PYTHON PROCEDURES;
PASSING FUNCTIONS TO FUNCTIONS

LECTURE 03-2

PROCEDURES

FUNCTION OBJECTS AS PARAMETERS
PROJECT 1

JIM FIX, REED COLLEGE CSCI 121

PROGRAMMER-DEFINED PROCEDURES

Python has the same de £ syntax for defining procedures
This is my term for a "function that does not return a value."
Instead, it does some stuff, performs some actions.

For example
def printBoxTop(size):
dashes = “-" * size

print (“+” + dashes + “+")

def printBox(width):
printBoxTop (width)
print(“|” + (“ “*width) + “|")
printBoxTop (width)

Below is its use. It's as if we've invented a printBox statement.

>>> printBox(4)
+———-—+

+———-—+

pD

SYNTAX: PROCEDURE DEFINITION

Below gives a template for procedure definitions:
def procedure-name (parameter-list) :
lines of statements that compute using the parameters

return

The last line is often a return statement, but it isn't needed.

There can also be return statements within the code.
These lead Python to exit the procedure as soon as they are reached.
Control returns back to where the procedure was called, continues there.

LECTURE 03-2: PROCEDURES

EXAMPLE SCRIPT WITH PROCEDURES

def printBoxTop(size):
dashes = “-“ * gize
print (“+” + dashes + “+")

def greetTheUser (name):
print(“Hi, “ + name + ”. Nice to meet ya!”)

def printBox(w):
printBoxTop (w)
print(“|” + (* “ * w) + “|")
printBoxTop (w)

user = input(“What’s your name? *)

greetTheUser (user)

print (“I’'d like to make you a box.”)

width = int(input(“How wide of a box would you like? *“))
printBox (width)

print (“Here is one that is twice as wide:"”)

printBox (width * 2)

PROCEDURES RETURN THE NONE VALUE

All three of these procedures do the exact same thing:

def greetThenReturn versionl (name):
print("Hi, " + name + ".")

def greetThenReturn version2 (name):
print("Hi, " + name + ".")
return

def greetThenReturn version3 (name):
print("Hi, " + name + ".")
return None

The first implicitly returns None. The first explictly returns but implictly
returns None. The third explicitly returns the None value.

LECTURE 03-2: PROCEDURES

NONE IS WEIRDLY HANDLED BY THE PYTHON INTERPRETER

»Here is some fun with None, and with procedures (that return None):

>>> print("hello")

hello

>>> print (None)

None

>>> "hello"

'hello’

>>> None

>>> 3+4

7

>>> print(print("hello"))
hello

None

>>> greetThenReturn("Jim")
Hello, Jim.

>>> print (greetThenReturn("Jim"))
Hello, Jim.

None

FUNCTIONS VS. PROCEDURES

"Function”:
Afunction gets passed some parameters, executes, and then returns a result.
Afunction is used within an expression.

"Procedure”:
A procedure is something that (typically) performs some action/work but
does not return a value.
A procedure is used as a statement of a line of code.
When a procedure's work is done, Python continues executing after the line
where it was called. (Control “jumps"” then returns.)

FUNCTIONS VS. PROCEDURES (CONT'D)

In Python, procedures are really just functions.
Python doesn't distinguish procedures from functions.
This is just my personal dichotomy, from older languages (Pascal, C).

Functions can perform actions (print, get input) too, before they return.

PASSING FUNCTIONS T0
FUNCTIONS

LECTURE 03-2
INTRO TO HIGHER ORDER FUNCTIONS

JIM FIX, REED COLLEGE CSCI 121

LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

FUNCTION OBJECTS
We've seen some evidence that Python treats functions like data

>>> def square(x):
return x * Xx

>>> square
<function square at 0x104cbb7e0>
>>> type(square)
<class ‘function’'>
>>> def abs(x):
if x < O:
return -Xx
else
return x
>>> abs
<function abs at 0x104cbb880>
>>> type(abs)

<class ‘function'>
>>>

LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

FUNCTION VARIABLE ASSIGNMENT

You can assign (and reassign) variables to functions

>>> f = square

>>> g = abs

>>> f

<function square at 0x104cbb7e0>
>>> g

<function abs at 0x104cbb880>
>>> f£(-3)

9

>>> g(-3)

3

>>> g = §£

>>> g

<function square at 0x104cbb7e0>
>>> g(-3)

9

>>>

LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

FUNCTION VARIABLES IN A SCRIPT

This can be quite powerful. Here is a script that uses one:

def square(x): return x * x
def cube(x): return x ** 3

print (“Which function would you like to apply?*)
which = input(“Enter ‘square’ or ‘cube’: ")
if which == “square”:
f = square
else:
f = cube

int (input (“Enter the function’s input: "))

i
Il

y = £(x)
print (which + “(” + str(x) + “) 1is “ + str(y))

THE HIGHER-ORDER FUNCTION FEATURES OF PYTHON

Python treats function as data objects. This gives Python certain nifty features.

Generally:
Languages that have higher-order function features allow you to:

Assign variables to be function objects,

Pass functions/procedures as arguments to other functions/procedures.

LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

EXAMPLE: FINDING A MINIMUM VALUE

» Given: the polynomial p(x) = x*- 8x3 + 6x - 4
»Find: which integer from 3 to 10 yields the lowest value?

LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

EXAMPLE: FINDING A MINIMUM VALUE

» Given: the polynomial p(x) = x*- 8x3 + 6x - 4
»Find: which integer from 3 to 10 yields the lowest value?

Here is a script that computes that minimum:

def p(x):
return x**4 — 8*x**3 + 6*x — 4

min so far
where seen
i=4
while i <= 10:
if p(i) < min _so far:
min so far = p(1i)
where seen i
i=1i+1
print (where seen)

LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

A TEMPLATE FOR FINDING MINIMUMS

Note that there is a template for performing this algorithm. Can work for...
+...any function
+...any start value
+...any end value

some_function(3)
start

min_so far
where seen
i = start + 1
while i <= end:
if some function(i) < min_so_ far:
min_so far some_ function(i)
where seen i
i=1i+1
print (where seen)

LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

EXAMPLE: FINDING A MINIMUM VALUE

The code below generalizes on the range we check:

def p(x):
return x**4 — 8*x**3 + 6*x — 4

def argument for min p(start, end):
min so far = p(start)
where seen = start
i = start + 1
while i <= end:
if p(i) < min_so far:
min so far = p(1)
where _seen = i
i=1i+1
return where seen

print (argument for min p(3, 10))
print (argument for min p(-20, 5))
print (argument for min p(387, 501))

LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

EXAMPLE: FINDING A MINIMUM VALUE

The code below also generalizes on the function being checked:

def p(x):
return x**4 — 8*x**3 + 6*x — 4

def argument for min(some function, start, end):
min so far = some function(start)
where seen = start
i = start + 1
while i <= end:
if p(i) < min_so far:
min so far = some function(i)
where _seen = i
i=1i+1
return where seen

print (argument for min(p, 3, 10))
print (argument for min(p, -20, 5))
print (argument for min(p, 387, 501))

LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

EXAMPLE: USING IT FOR TWO DIFFERENT FUNCTIONS!

def

def

def

argument for min(some_ function,start,end):
min so far = some_ function(start)
where seen = start
i = start + 1
while i <= end:
if p(i) < min _so far:
min_so far = some_function(i)
where seen = i
i=1i+1
return where seen

p(x):
return x**4 — 8*x**3 + 6*x — 4

another (arg):
return 3*arg**5 — 100*arg**2 + 99

print (argument for min(p, 3, 10))
print (argument for min(another, 3, 10))

HIGHER ORDER FUNCTIONS

Python treats functions as objects.
This means we can hand functions to other functions.
Functions can be passed as parameters.

Functions that take functions as parameters are higher order functions.

LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

A HIGHER-ORDER PROCEDURE

Let's invent a procedure that reports a function's value

def report eval (name,f,x):
?22?2°?

Here is how I'd like it to work:

>>> report eval (“abs”,abs,-5)

The value of abs(-5) is 5.

>>> report eval(“abs”,abs,3)

The value of abs(3) is 3.

>>> report eval (“square”, square, -5)
The value of square(-5) is 25.

>>> report eval (“square”, square, 3)
The value of square(3) is 9.

LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

A HIGHER-ORDER PROCEDURE

This procedure reports a function's value:

def report eval(name, f, x):

evaluate f at x
y = £(x)

build the report string

it = name + “(” + str(x) + “)”

that = str(y)

s = “The value of “ + it + “ is “ + that + ”.”

output the report string
print(s)

Here is it in use:

>>> report eval(“abs”, abs, -5)

The value of abs(-5) is 5.

>>> report eval (“square”, square, 3)
The value of square(3) is 9.

LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

ANOTHER HIGHER-ORDER PROCEDURE

How about this procedure?

def natfun_ report(name, natfun, n):
2?2?27

Here is how I'd like it to work:

>>> sequence_report (“square”, square, 9)
n | square(n)
O

1

4

9

16

25

36

49

64

81

OO NNOULEWDNR

LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

A SEQUENCE REPORTER

Here is the code for it:

def natfun(name, natfun, n):

print(" n | " + name + "(n)")
print("-"*3 + "+" + "-"*(len(name)+5))
i=1
while i <= n:
print (" "+str(i)+" | “+str(natfun(i)))

i=1i+1

LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

ANOTHER HIGHER-ORDER PROCEDURE

Q: What does this procedure do?

A:?
def abcde(op,size):
i=1
while i <= size:
j =1

while j <= size:
value = op(1i,j)
print (str(value),end=‘\t"’)
j =3 +1

print ()

i=1+1

LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

A MULTIPLICATION TABLE

This is what it does:

>>> def multiply(x,y):
return x * y

>>> abcde(multiply,5)
1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

4 8 12 16 20

5 10 15 20 25

LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

A MULTIPLICATION TABLE

This is what it does:

>>> from operator import mul
>>> abcde(mul,5)

1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

4 8 12 16 20

5 10 15 20 25

LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

ANOTHER HIGHER-ORDER PROCEDURE

Q: What does this procedure do?
A: It produces a table for any two-parameter function op.

def table(op,size):

1 =1
while 1 <= size:
|

while j <= size:
value = op(1i,j)
print (str(value),end=‘\t"’)
j =3 +1

print ()

i=1+1

HIGHER-ORDER FUNCTION FEATURES

Python treats function as data objects. This gives Python certain nifty features.

Generally:
Languages that have higher-order function features allow you to:

Assign variables to be function objects, J

Pass functions/procedures as arguments to other functions/procedures. \/

HIGHER-ORDER FUNCTION FEATURES

Python treats function as data objects. This gives Python certain nifty features.

Generally:
Languages that have higher-order function features allow you to:

Assign variables to be function objects, \/

Pass functions/procedures as arguments to other functions/procedures. \/

Return functions back from other functions, and

Express functions succinctly and anonymously (using 1ambda).

HIGHER-ORDER FUNCTION FEATURES

Python treats function as data objects. This gives Python certain nifty features.

Generally:
Languages that have higher-order function features allow you to:

Assign variables to be function objects, \/

Pass functions/procedures as arguments to other functions/procedures. \/
— . N t B

[Return functions back from other functions, and

Express functions succinctly and anonymously (using 1ambda).
L — — — — — — -

We will talk about these features later.

PROJECT 1

AUTOMATING A DICE STRATEGY GAME

JIM FIX, REED COLLEGE CSCI 121

