
PROGRAMMER-DEFINED
FUNCTIONS

LECTURE 03-1

JIM FIX, REED COLLEGE CSCI 121

READING
▸Today's lecture material can be supplemented with:

•Reading:

✦Ch. 3, 6 (functions)

✦CP 1.3-1.4 (user-defined functions); 1.5 ("control")

LECTURE 03-1: FUNCTIONS

▸You introduce new functions, and their code, with a def statement.
▸ The code below defines a squaring function:

def square(x):
 return x * x

▸Here it is in use:
>>> square(4)
16
>>> y = 5
>>> square(y)
25
>>> square(y+2)
49

▸ It takes a single value as its parameter. It returns back the square of that value.

PROGRAMMER-DEFINED FUNCTIONS
LECTURE 03-1: FUNCTIONS

▸ The code below computes the distance between two locations on a map:
def distanceFromTo(startX, startY, endX, endY):
 changeX = endX - startX  
 changeY = endY - startY
 distanceSquared = changeX**2 + changeY**2
 return distanceSquared ** 0.5

▸Here it is in use:
>>> distanceFromTo(1.5,2,4.5,6)
5.0

▸ It takes four values as parameters, and returns a value back.

PROGRAMMER-DEFINED FUNCTIONS
LECTURE 03-1: FUNCTIONS

▸ This calculates the gains on an amount due to a yearly rate of interest:
def gains(initial, yearly_rate, years):
 multiplier = 1.0 + yearly_rate / 100.0
 growth = multiplier ** years
 amount = initial * growth
 return amount - initial

▸Here it is in use:
>>> gains(100,5,2)
10.25
>>> print(gains(100,5,1))
5.0
>>> a0 = 100
>>> a1 = a0 + gains(a0,5,1)
>>> a2 = a1 + gains(a1,5,1)
>>> a2
110.25  

PROGRAMMER-DEFINED FUNCTIONS
LECTURE 03-1: FUNCTIONS

▸Python reads the functions, looking for its indented lines of code

def square(x):
 return x * x

def gains(initial, yearly_rate, years):
 multiplier = 1.0 + yearly_rate / 100.0
 growth = multiplier ** years
 amount = initial * growth
 return amount - initial  
 
def distanceFromTo(startX, startY, endX, endY):
 changeX = endX - startX  
 changeY = endY - startY
 distanceSquared = changeX**2 + changeY**2
 return distanceSquared ** 0.5

 

INDENTATION

each function's lines are indented by 4 spaces

LECTURE 03-1: FUNCTIONS

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS
▸A function takes one or more parameter values.
▸ It uses those values to compute its result.
▸ It then returns the result back to the calling expression.
▸Functions can be thought of as “value factories” of a program:

squarex

gainsr
a0

ys

LECTURE 03-1: FUNCTIONS

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS
▸A function takes one or more parameter values.
▸ It uses those values to compute its result.
▸ It then returns the result back to the calling expression.
▸Functions can be thought of as “value factories” of a program:

squarex

gainsr
a0

ys

33

LECTURE 03-1: FUNCTIONS

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS
▸A function takes one or more parameter values.
▸ It uses those values to compute its result.
▸ It then returns the result back to the calling expression.
▸Functions can be thought of as “value factories” of a program:

squarex

gainsr
a0

ys

33 9

LECTURE 03-1: FUNCTIONS

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS
▸A function takes one or more parameter values.
▸ It uses those values to compute its result.
▸ It then returns the result back to the calling expression.
▸Functions can be thought of as “value factories” of a program:

squarex

gainsr
a0

ys

35

LECTURE 03-1: FUNCTIONS

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS
▸A function takes one or more parameter values.
▸ It uses those values to compute its result.
▸ It then returns the result back to the calling expression.
▸Functions can be thought of as “value factories” of a program:

squarex

gainsr
a0

ys

35 25

LECTURE 03-1: FUNCTIONS

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS
▸A function takes one or more parameter values.
▸ It uses those values to compute its result.
▸ It then returns the result back to the calling expression.
▸Functions can be thought of as “value factories” of a program:

squarex

gainsr
a0

ys

LECTURE 03-1: FUNCTIONS

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS
▸A function takes one or more parameter values.
▸ It uses those values to compute its result.
▸ It then returns the result back to the calling expression.
▸Functions can be thought of as “value factories” of a program:

squarex

gainsr
a0

ys
5

100

2

LECTURE 03-1: FUNCTIONS

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS
▸A function takes one or more parameter values.
▸ It uses those values to compute its result.
▸ It then returns the result back to the calling expression.
▸Functions can be thought of as “value factories” of a program:

squarex

gainsr
a0

ys
5

100

2
10.25

LECTURE 03-1: FUNCTIONS

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS
▸A function takes one or more parameter values.
▸ It uses those values to compute its result.
▸ It then returns the result back to the calling expression.
▸Functions can be thought of as “value factories” of a program:

squarex

gainsr
a0

ys
5

100

2
10.25

3 9

Parameters are fed in.

LECTURE 03-1: FUNCTIONS

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS
▸A function takes one or more parameter values.
▸ It uses those values to compute its result.
▸ It then returns the result back to the calling expression.
▸Functions can be thought of as “value factories” of a program:

squarex

gainsr
a0

ys
5

100

2
10.25

3 9

Parameters are fed in.
A returned result comes out.

LECTURE 03-1: FUNCTIONS

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS
▸A function takes one or more parameter values.
▸ It uses those values to compute its result.
▸ It then returns the result back to the calling expression.
▸Functions can be thought of as “value factories” of a program:

squarex

gainsr
a0

ys
5

100

2
10.25

3 9

The expected number, type, and ordering  
of parameters is the function’s interface.

LECTURE 03-1: FUNCTIONS

▸Because functions compute and return a result, they are used within
expressions.
▸Can sometimes think of their definitions as being “cut and pasted" in.

For example, the expression
>>> square(3) + square(4)

▸ can be viewed as the same as this expression
>>> (3 * 3) + (4 * 4)
 

FUNCTION CALLS AS EXPRESSIONS
LECTURE 03-1: FUNCTIONS

Below gives a template for function definitions:
def function-name (parameter-list):
 lines of statements that compute using the parameters
 ...
 return the-computed-value

▸The parameter variables are called its formal parameters.
• They don’t have specific values when the function is defined.
▸They represent the values that will get fed in with some call.

➡They vary, in a way, from call to call.
 

SYNTAX: FUNCTION DEFINITION
LECTURE 03-1: FUNCTIONS

Below gives a template for function definitions:
def function-name (parameter-list):
 lines of statements that compute using the parameters
 ...
 return the-computed-value

▸Each line of the function’s body is indented with 4 spaces.
➡This code is executed when the function is called.

▸The last line is often a return statement.
 

SYNTAX: FUNCTION DEFINITION
LECTURE 03-1: FUNCTIONS

Some more terminology:

▸Below are two calls, or uses, of our square function:

sqrt(square(3) + square(4))  

➡Each use of a function occurs at a call site in the code.
➡3 is the actual parameter for its call site. As is 4 for its site.
 

FUNCTION CALLS
LECTURE 03-1: FUNCTIONS

FUNCTION CALLS
Some more terminology:

▸Below are two calls, or uses, of our square function:

sqrt(square(3) + square(4))  

➡Each use of a function occurs at a call site in the code.
➡3 is the actual parameter for its call site. As is 4 for its site.
 

LECTURE 03-1: FUNCTIONS

▸We typically define functions in scripts.

▸Lay out a series of useful function definitions at the top.

•We call them in the main lines of the script…

• ... but we might perhaps also call them in other functions.

▸If the script has bugs you can load it interactively,
then test each function:
C02MX1KLFH04:examples jimfix$ python3 -i my_script_with_f.py
>>> f(3,4,5)  
6789
 

SCRIPTING WITH FUNCTIONS
LECTURE 03-1: FUNCTIONS

EXAMPLE SCRIPT WITH FUNCTIONS
from math import pi, sqrt

def getFloat(prompt):
 return float(input(prompt))

def getArea():
 a = getFloat(“Circle area? “)
 while a < 0.0:
 a = get_float(“Not an area. Try again: ”)
 return a

def radiusOfCircle(A):
 return sqrt(A / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

LECTURE 03-1: FUNCTIONS

Why should we define functions?
•Makes code readable.
•Creates reusable code components.
•Makes debugging and testing easier.
•Allows you to hide implementation.
With coding its good to take a "client/service" mentality:
•Write functions that serve other parts of the code well.
• The client code doesn’t need to know the internals of a function, just the

interface.
 

SCRIPTING WITH FUNCTIONS
LECTURE 03-1: FUNCTIONS

LECTURE 03-1: FUNCTIONS

THE FLOW OF CONTROL WITH FUNCTIONS
▸Python lets us define our own functions.
▸Below is an example with two: getArea and radiusOfCircle.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

▸Python lets us define our own functions.
▸Below is an example with two: getArea and radiusOfCircle.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

THE FLOW OF CONTROL WITH FUNCTIONS
LECTURE 03-1: FUNCTIONS

▸ The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

THE FLOW OF CONTROL WITH FUNCTIONS
LECTURE 03-1: FUNCTIONS

▸ The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

THE FLOW OF CONTROL WITH FUNCTIONS
LECTURE 03-1: FUNCTIONS

▸ The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

THE FLOW OF CONTROL WITH FUNCTIONS
LECTURE 03-1: FUNCTIONS

▸ The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

THE FLOW OF CONTROL WITH FUNCTIONS
LECTURE 03-1: FUNCTIONS

▸ The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

THE FLOW OF CONTROL WITH FUNCTIONS
LECTURE 03-1: FUNCTIONS

▸ The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

THE FLOW OF CONTROL WITH FUNCTIONS
LECTURE 03-1: FUNCTIONS

▸ The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

THE FLOW OF CONTROL WITH FUNCTIONS
LECTURE 03-1: FUNCTIONS

▸ The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

THE FLOW OF CONTROL WITH FUNCTIONS
LECTURE 03-1: FUNCTIONS

▸When a function gets called, a local frame gets created for the function's
local variables.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

LOCAL VS. GLOBAL FRAMES

global frame

pi: 3.14159
area: 314.159
radius: 10.0

getArea frame

LECTURE 03-1: FUNCTIONS

▸When a function gets called, a local frame gets created for the function's
local variables.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

global frame

a: 314.159
getArea frameLOCAL VS. GLOBAL FRAMES

LECTURE 03-1: FUNCTIONS

▸When a function gets called, a local frame gets created for the function's
local variables.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

global frame

a: 314.159
getArea frameLOCAL VS. GLOBAL FRAMES

LECTURE 03-1: FUNCTIONS

▸When a function gets called, a local frame gets created for the function's
local variables.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

global frame

a: 314.159

returning 314.159

getArea frameLOCAL VS. GLOBAL FRAMES
LECTURE 03-1: FUNCTIONS

▸When a function gets called, a local frame gets created for the function's
local variables.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

area: 314.159
global frame

LOCAL VS. GLOBAL FRAMES
LECTURE 03-1: FUNCTIONS

▸When a function gets called, a local frame gets created for the function's
local variables.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

area: 314.159
global frame

LOCAL VS. GLOBAL FRAMES
LECTURE 03-1: FUNCTIONS

someArea: 314.159

radiusOfCircle frame

▸When a function gets called, a local frame gets created for the function's
local variables.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

area: 314.159
global frame

LOCAL VS. GLOBAL FRAMES
LECTURE 03-1: FUNCTIONS

someArea: 314.159
pi: 3.141592653589793
sqrt: <function that computes sqrt>

radiusOfCircle frame

▸When a function gets called, a local frame gets created for the function's
local variables.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

area: 314.159
global frame

LOCAL VS. GLOBAL FRAMES
LECTURE 03-1: FUNCTIONS

someArea: 314.159
pi: 3.141592653589793
sqrt: <function that computes sqrt>

returning 0.9999995776679783

radiusOfCircle frame

▸When a function gets called, a local frame gets created for the function's
local variables.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

area: 314.159
radius: 0.9999995776679783

global frame

LOCAL VS. GLOBAL FRAMES
LECTURE 03-1: FUNCTIONS

▸When a function gets called, a local frame gets created for the function's
local variables.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

area: 314.159
radius: 0.9999995776679783

global frame

LOCAL VS. GLOBAL FRAMES
LECTURE 03-1: FUNCTIONS

▸Both def and import introduce names too.
▸ These get placed in the frame of the block being executed.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

IMPORT AND DEF CREATE FRAME ENTRIES
LECTURE 03-1: FUNCTIONS

▸When a block has a def, a function object gets created.
▸ The new name's association is added to the frame.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

REDO: DEF EXECUTION

getArea: <function that requests>
global frame

LECTURE 03-1: FUNCTIONS

▸When a block has a def, a function object gets created.
▸ The new name's association is added to the frame.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

REDO: DEF EXECUTION

getArea: <function that requests>
radiusOfCircle: <function that sqrts>

global frame

LECTURE 03-1: FUNCTIONS

▸When a block has a def, a function object gets created.
▸ The new name's association is added to the frame.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

REDO: DEF EXECUTION

getArea: <function that requests>
radiusOfCircle: <function that sqrts>
area: 314.159

global frame

LECTURE 03-1: FUNCTIONS

▸When a block has a def, a function object gets created.
▸ The new name's association is added to the frame.

def getArea():
 a = float(input("Circle area? “))
 while a < 0.0:
 a = float(input(“Not an area. Try again:”))
 return a

def radiusOfCircle(someArea):
 from math import pi, sqrt
 return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print("That circle’s radius is “+str(radius)+”.”)

REDO: DEF EXECUTION

getArea: <function that requests>
radiusOfCircle: <function that sqrts>
area: 314.159
radius: 0.9999995776679783

global frame

LECTURE 03-1: FUNCTIONS

• Functions are passed the values of their arguments.
• Function have their own variables, managed by their local frame.
➡The frame is initialized with a call:
✦ The formal parameters are set to the actual argument values.
✦Assignment statements can introduce new local variables in the frame.
✦ (So do nested def and import statements.)

• Functions return a value back to the calling statement.
➡Upon return, the function's local frame goes away.

A local frame's lifetime is the time between its function's call and return.

FUNCTION CALLING MECHANISM
LECTURE 03-1: FUNCTIONS

• Each function call leads to creation of a new frame.
• Frames due to calls stack up.
➡This happens when the script calls a function...
➡...and that function calls a function. Etc.

We'll examine this more later after you've had some practice writing them.

FUNCTION CALLING MECHANISM (CONT'D)
LECTURE 03-1: FUNCTIONS

▸Python allows us to reason about values and act on them conditionally.
▸For example, consider this function:

def absoluteValueOf(x):  
 if x < 0:  
 return -x  
 else:  
 return x  

▸When fed a negative value, it returns the value with its sign flipped.
➡I.e. the positive value with the same magnitude. -5.5 ~> 5.5

▸Otherwise, if positive or 0.0, it just returns that value.
 

MORE EXAMPLES: ABSOLUTE VALUE USES IF
LECTURE 03-1: FUNCTIONS

▸Here is a function that returns the parity of a number as a string:

def getTheParityOf(n):  
 if n % 2 == 0:  
 return “even”  
 else:  
 return “odd”  
 
 
 
 
 
 
 
 
 

 

MORE EXAMPLES: PARITY FUNCTION USES IF
LECTURE 03-1: FUNCTIONS

▸ The function below determines whether an integer rating is from 1 to 10.
▸ It returns either the integer or a string:

def assessRating(rating):  
 if (rating > 0) and (rating <= 10):  
 return rating  
 else:  
 return “not a rating”
 

▸Below is it in use:
>>> assessRating(3)  
3
>>> assessRating(11)
"not a rating"

 

MORE EXAMPLES: MIXING TYPES WITH WHAT'S RETURNED
LECTURE 03-1: FUNCTIONS

▸What happens if you (accidentally) forget a case?
def example(value):
 if value > 0:
 return "positive"
 elif value < 0:
 return "negative"

▸What happens in the missing case?
>>> example(3)  
'positive'
>>> example(-4)
'negative'
>>> example(0)
????

MISSING CASES?
LECTURE 03-1: FUNCTIONS

▸What happens if you (accidentally) forget a case:
def example(value):
 if value > 0:
 return "positive"
 elif value < 0:
 return "negative"

▸What happens in the missing case?
>>> print(example(3))  
positive
>>> print(example(4))
negative
>>> print(example(0))
None

MISSING CASES
LECTURE 03-1: FUNCTIONS

▸What happens if you (accidentally) forget a case:
def example(value):
 if value > 0:
 return "positive"
 elif value < 0:
 return "negative"  

▸What happens in the missing case?
>>> print(repr(example(3)))  
'positive'
>>> print(repr(example(4)))
'negative'
>>> print(repr(example(0)))
'None'

MISSING CASES
LECTURE 03-1: FUNCTIONS

▸What happens if you (accidentally) forget a case:
def example(value):
 if value > 0:
 return "positive"
 elif value < 0:
 return "negative"  

▸What happens in the missing case?
>>> print(example(3))  
positive
>>> print(example(4))
negative
>>> print(example(0))
None

▸There is a special Python value None that is implicitly returned.

▸Confusingly, the interpreter does not display the None value.

MISSING CASES
LECTURE 03-1: FUNCTIONS

▸What happens if you (accidentally) forget a case:
def example(value):
 if value > 0:
 return "positive"
 elif value < 0:
 return "negative"  

▸What happens in the missing case?
>>> print(example(3))  
positive
>>> print(example(4))
negative
>>> print(example(0))
None

▸There is a special Python value None that is implicitly returned.

▸Make sure in your functions you've an explicit return for every case!

MISSING CASES
LECTURE 03-1: FUNCTIONS

▸Python has the same def syntax for defining procedures
➡ This is my term for a "function that does not return a value."
➡ Instead, it does some stuff, performs some actions.

▸For example
def printBoxTop(size):
 dashes = “-“ * size
 print(“+” + dashes + “+”)  
 
def printBox(width):
 printBoxTop(width)
 print(“|” + (“ “*width) + “|”)
 printBoxTop(width)  

▸Below is its use. It's as if we've invented a printBox statement.
>>> printBox(4)
+----+
| |
+----+
>>>  

PROGRAMMER-DEFINED PROCEDURES
LECTURE 03-1: FUNCTIONS

EXAMPLE SCRIPT WITH PROCEDURES
def printBoxTop(size):
 dashes = “-“ * size
 print(“+” + dashes + “+”)  

def greetTheUser(name):
 print(“Hi, “ + name + ”. Nice to meet ya!”)  

def printBox(w):
 printBoxTop(w)
 print(“|” + (“ “ * w) + “|”)
 printBoxTop(w)

user = input(“What’s your name? “)
greetTheUser(user)
print(“I’d like to make you a box.”)
width = int(input(“How wide of a box would you like? “))
printBox(width)
print(“Here is one that is twice as wide:”)
printBox(width * 2)

LECTURE 03-1: FUNCTIONS

▸All three of these procedures do the exact same thing:
def greetThenReturn_version1(name):
 print("Hi, " + name + ".")

def greetThenReturn_version2(name):
 print("Hi, " + name + ".")
 return

def greetThenReturn_version3(name):
 print("Hi, " + name + ".")
 return None

 

▸The first implicitly returns None. The first explictly returns but implictly
returns None. The third explicitly returns the None value.

PROCEDURES RETURN THE NONE VALUE
LECTURE 03-1: FUNCTIONS

▸Here is some fun with None, and with procedures (that return None):

>>> print("hello")
hello
>>> print(None)
None
>>> "hello"
'hello'
>>> None
>>> 3+4
7
>>> print(print("hello"))
hello
None
>>> greetThenReturnNone("Jim")
Hello, Jim.
>>> print(greetThenReturnNone("Jim"))
Hello, Jim.
None

NONE IS WEIRDLY HANDLED BY THE PYTHON INTERPRETER
LECTURE 03-1: FUNCTIONS

▸In Python, procedures are really just functions.
•Python doesn’t distinguish procedures from functions.
• This is just my personal dichotomy, from older languages (Pascal, C).
▸“Function”:
•A function gets passed some parameters, executes, and then returns a result.
•A function is used within an expression.
▸“Procedure”:
•A procedure is something that (typically) performs some action/work but does

not return a value.
•A procedure is used as a statement.
•When a procedure’s work is done, Python continues executing after the line

where it was called. (Control “jumps” then returns.)
 

FUNCTIONS VS. PROCEDURES
LECTURE 03-1: FUNCTIONS

▸A function’s code consists of an indented body of statements.
➡ These statements are ones like the top-level ones used in scripts.

▸The function's lines of code compute using the parameter variables.
▸The last line executed is a return statement.

➡It computes a value that gets "handed" back or returned.
▸A function can be called several times within a program’s code.

➡With each call, different values are passed to the function.
▸Procedures are like functions, defined using def.

➡They perform some work but don’t return a value.
 

SUMMARY
LECTURE 03-1: FUNCTIONS

