PROGRAMMER-DEFINED
FUNCTIONS

LECTURE 03-1

JIM FIX, REED COLLEGE CSCI 121

READING

Today's lecture material can be supplemented with:
Reading:
Ch. 3, 6 (functions)
CP 1.3-1.4 (user-defined functions); 1.5 ("control")

PROGRAMMER-DEFINED FUNCTIONS

You introduce new functions, and their code, with a de £ statement.
The code below defines a squaring function:

def square(x):
return x * x

Here it is in use:

>>> square(4)

>>> y =5
>>> square(y)

>>> square(y+2)

It takes a single value as its parameter. It returns back the square of that value.

LECTURE 03-1: FUNCTIONS

PROGRAMMER-DEFINED FUNCTIONS

» The code below computes the distance between two locations on a map:

def distanceFromTo(startX, start¥, endX, endY¥):
changeX = endX - startX
changeY = endY - startY
distanceSquared = changeX**2 + changeY¥**2
return distanceSquared ** 0.5

» Here it IS In use:

>>> distanceFromTo(1.5,2,4.5,6)
5.0

» It takes four values as parameters, and returns a value back.

LECTURE 03-1: FUNCTIONS

PROGRAMMER-DEFINED FUNCTIONS

» This calculates the gains on an amount due to a yearly rate of interest:

def gains(initial, yearly rate, years):
multiplier = 1.0 + yearly rate / 100.0
growth = multiplier ** years
amount = initial * growth
return amount - initial

» Here it IS In use:

>>> gains (100,5,2)

10.25

>>> print(gains(100,5,1))
5.0

>>> a0 = 100

>>> al = a0 + gains(a0,5,1)
>>> a2 = al + gains(al,5,1)
>>> a2

110.25

LECTURE 03-1: FUNCTIONS

INDENTATION

» Python reads the functions, looking for its indented lines of code

def square(x):
return x * Xx

def gains(initial, yearly rate, years):
multiplier = 1.0 + yearly rate / 100.0
growth = multiplier ** years
amount = initial * growth
return amount - initial

def distanceFromTo(startX, startY¥, endX, endY):
changeX = endX - startX
changeY = endY - startyY
distanceSquared = changeX**2 + changeY**2
return distanceSquared ** 0.5

each function's lines are indented by 4 spaces

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS

A function takes one or more parameter values.

It uses those values to compute its result.

It then returns the result back to the calling expression.
Functions can be thought of as "value factories” of a program:

x :gquare
: a0 -

gains

roe
ys -

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS

A function takes one or more parameter values.

It uses those values to compute its result.

It then returns the result back to the calling expression.
Functions can be thought of as "value factories” of a program:

S x:square
: a0 -

gains

roe
ys -

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS

A function takes one or more parameter values.

It uses those values to compute its result.

It then returns the result back to the calling expression.
Functions can be thought of as "value factories” of a program:

5 x:square ¢
: a0 -

gains

roe
ys -

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS

A function takes one or more parameter values.

It uses those values to compute its result.

It then returns the result back to the calling expression.
Functions can be thought of as "value factories” of a program:

5 x:square
: a0 -

gains

roe
ys -

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS

A function takes one or more parameter values.

It uses those values to compute its result.

It then returns the result back to the calling expression.
Functions can be thought of as "value factories” of a program:

5 x:square 5
: a0 -

gains

roe
ys -

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS

A function takes one or more parameter values.

It uses those values to compute its result.

It then returns the result back to the calling expression.
Functions can be thought of as "value factories” of a program:

x :gquare
: a0 -

gains

roe
ys -

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS

A function takes one or more parameter values.

It uses those values to compute its result.

It then returns the result back to the calling expression.
Functions can be thought of as "value factories” of a program:

x :gquare
‘ 100 a0 .

5

r : gains
2 e XA

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS

A function takes one or more parameter values.

It uses those values to compute its result.

It then returns the result back to the calling expression.
Functions can be thought of as "value factories” of a program:

x :gquare
‘ 100 a0 .

5

2 . gains 10.25
2 :

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS

A function takes one or more parameter values.

It uses those values to compute its result.

It then returns the result back to the calling expression.
Functions can be thought of as "value factories” of a program:

o xisquare o

.:'l1 0 d ““ a0 . .
P 9 r: galns
2 wel- YR

Parameters are fed in.

10.25

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS

A function takes one or more parameter values.

It uses those values to compute its result.

It then returns the result back to the calling expression.
Functions can be thought of as "value factories” of a program:

o xisquare o

.::7 ¥, d ““ a0 . .
P 9 r: galns
2 wel- YR

Parameters are fed in.

10.25

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS

A function takes one or more parameter values.

It uses those values to compute its result.

It then returns the result back to the calling expression.
Functions can be thought of as "value factories” of a program:

o xisquare .

.:':1 0 d “"_ a0 A +
P 9 r: galns
2} = 18

The expected number, type, and ordering
of parameters is the function’s interface.

10.25

FUNCTION CALLS AS EXPRESSIONS

Because functions compute and return a result, they are used within
expressions.
Can sometimes think of their definitions as being “cut and pasted" in.

For example, the expression
>>> square(3) + square(4)
can be viewed as the same as this expression
>>> (3 * 3) + (4 * 4)

SYNTAX: FUNCTION DEFINITION

Below gives a template for function definitions:
def function-name (parameter-list) :
lines of statements that compute using the parameters

return the-computed-value

The parameter variables are called its formal parameters.
They don't have specific values when the function is defined.
They represent the values that will get fed in with some call.
They vary, in a way, from call to call.

LECTURE 03-1: FUNCTIONS

SYNTAX: FUNCTION DEFINITION

Below gives a template for function definitions:
function-name (parameter-list) :
lines of statements that compute using the parameters

return the-computed-value

»Each line of the function’s body is indented with 4 spaces.
=This code is executed when the function is called.
»The last line is often a retuxrn statement.

FUNCTION CALLS

Some more terminology:

Below are two calls, or uses, of our square function:
sgrt (square(3) + square(4))

Each use of a function occurs at a call site in the code.
3 is the actual parameter for its call site. As is 4 for its site.

FUNCTION CALLS

Some more terminology:

Below are two calls, or uses, of our square function:
sgrt (square(3) + square(4))

Each use of a function occurs at a call site in the code.
3 is the actual parameter for its call site. As is 4 for its site.

SCRIPTING WITH FUNCTIONS

We typically define functions in scripts.
Lay out a series of useful function definitions at the top.

We call them in the main lines of the script...

... but we might perhaps also call them in other functions.

If the script has bugs you can load it interactively,
then test each function:

CO2MX1KLFHO4:examples jimfix$ python3 -i my script with f.py
>>> £(3,4,5)

LECTURE 03-1: FUNCTIONS

EXAMPLE SCRIPT WITH FUNCTIONS

from math import pi, sqrt

def getFloat (prompt):
return float (input (prompt))

def getArea():
a = getFloat(“Circle area? ")
while a < 0.0:
a = get float(“Not an area. Try again: ")
return a

def radiusOfCircle(A):
return sqrt(A / pi)

area = getArea()
radius = radiusOfCircle(area)
print ("That circle’s radius is “+str(radius)+”.”)

SCRIPTING WITH FUNCTIONS

Why should we define functions?
Makes code readable.
Creates reusable code components.
Makes debugging and testing easier.
Allows you to hide implementation.
With coding its good to take a "client/service" mentality:
Write functions that serve other parts of the code well.
The client code doesn’t need to know the internals of a function, just the
interface.

LECTURE 03-1: FUNCTIONS

THE FLOW OF CONTROL WITH FUNCTIONS

» Python lets us define our own functions.
» Below is an example with two: getArea and radiusOfCircle.

def getArea():
a = float(input("Circle area? “))
while a < 0.0:

a = float(input (“Not an area. Try again:”))
return a

def radiusOfCircle(someArea):
from math import pi, sqrt
return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print ("That circle’s radius is “+str(radius)+”."”)

LECTURE 03-1: FUNCTIONS

THE FLOW OF CONTROL WITH FUNCTIONS

» Python lets us define our own functions.
» Below is an example with two: getArea and radiusOfCircle.

LECTURE 03-1: FUNCTIONS

THE FLOW OF CONTROL WITH FUNCTIONS

» The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

LECTURE 03-1: FUNCTIONS

THE FLOW OF CONTROL WITH FUNCTIONS

» The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

LECTURE 03-1: FUNCTIONS

THE FLOW OF CONTROL WITH FUNCTIONS

» The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

LECTURE 03-1: FUNCTIONS

THE FLOW OF CONTROL WITH FUNCTIONS

» The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

LECTURE 03-1: FUNCTIONS

THE FLOW OF CONTROL WITH FUNCTIONS

» The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

LECTURE 03-1: FUNCTIONS

THE FLOW OF CONTROL WITH FUNCTIONS

» The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

LECTURE 03-1: FUNCTIONS

THE FLOW OF CONTROL WITH FUNCTIONS

» The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

LECTURE 03-1: FUNCTIONS

THE FLOW OF CONTROL WITH FUNCTIONS

» The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

LECTURE 03-1: FUNCTIONS

- area: 314.159
: radius: 10.0

LOCAL VS. GLOBAL FRAMES 9;:"3’?2‘:;9“’3'“9

» When a function gets called, a local frame gets crea;

local variables. global frame

LECTURE 03-1: FUNCTIONS

LOCAL VS. GLOBAL FRAMES Z:‘Q’;‘;f’ame

»When a function gets called, a local frame gets crea-

local variables. global frame

LECTURE 03-1: FUNCTIONS

LOCAL VS. GLOBAL FRAMES z:‘a':;f’ame

»When a function gets called, a local frame gets crea-

local variables. global frame

LECTURE 03-1: FUNCTIONS

LOCAL VS. GLOBAL FRAMES z:‘a':;f’ame

» When a function gets called, a local frame gets crea returning 316,159

local variables. global frame

LECTURE 03-1: FUNCTIONS

LOCAL VS. GLOBAL FRAMES

»When a function gets called, a local frame gets created for the function's
local variables. global frame

LECTURE 03-1: FUNCTIONS radiusOfCircle frame

LUCAL VS GLUBAL FRAMES EsomeArea: 314.159

» When a function gets called, a local frame gets crea

local variables. global frame

LECTURE 03-1: FUNCTIONS radiusOfCircle frame
- someArea: 314.159

LOCAL VS. GLOBAL FRAMES i 3141592653609793

isqrt: <function that computes sqrt>

» When a function gets called, a local frame gets crea

local variables. global frame

LECTURE 03-1: FUNCTIONS radiusOfCircle frame
- someArea: 314.159

LOCAL VS. GLOBAL FRAMES i 141592653609793

isqrt: <function that computes sqrt>

» When a function gets called, a local frame gets crea;retuming 0.9999995776679763

local variables. global frame

LECTURE 03-1: FUNCTIONS

LOCAL VS. GLOBAL FRAMES

»When a function gets called, a local frame gets created for the function's
local variables. global frame

s radius: 0.9999995776679783

LECTURE 03-1: FUNCTIONS

LOCAL VS. GLOBAL FRAMES

»When a function gets called, a local frame gets created for the function's
local variables. global frame

: radius: 0.9999995776679783

LECTURE 03-1: FUNCTIONS

IMPORT AND DEF CREATE FRAME ENTRIES

» Both de f and import introduce names too.
» These get placed in the frame of the block being executed.

LECTURE 03-1: FUNCTIONS

REDO: DEF EXECUTION

»When a block has a de £, a function object gets created.
» The new name's association is added to the frame global frame

LECTURE 03-1: FUNCTIONS

REDO: DEF EXECUTION

»When a block has a def, a function object gets created.
» The new name's association is added to the frame. global frame

getArea <function that requests> :
: radiusOfCircle: <function that sqrts> :

LECTURE 03-1: FUNCTIONS

REDO: DEF EXECUTION

»When a block has a def, a function object gets created.
» The new name's association is added to the frame. global frame

getArea <function that requests> :
: radiusOfCircle: <function that sqrts> :
area: 314.159 ;

LECTURE 03-1: FUNCTIONS

REDO: DEF EXECUTION

»When a block has a def, a function object gets created.
» The new name's association is added to the frame. global frame

getArea <function that requests> :
: radiusOfCircle: <function that sqrts> :
area: 314.159 ;
radius: 0.9999995776679783

FUNCTION CALLING MECHANISM

Functions are passed the values of their arguments.
Function have their own variables, managed by their local frame.
The frame is initialized with a call:
The formal parameters are set to the argument values.
Assignment statements can introduce new local variables in the frame.
(So do nested de £ and import statements.)
Functions return avalue back to the calling statement.
Upon return, the function's local frame goes away.

A local frame's lifetime is the time between its function's call and return.

LECTURE 03-1: FUNCTIONS

FUNCTION CALLING MECHANISM (CONT'D)

» Each function call leads to creation of a new frame.
* Frames due to calls stack up.
=This happens when the script calls a function...
=...and that function calls a function. Etc.

We'll examine this more later after you've had some practice writing them.

MORE EXAMPLES: ABSOLUTE VALUE USES IF

Python allows us to reason about values and act on them conditionally.
For example, consider this function:

def absoluteValueOf (x):
if x < O:
return -x
else:
return x

When fed a negative value, it returns the value with its sign flipped.
|.e. the positive value with the same magnitude. -5.5 ~>5.5
Otherwise, if positive or 0 . 0, it just returns that value.

LECTURE 03-1: FUNCTIONS

MORE EXAMPLES: PARITY FUNCTION USES IF

» Here is a function that returns the parity of a number as a string:

def getTheParityOf(n):
ifn% 2 == 0:
return “even”
else:
return “odd”

LECTURE 03-1: FUNCTIONS

MORE EXAMPLES: MIXING TYPES WITH WHAT'S RETURNED

» The function below determines whether an integer rat ing is from 1 to 10.
» It returns either the integer or a string:

def assessRating(rating):
if (rating > 0) and (rating <= 10):
return rating
else:
return “not a rating”

»Below is it in use:

>>> assessRating(3)

3
>>> assessRating(1l1l)
"not a rating"

LECTURE 03-1: FUNCTIONS

MISSING CASES?

» What happens if you (accidentally) forget a case?

def example(value):
if value > O:
return "positive”
elif value < O:
return "negative"”

»What happens in the missing case?

>>> example(3)
'positive’

>>> example(-4)
'negative’

>>> example(0)
2222

LECTURE 03-1: FUNCTIONS

MISSING CASES

» What happens if you (accidentally) forget a case:

def example(value):
if value > O:
return "positive”
elif value < O:
return "negative"”

»What happens in the missing case?

>>> print(example(3))
positive

>>> print (example(4))
negative

>>> print (example(0))
None

LECTURE 03-1: FUNCTIONS

MISSING CASES

» What happens if you (accidentally) forget a case:

def example(value):
if value > O:
return "positive”
elif value < O:
return "negative"”

»What happens in the missing case?

>>> print (repr(example(3)))
'positive’

>>> print (repr (example(4)))
'negative’

>>> print (repr (example(0)))
'None'

MISSING CASES

What happens if you (accidentally) forget a case:

def example(value):
if value > O:
return "positive”
elif value < O:
return "negative"”

What happens in the missing case?

>>> print (example(3))
positive

>>> print (example(4))
negative

>>> print (example(0))
None

There is a special Python value None that is implicitly returned.

Confusingly, the interpreter does not display the None value.

MISSING CASES

What happens if you (accidentally) forget a case:

def example(value):
if value > O:
return "positive”
elif value < O:
return "negative"”

What happens in the missing case?

>>> print (example(3))
positive

>>> print (example(4))
negative

>>> print (example(0))
None

There is a special Python value None that is implicitly returned.

Make sure in your functions you've an explicit return for every case!

PROGRAMMER-DEFINED PROCEDURES

Python has the same de £ syntax for defining procedures
This is my term for a "function that does not return a value."
Instead, it does some stuff, performs some actions.

For example
def printBoxTop(size):
dashes = “-" * size

print (“+” + dashes + “+")

def printBox(width):
printBoxTop (width)
print(“|” + (“ “*width) + “|")
printBoxTop (width)

Below is its use. It's as if we've invented a printBox statement.

>>> printBox(4)
+———-—+

+———-—+

pD

LECTURE 03-1: FUNCTIONS

EXAMPLE SCRIPT WITH PROCEDURES

def printBoxTop(size):
dashes = “-“ * gize
print (“+” + dashes + “+")

def greetTheUser (name):
print(“Hi, “ + name + ”. Nice to meet ya!”)

def printBox(w):
printBoxTop (w)
print(“|” + (* “ * w) + “|")
printBoxTop (w)

user = input(“What’s your name? *)

greetTheUser (user)

print (“I’'d like to make you a box.”)

width = int(input(“How wide of a box would you like? *“))
printBox (width)

print (“Here is one that is twice as wide:”)

printBox (width * 2)

PROCEDURES RETURN THE NONE VALUE

All three of these procedures do the exact same thing:

def greetThenReturn versionl (name):
print("Hi, " + name + ".")

def greetThenReturn version2 (name):
print("Hi, " + name + ".")
return

def greetThenReturn version3 (name):
print("Hi, " + name + ".")
return None

The first implicitly returns None. The first explictly returns but implictly
returns None. The third explicitly returns the None value.

LECTURE 03-1: FUNCTIONS

NONE IS WEIRDLY HANDLED BY THE PYTHON INTERPRETER

»Here is some fun with None, and with procedures (that return None):

>>> print("hello")

hello

>>> print (None)

None

>>> "hello"

'hello’

>>> None

>>> 3+4

7

>>> print(print("hello"))
hello

None

>>> greetThenReturnNone("Jim")
Hello, Jim.

>>> print (greetThenReturnNone("Jim"))
Hello, Jim.

None

FUNCTIONS VS. PROCEDURES

In Python, procedures are really just functions.
Python doesn't distinguish procedures from functions.
This is just my personal dichotomy, from older languages (Pascal, C).
"Function”:
Afunction gets passed some parameters, executes, and then returns a result.
Afunction is used within an expression.
"Procedure”:
A procedure is something that (typically) performs some action/work but does
not return a value.
A procedure is used as a statement.
When a procedure’s work is done, Python continues executing after the line
where it was called. (Control “jumps"” then returns.)

SUMMARY

Afunction’s code consists of an indented body of statements.

These statements are ones like the top-level ones used in scripts.
The function's lines of code compute using the parameter variables.
The last line executed is a return statement.

It computes a value that gets "handed" back or returned.
Afunction can be called several times within a program's code.
With each call, different values are passed to the function.

Procedures are like functions, defined using de £.

They perform some work but don't return a value.

