimes be missed by other coders.
▸ I usually prefer using explicit break-out conditions instead, like so: 
 done = False  
 while !done and count < 6:  
 if somethingElseMakesMeStop(...)  
 done = True  
 if not done:  
 ...  
 count = count + 1  
 print(“Done.”)

USING CONDITION VARIABLES TO GOVERN LOOPING
LECTURE 03-2: ITERATION WITH LOOPS

▸Using break to express other break-out conditions: 
 while count < 6:  
 if somethingElseMakesMeStop(...)  
 break  
 ...  
 count = count + 1  
 print(“Done.”)
▸ I worry that break can sometimes be missed by other coders.
▸ I usually prefer using explicit break-out conditions instead, like so: 
 done = False  
 while !done and count < 6:  
 if somethingElseMakesMeStop(...)  
 done = True  
 if not done:  
 ...  
 count = count + 1  
 print(“Done.”)

USING CONDITION VARIABLES TO GOVERN LOOPING

PLEASE use break sparingly, and with taste.

LECTURE 03-2: ITERATION WITH LOOPS

▸ This procedure uses return to exit its loop and the procedure: 
def countUpTo(n)  
 count = 1  
 while True:  
 if count > n:  
 return  
 print(count)  
 count = count + 1  

▸ The return statement breaks out of the loop and returns back to the

place where countUpTo was called. 

USING RETURN WITHIN A LOOP
LECTURE 03-2: ITERATION WITH LOOPS

SUMMARY
▸The while loop statement expresses iterative code.

➡ Allows you to perform a series of actions until a condition holds.

➡ The negation of this terminating condition is the loop's condition.

▸It's possible for the code to loop forever. This is an infinite loop.

▸Counting loops are common examples of definite loops.

▸Loops that iterate an undetermined number of times are indefinite.

LECTURE 03-2: ITERATION WITH LOOPS

SUMMARY (CONT'D)
▸Loop bodies can contain other control statements:

• For example, you can have if statements or other while statements.

• If another loop statement is inside, then it is a nested loop.

• If a break statement, we can jump out of the loop mid-body.

• If a return statement, we exit the loop and the function/procedure.

LECTURE 03-2: ITERATION WITH LOOPS

