
MORE ABOUT
CONDITIONS AND LOOPS

LECTURE 02-2
NESTED LOOPS
BREAK; CONTINUE
SHORT-CIRCUITING
CHECKING CONDITION RESULTS

JIM FIX, REED COLLEGE CSCI 121

MONDAY
▸We’ll start lecture with a short quiz

➡ Will be a short programming puzzle whose code you will write on paper.

➡ It will be something like Homework 1:

✦basic Python scripting

✦input with prompts

✦ formatting output with print

✦ integer division (using // and %)

✦ string arithmetic

LECTURE 02-2: MORE ABOUT LOOPS AND CONDITIONS

▸Write code that computes the smallest digit of a positive integer
number = int(input(“Enter a positive integer: ”))
 
????  
????  
????

print(“Its minimum digit is “, end=“”)
print(minimum_digit, end=“”)
print(“.”)

GROUP EXERCISE
LECTURE 02-2: MORE ABOUT LOOPS AND CONDITIONS

▸Here is code that computes the minimum digit of a number
number = int(input(“Enter a positive integer: ”))  
minimum_digit = number % 10
to_check = number // 10  
while to_check > 0:  
 digit = to_check % 10
 if digit < minimum_digit:
 minimum_digit = digit  
 to_check = to_check // 10  
print(“Its minimum digit is “, end=“”)
print(minimum_digit, end=“”)
print(“.”)

ONE SOLUTION TO THE EXERCISE
LECTURE 02-2: MORE ABOUT LOOPS AND CONDITIONS

▸ The template below gives the syntax of a while loop statement:
lines of statements to execute first
while condition-expression:
 lines of statements to execute if the condition holds
 ...
lines of statements to executed when the condition no longer holds

ANATOMY OF A WHILE LOOP
LECTURE 02-2: MORE ABOUT LOOPS AND CONDITIONS

▸ The template below gives the syntax of a while loop statement:
lines of "set up" statements to execute first
while condition-expression:
 lines of "loop body" statements to execute if the condition holds
 ...
lines of "follow up" to execute when the condition no longer holds

▸Here is how Python executes this code:

1. Executes the set up code.

2. It evaluates the condition. If False it skips to Step 5.

3. Otherwise, if True, it evaluates the loop body's code.

4. It goes back to Step 2.

5. It executes the follow up, and subsequent, code.

EXECUTION OF A WHILE LOOP
LECTURE 02-2: MORE ABOUT LOOPS AND CONDITIONS

NOTES
▸Loop bodies can contain other control flow statements:

• For example, you can have if statements or other while statements.

• If another loop statement is inside, then it is a nested loop.

• If a break statement, we can jump out of the loop mid-body.

• If a continue statement, we can jump back to the condition mid-body.

LECTURE 02-2: MORE ABOUT LOOPS AND CONDITIONS

▸Of course you can put a conditional statement within a loop's body.
 count = 0  
 while count < 6:  
 if count % 2 == 0:  
 print(str(count) + ” is even.”)  
 else:  
 print(str(count) + ” is odd.”)  
 count = count + 1  
 print(“Done.”)

▸Output of the script above:
0 is even.
1 is odd.  
2 is even.
3 is odd.
4 is even.
5 is odd.
Done.

NESTING CONTROL STATEMENTS WITHIN A LOOP
LECTURE 02-2: MORE ABOUT LOOPS AND CONDITIONS

▸Nested loops are a common programming pattern:
a = 0  
while a < 6:  
 b = 0  
 while b < 8:  
 print(str(a)+str(b),end=“ ”)  
 b = b + 1  
 print()  
 a = a + 1  
print(“Done.”)

▸What does the code above do???

NESTING A LOOP WITHIN A LOOP
LECTURE 02-2: MORE ABOUT LOOPS AND CONDITIONS

▸Nested loops are a common programming pattern:
a = 0  
while a < 6:  
 b = 0  
 while b < 8:  
 print(str(a)+str(b),end=“ ”)  
 b = b + 1  
 print()  
 a = a + 1  
print(“Done.”)

▸It outputs a sequence of digit pairs, separated by spaces:
00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
Done.

NESTING A LOOP WITHIN A LOOP
LECTURE 02-2: MORE ABOUT LOOPS AND CONDITIONS

▸Nested loops are a common programming pattern:
a = 0  
while a < 6:  
 b = 0  
 while b < 8:  
 print(str(a)+str(b),end=“ ”)  
 b = b + 1  
 print()  
 a = a + 1  
print(“Done.”)

▸It outputs a sequence of digit pairs, separated by spaces:
00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
Done.

NESTING A LOOP WITHIN A LOOP

Inner loop, along with set-up/follow-up

LECTURE 02-2: MORE ABOUT LOOPS AND CONDITIONS

▸Nested loops are a common programming pattern:
a = 0  
while a < 6:  
 b = 0  
 while b < 8:  
 print(str(a)+str(b),end=“ ”)  
 b = b + 1  
 print()  
 a = a + 1  
print(“Done.”)

▸It outputs a sequence of digit pairs, separated by spaces:
00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
Done.

NESTING A LOOP WITHIN A LOOP

Inner loop, along with set-up/follow-up

Outer loop, along with set-up/follow-up

LECTURE 02-2: MORE ABOUT LOOPS AND CONDITIONS

▸Nested loops are a common programming pattern:
a = 0  
while a < 6:  
 b = 0  
 while b < 8:  
 print(str(a)+str(b),end=“ ”)  
 b = b + 1  
 print()  
 a = a + 1  
print(“Done.”)

▸It outputs a sequence of digit pairs, separated by spaces:
00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
Done.

NESTING A LOOP WITHIN A LOOP

Executed once for each value of a.

Inner loop, along with set-up/follow-up

Outer loop, along with set-up/follow-up

LECTURE 02-2: MORE ABOUT LOOPS AND CONDITIONS

▸Here is another way of writing the counting loop.
 print(“Counting from 0 to 5:”)  
 count = 0  
 while True:  
 if count >= 6:  
 break  
 print(count)  
 count = count + 1  
 print(“Done.”)

▸ The code uses a break statement to jump down to the follow-up code.
▸If within several loops, it jumps to just after the innermost one.
▸This is an artificial example
▸Using break statements can sometimes make code more readable than

code that expresses all the "break out" or stopping conditions.

BREAKING OUT OF A LOOP
LECTURE 02-2: MORE ABOUT LOOPS AND CONDITIONS

▸Using break to express other break-out conditions: 
 while count < 6:  
 if somethingElseMakesMeStop(...)  
 break  
 ...  
 count = count + 1  
 print(“Done.”)
▸ I worry that break can sometimes be missed by other coders.
▸ I sometimes prefer using explicit break-out conditions instead, like so: 
 done = False  
 while !done and count < 6:  
 if somethingElseMakesMeStop(...)  
 done = True  
 if not done:  
 ...  
 count = count + 1  
 print(“Done.”)

USING CONDITION VARIABLES TO GOVERN LOOPING
LECTURE 02-2: MORE ABOUT LOOPS AND CONDITIONS

▸Using break to express other break-out conditions: 
 while count < 6:  
 if somethingElseMakesMeStop(...)  
 break  
 ...  
 count = count + 1  
 print(“Done.”)
▸ I worry that break can sometimes be missed by other coders.
▸ I usually prefer using explicit break-out conditions instead, like so: 
 done = False  
 while !done and count < 6:  
 if somethingElseMakesMeStop(...)  
 done = True  
 if not done:  
 ...  
 count = count + 1  
 print(“Done.”)

USING CONDITION VARIABLES TO GOVERN LOOPING

PLEASE use break sparingly, and with taste.

LECTURE 02-2: MORE ABOUT LOOPS AND CONDITIONS

▸A complex example:
print(“Enter a series of payments, ending with ‘Done’”)  
sum = 0
 
while True:
 entry = input(“Enter a payment: “)
 if entry == “Done”:
 break  
 amount = int(entry)
 if amount < 0:
 print(“A negative payment? must be a typo.”)
 continue  
 print(“Thank you.”)
 sum += amount
 print(“The total so far is $” + str(sum) + ”.”)
 
print(“Okay. The total is $” + str(sum) + ”.”)

▸ The code uses a break statement to exit the loop.
▸ The code uses a continue statement to skip the rest of the body, loop again.

CONTINUING ON IN A LOOP WITHOUT COMPLETING THE BODY
LECTURE 02-2: MORE ABOUT LOOPS AND CONDITIONS

▸A complex example:
print(“Enter a series of payments, ending with ‘Done’”)  
sum = 0
 
while True:
 entry = input(“Enter a payment: “)
 if entry == “Done”:
 break  
 amount = int(entry)
 if amount < 0:
 print(“A negative payment? must be a typo.”)
 continue  
 print(“Thank you.”)
 sum += amount
 print(“The total so far is $” + str(sum) + ”.”)
 
print(“Okay. The total is $” + str(sum) + ”.”)

▸ The code uses a break statement to exit the loop.
▸ The code uses a continue statement to skip the rest of the body, loop again.

CONTINUING ON IN A LOOP WITHOUT COMPLETING THE BODY

PLEASE use continue sparingly, and with taste.

LECTURE 02-2: MORE ABOUT LOOPS AND CONDITIONS

▸Evaluation of and and or is short-circuited:
>>> x = 0  
>>> 45 / x  
ERROR!!!
>>> (x == 0) or ((45 / x) > 10)  
True  
>>> (x != 0) and ((45 / x) > 10)  
False

▸ Python doesn't bother with the right of or if the left is True.

▸ Python doesn't bother with the right of and if the left is False.

▸ This means the result of the and is executed kind of like this: 
 if x != 0:  
 result_of_and = (45 / x) > 10  
 else:  
 result_of_and = False

SHORT-CIRCUITED LOGIC CONNECTIVES
LECTURE 02-2: MORE ABOUT LOOPS AND CONDITIONS

▸Many beginning programmers are tempted to write this code:
all_correct = (passed == tested)
print("Your code passed " + str(passed))
print(" out of " + str(tested) + "tests.")
if all_correct == True:
 print("Your code passed all our tests!")
 if not on_time:
 print("But you submitted after the deadline.")
 

CHECKING BOOLEAN VALUES
LECTURE 02-2: MORE ABOUT LOOPS AND CONDITIONS

▸Many beginning programmers are tempted to write this code:
all_correct = (passed == tested)
print("Your code passed " + str(passed))
print(" out of " + str(tested) + "tests.")
if all_correct == True:
 print("Your code passed all our tests!")
 if not on_time:
 print("But you submitted after the deadline.")
 

CHECKING BOOLEAN VALUES IS REDUNDANT
LECTURE 02-2: MORE ABOUT LOOPS AND CONDITIONS

▸Write this code instead:
all_correct = (passed == tested)
print("Your code passed " + str(passed))
print(" out of " + str(tested) + "tests.")
if all_correct == True:
 print("Your code passed all our tests!")
 if not on_time:
 print("But you submitted after the deadline.")  

▸By using if, you are already checking whether the condition == True.

 

CHECKING BOOLEAN VALUES IS REDUNDANT
LECTURE 02-2: MORE ABOUT LOOPS AND CONDITIONS

▸Write this code instead:
all_correct = (passed == tested)
print("Your code passed " + str(passed))
print(" out of " + str(tested) + "tests.")
if all_correct:
 print("Your code passed all our tests!")
 if not on_time:
 print("But you submitted after the deadline.")  

▸By using if, you are already checking whether the condition == True.

 

CHECKING BOOLEAN VALUES IS REDUNDANT
LECTURE 02-2: MORE ABOUT LOOPS AND CONDITIONS

PROGRAMMER-DEFINED
FUNCTIONS

LECTURE 02-2 (CONT’D)

JIM FIX, REED COLLEGE CSCI 121

READING
▸Today's lecture material can be supplemented with:

•Reading:

✦Ch. 3, 6 (functions)

✦CP 1.3-1.4 (user-defined functions)

LECTURE 03-1: FUNCTIONS

▸You introduce new functions, and their code, with a def statement.
▸ The code below defines a squaring function:

def square(x):
 return x * x

▸Here it is in use:
>>> square(4)
16
>>> y = 5
>>> square(y)
25
>>> square(y+2)
49

▸ It takes a single value as its parameter. It returns back the square of that value.

PROGRAMMER-DEFINED FUNCTIONS
LECTURE 03-1: FUNCTIONS

▸ The code below computes the distance between two locations on a map:
def distanceFromTo(startX, startY, endX, endY):
 changeX = endX - startX  
 changeY = endY - startY
 distanceSquared = changeX**2 + changeY**2
 return distanceSquared ** 0.5

▸Here it is in use:
>>> distanceFromTo(1.5,2,4.5,6)
5.0

▸ It takes four values as parameters, and returns a value back.

PROGRAMMER-DEFINED FUNCTIONS
LECTURE 03-1: FUNCTIONS

▸ This calculates the gains on an amount due to a yearly rate of interest:
def gains(initial, yearly_rate, years):
 multiplier = 1.0 + yearly_rate / 100.0
 growth = multiplier ** years
 amount = initial * growth
 return amount - initial

▸Here it is in use:
>>> gains(100,5,2)
10.25
>>> print(gains(100,5,1))
5.0
>>> a0 = 100
>>> a1 = a0 + gains(a0,5,1)
>>> a2 = a1 + gains(a1,5,1)
>>> a2
110.25  

PROGRAMMER-DEFINED FUNCTIONS
LECTURE 03-1: FUNCTIONS

▸Python reads the functions, looking for its indented lines of code

def square(x):
 return x * x

def gains(initial, yearly_rate, years):
 multiplier = 1.0 + yearly_rate / 100.0
 growth = multiplier ** years
 amount = initial * growth
 return amount - initial  
 
def distanceFromTo(startX, startY, endX, endY):
 changeX = endX - startX  
 changeY = endY - startY
 distanceSquared = changeX**2 + changeY**2
 return distanceSquared ** 0.5

 

INDENTATION

each function's lines are indented by 4 spaces

LECTURE 03-1: FUNCTIONS

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS
▸A function takes one or more parameter values.
▸ It uses those values to compute its result.
▸ It then returns the result back to the calling expression.
▸Functions can be thought of as “value factories” of a program:

squarex

gainsr
a0

ys

LECTURE 03-1: FUNCTIONS

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS
▸A function takes one or more parameter values.
▸ It uses those values to compute its result.
▸ It then returns the result back to the calling expression.
▸Functions can be thought of as “value factories” of a program:

squarex

gainsr
a0

ys

33

LECTURE 03-1: FUNCTIONS

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS
▸A function takes one or more parameter values.
▸ It uses those values to compute its result.
▸ It then returns the result back to the calling expression.
▸Functions can be thought of as “value factories” of a program:

squarex

gainsr
a0

ys

33 9

LECTURE 03-1: FUNCTIONS

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS
▸A function takes one or more parameter values.
▸ It uses those values to compute its result.
▸ It then returns the result back to the calling expression.
▸Functions can be thought of as “value factories” of a program:

squarex

gainsr
a0

ys

35

LECTURE 03-1: FUNCTIONS

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS
▸A function takes one or more parameter values.
▸ It uses those values to compute its result.
▸ It then returns the result back to the calling expression.
▸Functions can be thought of as “value factories” of a program:

squarex

gainsr
a0

ys

35 25

LECTURE 03-1: FUNCTIONS

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS
▸A function takes one or more parameter values.
▸ It uses those values to compute its result.
▸ It then returns the result back to the calling expression.
▸Functions can be thought of as “value factories” of a program:

squarex

gainsr
a0

ys
5

100

2

LECTURE 03-1: FUNCTIONS

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS
▸A function takes one or more parameter values.
▸ It uses those values to compute its result.
▸ It then returns the result back to the calling expression.
▸Functions can be thought of as “value factories” of a program:

squarex

gainsr
a0

ys
5

100

2
10.25

LECTURE 03-1: FUNCTIONS

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS
▸A function takes one or more parameter values.
▸ It uses those values to compute its result.
▸ It then returns the result back to the calling expression.
▸Functions can be thought of as “value factories” of a program:

squarex

gainsr
a0

ys

LECTURE 03-1: FUNCTIONS

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS
▸A function takes one or more parameter values.
▸ It uses those values to compute its result.
▸ It then returns the result back to the calling expression.
▸Functions can be thought of as “value factories” of a program:

squarex

gainsr
a0

ys
5

100

2
10.25

3 9

Parameters are fed in.

LECTURE 03-1: FUNCTIONS

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS
▸A function takes one or more parameter values.
▸ It uses those values to compute its result.
▸ It then returns the result back to the calling expression.
▸Functions can be thought of as “value factories” of a program:

squarex

gainsr
a0

ys
5

100

2
10.25

3 9

Parameters are fed in.
A returned result comes out.

LECTURE 03-1: FUNCTIONS

FUNCTIONS COMPUTE VALUES FROM THEIR PARAMETERS
▸A function takes one or more parameter values.
▸ It uses those values to compute its result.
▸ It then returns the result back to the calling expression.
▸Functions can be thought of as “value factories” of a program:

squarex

gainsr
a0

ys
5

100

2
10.25

3 9

The expected number, type, and ordering  
of parameters is the function’s interface.

LECTURE 03-1: FUNCTIONS

▸Because functions compute and return a result, they are used within
expressions.
▸Can sometimes think of their definitions as being “cut and pasted" in.

For example, the expression
>>> square(3) + square(4)

▸ can be viewed as the same as this expression
>>> (3 * 3) + (4 * 4)
 

FUNCTION CALLS AS EXPRESSIONS
LECTURE 03-1: FUNCTIONS

Below gives a template for function definitions:
def function-name (parameter-list):
 lines of statements that compute using the parameters
 ...
 return the-computed-value

▸The parameter variables are called its formal parameters.
• They don’t have specific values when the function is defined.
▸They represent the values that will get fed in with some call.

➡They vary, in a way, from call to call.
 

SYNTAX: FUNCTION DEFINITION
LECTURE 03-1: FUNCTIONS

Below gives a template for function definitions:
def function-name (parameter-list):
 lines of statements that compute using the parameters
 ...
 return the-computed-value

▸Each line of the function’s body is indented with 4 spaces.
➡This code is executed when the function is called.

▸The last line is often a return statement.
 

SYNTAX: FUNCTION DEFINITION
LECTURE 03-1: FUNCTIONS

Some more terminology:

▸Below are two calls, or uses, of our square function:

sqrt(square(3) + square(4))  

➡Each use of a function occurs at a call site in the code.
➡3 is the actual parameter for its call site. As is 4 for its site.
 

FUNCTION CALLS
LECTURE 03-1: FUNCTIONS

