
PYTHON PROCEDURES;
PASSING FUNCTIONS TO FUNCTIONS

LECTURE 03-2
PROCEDURES
FUNCTION OBJECTS AS PARAMETERS
PROJECT 1

JIM FIX, REED COLLEGE CSCI 121

▸Python has the same def syntax for defining procedures
➡ This is my term for a "function that does not return a value."
➡ Instead, it does some stuff, performs some actions.

▸For example
def printBoxTop(size):
 dashes = “-“ * size
 print(“+” + dashes + “+”)  
 
def printBox(width):
 printBoxTop(width)
 print(“|” + (“ “*width) + “|”)
 printBoxTop(width)  

▸Below is its use. It's as if we've invented a printBox statement.
>>> printBox(4)
+----+
| |
+----+
>>>  

PROGRAMMER-DEFINED PROCEDURES
LECTURE 03-2: PROCEDURES

Below gives a template for procedure definitions:
def procedure-name (parameter-list):
 lines of statements that compute using the parameters
 ...
 return

▸The last line is often a return statement, but it isn’t needed.
▸There can also be return statements within the code.

➡ These lead Python to exit the procedure as soon as they are reached.
➡ Control returns back to where the procedure was called, continues there.
 

SYNTAX: PROCEDURE DEFINITION
LECTURE 03-2: PROCEDURES

EXAMPLE SCRIPT WITH PROCEDURES
def printBoxTop(size):
 dashes = “-“ * size
 print(“+” + dashes + “+”)  

def greetTheUser(name):
 print(“Hi, “ + name + ”. Nice to meet ya!”)  

def printBox(w):
 printBoxTop(w)
 print(“|” + (“ “ * w) + “|”)
 printBoxTop(w)

user = input(“What’s your name? “)
greetTheUser(user)
print(“I’d like to make you a box.”)
width = int(input(“How wide of a box would you like? “))
printBox(width)
print(“Here is one that is twice as wide:”)
printBox(width * 2)

LECTURE 03-2: PROCEDURES

▸All three of these procedures do the exact same thing:
def greetThenReturn_version1(name):
 print("Hi, " + name + ".")

def greetThenReturn_version2(name):
 print("Hi, " + name + ".")
 return

def greetThenReturn_version3(name):
 print("Hi, " + name + ".")
 return None

 

▸The first implicitly returns None. The first explictly returns but implictly
returns None. The third explicitly returns the None value.

PROCEDURES RETURN THE NONE VALUE
LECTURE 03-2: PROCEDURES

▸Here is some fun with None, and with procedures (that return None):

>>> print("hello")
hello
>>> print(None)
None
>>> "hello"
'hello'
>>> None
>>> 3+4
7
>>> print(print("hello"))
hello
None
>>> greetThenReturn("Jim")
Hello, Jim.
>>> print(greetThenReturn("Jim"))
Hello, Jim.
None

NONE IS WEIRDLY HANDLED BY THE PYTHON INTERPRETER
LECTURE 03-2: PROCEDURES

▸“Function”:
•A function gets passed some parameters, executes, and then returns a result.
•A function is used within an expression.

▸“Procedure”:
•A procedure is something that (typically) performs some action/work but

does not return a value.
•A procedure is used as a statement of a line of code.
•When a procedure’s work is done, Python continues executing after the line

where it was called. (Control “jumps” then returns.)

FUNCTIONS VS. PROCEDURES
LECTURE 03-2: PROCEDURES

▸In Python, procedures are really just functions.
•Python doesn’t distinguish procedures from functions.
• This is just my personal dichotomy, from older languages (Pascal, C).

➡ Functions can perform actions (print, get input) too, before they return.

FUNCTIONS VS. PROCEDURES (CONT’D)
LECTURE 03-2: PROCEDURES

PASSING FUNCTIONS TO
FUNCTIONS

LECTURE 03-2
INTRO TO HIGHER ORDER FUNCTIONS

JIM FIX, REED COLLEGE CSCI 121

We’ve seen some evidence that Python treats functions like data
>>> def square(x):
... return x * x
...
>>> square
<function square at 0x104cbb7e0>
>>> type(square)
<class ‘function'>
>>> def abs(x):
... if x < 0:
... return -x
... else
... return x
...
>>> abs
<function abs at 0x104cbb880>
>>> type(abs)
<class ‘function'>
>>>

FUNCTION OBJECTS
LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

You can assign (and reassign) variables to functions
>>> f = square
>>> g = abs
>>> f
<function square at 0x104cbb7e0>
>>> g
<function abs at 0x104cbb880>
>>> f(-3)
9
>>> g(-3)
3
>>> g = f
>>> g
<function square at 0x104cbb7e0>
>>> g(-3)
9
>>>

FUNCTION VARIABLE ASSIGNMENT
LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

This can be quite powerful. Here is a script that uses one:

def square(x): return x * x
def cube(x): return x ** 3

print(“Which function would you like to apply?“)
which = input(“Enter ‘square’ or ‘cube’: ”)
if which == “square”:
 f = square
else:
 f = cube

x = int(input(“Enter the function’s input: ”))

y = f(x)
print(which + “(“ + str(x) + “) is “ + str(y))

FUNCTION VARIABLES IN A SCRIPT
LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

Python treats function as data objects. This gives Python certain nifty features.

Generally:
Languages that have higher-order function features allow you to:

▸Assign variables to be function objects,

▸Pass functions/procedures as arguments to other functions/procedures. 

THE HIGHER-ORDER FUNCTION FEATURES OF PYTHON
LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

▸Given: the polynomial p(x) = x4 - 8x3 + 6x - 4
▸Find: which integer from 3 to 10 yields the lowest value?

EXAMPLE: FINDING A MINIMUM VALUE
LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

▸Given: the polynomial p(x) = x4 - 8x3 + 6x - 4
▸Find: which integer from 3 to 10 yields the lowest value?

Here is a script that computes that minimum:
def p(x):
 return x**4 – 8*x**3 + 6*x – 4

min_so_far = p(3)
where_seen = 3
i = 4
while i <= 10:
 if p(i) < min_so_far:
 min_so_far = p(i)
 where_seen = i
 i = i + 1
print(where_seen)

EXAMPLE: FINDING A MINIMUM VALUE
LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

Note that there is a template for performing this algorithm. Can work for...
✦ ...any function
✦ ...any start value
✦ ...any end value

min_so_far = some_function(3)
where_seen = start
i = start + 1
while i <= end:
 if some_function(i) < min_so_far:
 min_so_far = some_function(i)
 where_seen = i
 i = i + 1
print(where_seen)

A TEMPLATE FOR FINDING MINIMUMS
LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

The code below generalizes on the range we check:
def p(x):
 return x**4 – 8*x**3 + 6*x – 4

def argument_for_min_p(start, end):
 min_so_far = p(start)
 where_seen = start
 i = start + 1
 while i <= end:
 if p(i) < min_so_far:
 min_so_far = p(i)
 where_seen = i
 i = i + 1
 return where_seen

print(argument_for_min_p(3, 10))
print(argument_for_min_p(-20, 5))
print(argument_for_min_p(387, 501))

EXAMPLE: FINDING A MINIMUM VALUE
LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

The code below also generalizes on the function being checked:
def p(x):
 return x**4 – 8*x**3 + 6*x – 4

def argument_for_min(some_function, start, end):
 min_so_far = some_function(start)
 where_seen = start
 i = start + 1
 while i <= end:
 if p(i) < min_so_far:
 min_so_far = some_function(i)
 where_seen = i
 i = i + 1
 return where_seen

print(argument_for_min(p, 3, 10))
print(argument_for_min(p, -20, 5))
print(argument_for_min(p, 387, 501))

EXAMPLE: FINDING A MINIMUM VALUE
LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

def argument_for_min(some_function,start,end):
 min_so_far = some_function(start)
 where_seen = start
 i = start + 1
 while i <= end:
 if p(i) < min_so_far:
 min_so_far = some_function(i)
 where_seen = i
 i = i + 1
 return where_seen

def p(x):
 return x**4 – 8*x**3 + 6*x – 4

def another(arg):
 return 3*arg**5 – 100*arg**2 + 99

print(argument_for_min(p, 3, 10))
print(argument_for_min(another, 3, 10))

EXAMPLE: USING IT FOR TWO DIFFERENT FUNCTIONS!
LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

▸Python treats functions as objects.
• This means we can hand functions to other functions.

✦Functions can be passed as parameters.

▸Functions that take functions as parameters are higher order functions.

HIGHER ORDER FUNCTIONS
LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

Let's invent a procedure that reports a function's value
def report_eval(name,f,x):
 ????  

Here is how I'd like it to work:
>>> report_eval(“abs”,abs,-5)
The value of abs(-5) is 5.
>>> report_eval(“abs”,abs,3)
The value of abs(3) is 3.
>>> report_eval(“square”, square, -5)
The value of square(-5) is 25.
>>> report_eval(“square”, square, 3)
The value of square(3) is 9.

A HIGHER-ORDER PROCEDURE
LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

This procedure reports a function's value:
def report_eval(name, f, x):  
 
 # evaluate f at x  
 y = f(x)  
 
 # build the report string  
 it = name + “(“ + str(x) + “)”  
 that = str(y)  
 s = “The value of “ + it + “ is “ + that + ”.”  
 
 # output the report string  
 print(s)  

Here is it in use:
>>> report_eval(“abs”, abs, -5)
The value of abs(-5) is 5.
>>> report_eval(“square”, square, 3)
The value of square(3) is 9.

A HIGHER-ORDER PROCEDURE
LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

How about this procedure?
def natfun_report(name, natfun, n):
 ????  

Here is how I'd like it to work:
>>> sequence_report(“square”, square, 9)
 n | square(n)  
---+--------  
 1 | 1  
 2 | 4  
 3 | 9  
 4 | 16  
 5 | 25  
 6 | 36  
 7 | 49  
 8 | 64  
 9 | 81

ANOTHER HIGHER-ORDER PROCEDURE
LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

Here is the code for it:
def natfun(name, natfun, n):  
 print(" n | " + name + "(n)")  
 print("-"*3 + "+" + "-"*(len(name)+5))  
 i = 1  
 while i <= n:  
 print(" "+str(i)+" | “+str(natfun(i)))  
 i = i + 1  

A SEQUENCE REPORTER
LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

Q: What does this procedure do?

A: ?
def abcde(op,size):  
 i = 1  
 while i <= size:  
 j = 1  
 while j <= size:  
 value = op(i,j)  
 print(str(value),end=‘\t’)  
 j = j + 1  
 print()  
 i = i + 1  

ANOTHER HIGHER-ORDER PROCEDURE
LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

This is what it does:
>>> def multiply(x,y):
... return x * y
...
>>> abcde(multiply,5)  
1 2 3 4 5  
2 4 6 8 10  
3 6 9 12 15  
4 8 12 16 20  
5 10 15 20 25

A MULTIPLICATION TABLE
LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

This is what it does:
>>> from operator import mul
>>> abcde(mul,5)  
1 2 3 4 5  
2 4 6 8 10  
3 6 9 12 15  
4 8 12 16 20  
5 10 15 20 25

A MULTIPLICATION TABLE
LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

Q: What does this procedure do?

A: It produces a table for any two-parameter function op.
def table(op,size):  
 i = 1  
 while i <= size:  
 j = 1  
 while j <= size:  
 value = op(i,j)  
 print(str(value),end=‘\t’)  
 j = j + 1  
 print()  
 i = i + 1  

ANOTHER HIGHER-ORDER PROCEDURE
LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

Python treats function as data objects. This gives Python certain nifty features.

Generally:
Languages that have higher-order function features allow you to:

▸Assign variables to be function objects,

▸Pass functions/procedures as arguments to other functions/procedures. 

HIGHER-ORDER FUNCTION FEATURES

√
√

LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

Python treats function as data objects. This gives Python certain nifty features.

Generally:
Languages that have higher-order function features allow you to:

▸Assign variables to be function objects,

▸Pass functions/procedures as arguments to other functions/procedures.

▸Return functions back from other functions, and

▸Express functions succinctly and anonymously (using lambda).  

HIGHER-ORDER FUNCTION FEATURES

√
√

LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

Python treats function as data objects. This gives Python certain nifty features.

Generally:
Languages that have higher-order function features allow you to:

▸Assign variables to be function objects,

▸Pass functions/procedures as arguments to other functions/procedures.

▸Return functions back from other functions, and

▸Express functions succinctly and anonymously (using lambda).  

HIGHER-ORDER FUNCTION FEATURES

√
√

We will talk about these features later.

LECTURE 03-2: INTRO TO HIGHER-ORDER FUNCTIONS IN PYTHON

PROJECT 1

AUTOMATING A DICE STRATEGY GAME

JIM FIX, REED COLLEGE CSCI 121

