CONDITIONAL
EXECUTION

LECTURE 02-1

JIM FIX, REED COLLEGE CSCI 121

LECTURE 02-1: CONDITIONAL EXECUTION

COURSE WEB PAGE

» There is a course webpage at hitp://jimfix.github.io/csci121

» It has the syllabus and a schedule of topics covered.
* There I'll post readings, assignments, lecture materials.

LECTURE 02-1: CONDITIONAL EXECUTION

COURSE WEB PAGE

» There is a course webpage at hitp://fimtbegithubieleseil 2
* It has the syllabus and a schedule of topics covered.
* There I'll post readings, assignments, lecture materials.

3

For now and in the near future, it is at
http://xifmij.github.io/csci121

LECTURE 02-1: CONDITIONAL EXECUTION

COURSE WEB PAGE

» There is a course webpage at hitp://fimibegithubiel/eseil 2
* It has the syllabus and a schedule of topics covered.
* There I'll post readings, assignments, lecture materials.

3

Fornow-and-inthenearfutureitisat
hito-fixitmitaithub-ioleseil2]

The far future is here!!! Go to http://jimfix.github.io/csci121

LECTURE 02-1: CONDITIONAL EXECUTION

COURSE WEB PAGE

» There is a course webpage at hitp://fimtbegithubieleseil 2
* It has the syllabus and a schedule of topics covered.
* There I'll post readings, assignments, lecture materials.

3

For now and in the near future, it is at
http://xifmij.github.io/csci121

HOMEWORK? LAB? HOW ARE THINGS?

Don't forget to complete the Homeworlk 2 assignment:
due next Tuesday 9/16, before 9am

Any questions from lab? about Homework 2? about Homework 17

READING

This week's lecture material can be supplemented with:
Reading:
TP Chs 4.1-4.8 (conditionals)
CP 1.5 ("control")

LECTURE 02-1: CONDITIONAL EXECUTION

RECALL: STRAIGHT LINE PYTHON EXECUTION

»pi = 3.14159
area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

global frame

LECTURE 02-1: CONDITIONAL EXECUTION

RECALL: STRAIGHT LINE PYTHON EXECUTION

pi = 3.14159

area = float(input("Circle area? "))

radius = (area / pi) ** 0.5

print ("That circle’s radius is "+str(radius)+".")

=)

global frame

LECTURE 02-1: CONDITIONAL EXECUTION

RECALL: STRAIGHT LINE PYTHON EXECUTION

pi = 3.14159

area = float(input("Circle area? "))

radius = (area / pi) ** 0.5

print ("That circle’s radius is "+str(radius)+".")

=)

global frame

p
= area: 314.159
radius: 10.0

LECTURE 02-1: CONDITIONAL EXECUTION

RECALL: STRAIGHT LINE PYTHON EXECUTION

pi = 3.14159

area = float(input("Circle area? "))

radius = (area / pi) ** 0.5

print ("That circle’s radius is "+str(radius)+".")

=)

global frame

p
= area: 314.159
radius: 10.0

"FLOW OF CONTROL"

our animation of the calculation...

The interpreter goes through the code line-by-line, tracking where it's at with
an instruction pointer.
The movement of that pointer is called the program’s flow of control.

When write code with conditional statements and loops, we'll see program
flow that's not just top to bottom.
Lines might get repeatedly executed, or lines might get skipped.

"BRANCHING"

Here is an example of a conditional (or "if") statement:

pi = 3.14159

area = float(input("Circle area? "))
if area < 0.0:

print ("That’s not an area.")
else:

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

Depending on the value of area, either the first print or the second
print will execute.

The other one will get skipped.

"LOOPING”

Here is an example of a looping "while" statement:

pi = 3.14159
area = float(input("Circle area? "))
while area < 0.0:

area = float(input(”“Not an area. Try again:"))
radius = (area / pi) ** 0.5
print ("That circle’s radius is “+str(radius)+”.”)

Because of that whi 1 e statement, the re-prompting and re-input of an
area with that second input can be repeatedly executed.
Lines 3 and 4 are repeated until the user enters a good area value.

LECTURE 02-1: CONDITIONAL EXECUTION

CONDITION EXPRESSIONS COMPUTE A BOOL VALUE

>>> 345 < 10

False

>>> 345 == 300 + 50 - 5
True

>>> type(True)

<class 'bool'>

>>> type(False)

<class 'bool'>

>>> x = 57

>>> (x > 0) and (x <= 100)
True

>>> (x <= 0) or (x > 100)
False

>>> not (345 < 10)

True

>>> not ((x <= 0) or (x > 100))
True

LECTURE 02-1: CONDITIONAL EXECUTION

THE "IF-ELSE™ CONDITIONAL STATEMENT

» Python allows us to reason about values and act on them conditionally.
» For example, consider this script:

x = float(input ("Enter a value: "))
if x < O:

abs x = -x
else:

abs x = x
print ("The absolute value of it is " + str(abs x))

LECTURE 02-1: CONDITIONAL EXECUTION

THE "IF-ELSE™ CONDITIONAL STATEMENT

» Python allows us to reason about values and act on them conditionally.
» For example, consider this script:

x = float(input("Enter a value: "))
if x < O:
abs x = -x
else:
abs x = x
print ("The absolute value of it is " + str(abs_x))

»Below is itin use:
% python3 absolute.py

Enter a value: -5.5

The absolute value of it is 5.5

% python3 absolute.py

Enter a value: 105.77

The absolute value of it is 105.77
% python3 absolute.py

Enter a value: 0.0

The absolute value of it is 0.0

THE "IF-ELSE" CONDITIONAL STATEMENT

Python allows us to reason about values and act on them conditionally.
For example, consider this script:

x = float(input("Enter a value: "))
if x < O:

abs x = -x
else:

abs x = x

print ("The absolute value of it is " + str(abs_x))

When fed a negative value, it prints the value with its sign flipped.
|.e. the positive value with the same magnitude. -5.5 ~>5.5
Otherwise, if positive or 0 . 0, it just prints that value.

LECTURE 02-1: CONDITIONAL EXECUTION

SYNTAX: IF-ELSE STATEMENT

Below is a template for conditional statements:

if condition-expression :
lines of statements executed if the condition holds

else:
lines of statements executed if the condition

lines of code executed after, in either case

CONDITIONAL STATEMENT EXECUTION

Python allows us to reason about values and act on them conditionally.
For example, consider this script:

x = float(input("Enter a value: "))
if x < O:

abs x = -x
else:

abs x = x
print ("The absolute value of it is " + str(abs_x))

When the scriptis run, the i £ code gets executed as follows:
Python first checks the condition before the colon.
If the condition is True, it executes the first ret urn statement.
If the condition is False, it executes the second return statement.
This is the one sitting under the else line.

CONDITIONAL STATEMENT EXECUTION

Python allows us to reason about values and act on them conditionally.
For example, consider this script:

x = float(input("Enter a value: "))
if x < O:
abs x = -x
else:
abs x = x
print ("The absolute value of it is " + str(abs x))

You could maybe say that i f-else gives Python code “intelligence.”
It reasons about the value of x and behaves one way or the other.

The code is smart!

LECTURE 02-1: CONDITIONAL EXECUTION

SYNTAX: IF-ELSE STATEMENT

Below is a template for conditional statements:

if condition-expression :
. lines of statements executed if the condition holds

else:

. lines of statements executed if the condition

lines of code executed after, in either case

» Use indentation to indicate the "true" code block and the "false" code block.

CONDITIONAL STATEMENT EXECUTION

Python allows us to reason about values and act on them conditionally.
For example, consider this script:

x = float(input("Enter a value: "))
if x < O:
abs x = -x
else:
abs x = x
print ("The absolute value of it is " + str(abs x))

You could maybe say that i f-else gives Python code “intelligence.”
It reasons about the value of x and behaves one way or the other.

The code is smart!

CHECKING PARITY

Here is a script that acts differently, depending on the parity of a number.

n = int("Enter an integer: ")
if n § 2 == 0:

print (“even”)
else:

print (“odd”)

The equality test == is used to compare...
the left-hand expression’svaluen % 2
with the right-hand expression’s value 0.

It is used to check whether they are equal.

LECTURE 02-1: CONDITIONAL EXECUTION

CHECKING PARITY

» Here is a script that acts differently, depending on the parity of a number.

n = int("Enter an integer: ")
if n & 2 ==

print (“even”)
else:

print (“odd”)

»Below is it in use:

% python3 parity.py
Enter an integer: -10
odd

% python3 parity.py
Enter an integer: 0
even

COMPARISON OPERATIONS

The full range of comparisons you can make are:

equality

inequality

less than

greater than

>= greater than or equal
<= lessthan or equal

vV A

LECTURE 02-1: CONDITIONAL EXECUTION

EXPRESSING COMPLEX CONDITIONS

» The code below determines whether an integer rat ing is from 1 to 100:

rating = int(input("Enter a rating: "))
if (rating > 0) and (rating <= 100):
print ("Thanks for that rating!")
else:
print ("That is not a rating.")

EXPRESSING COMPLEX CONDITIONS: AND

The code below determines whether an integer rating is from 1 to 100:
rating = int(input("Enter a rating: "))
if (rating > 0) and (rating <= 100):
print ("Thanks for that rating!")

else:
print ("That is not a rating.")

This is using the logical connective and to check whether both conditions
hold. This is their logical conjunction.

EXPRESSING COMPLEX CONDITIONS: OR

The code below determines whether an integer rating is from 1 to 100:

rating = int(input("Enter a rating: ")
if (rating <= 0) or (rating > 100):
print ("That is not a rating.")
else:
print ("Thanks for that rating!")

This is using the logical connective and to check whether both conditions
hold. This is their logical conjunction.

There is also the connective ox for checking whether at least one condition
holds. It described logical disjunction.

EXPRESSING COMPLEX CONDITIONS: NOT

The code below determines whether an integer rating is from 1 to 100:

rating = int(input("Enter a rating: "))
if not ((rating <= 0) or (rating > 100)):
print ("Thanks for that rating!")
else:
print ("That is not a rating.")

This is using the logical connective and to check whether both conditions
hold. This is their logical conjunction.

There is also the connective ox for checking whether at least one condition
holds. It described logical disjunction.

There is also logical negation using not.

LECTURE 02-1: CONDITIONAL EXECUTION

LOGIC CONNECTIVES ARE BOOLEAN OPERATORS

» The logical connectives and, or, and not can be thought of as operations
that act on boolean values and return a boolean value:

>>> (7 > 3) and (2 < 4)
True

>>> (4 < 2) and False
False

>>> (2 > 3) or (not (7 < 10))
False

>>> True and False
False

>>> True or False

True

>>> not (True or False)
False

LECTURE 02-1: CONDITIONAL EXECUTION

SHORT-CIRCUITED LOGIC CONNECTIVES

» Evaluation of and and or is short-circuited:
>>> x =0
>>> 45 / x

ERROR! ! !

>>> (x == 0) or ((45 / x) > 10)
True

>>> (x != 0) and ((45 / x) > 10)
False

» Python doesn't bother with the right of ox if the left is True.
» Python doesn't bother with the right of and if the leftis False.

»This means, for example, that and is executed like this:
if x != 0:
return (45 / x) > 10

else:
return False

LECTURE 02-1: CONDITIONAL EXECUTION

SYNTAX: IF-ELSE STATEMENT

Below is a template for conditional statements:

if condition-expression :
. lines of statements executed if the condition holds

else:

. lines of statements executed if the condition

lines of code executed after, in either case

» Use indentation to indicate the "true" code block and the "false" code block.

LECTURE 02-1: CONDITIONAL EXECUTION

NESTING CONDITIONAL STATEMENTS

»The code below is like the award prize codein the autograder:

if on_time:

if all correct:

mesg = "Great work passing all the tests!\n"
mesg += "You've earned the prize points.”
else:
mesg = "To earn prize points, make sure all the tests pass."”

else:

if all correct:
mesg = "Great work making all the tests pass.\n"
mesg += "Sadly we can't offer you any prize points.\n"
mesg += "You submitted this after the deadline.”

else:
mesg

"Sorry! No prize points."

print (mesgqg)

LECTURE 02-1: CONDITIONAL EXECUTION

SYNTAX: |F STATEMENT

Below is a template for conditional statements with no "else" block:

if condition-expression :
. lines of statements executed only if the condition holds

lines of code executed after, in either case

» Use indentation to indicate the "true" code block.

LECTURE 02-1: CONDITIONAL EXECUTION

CONDITIONAL STATEMENT WITH NO ELSE

» The code below is like some code in the autograder:

all correct = (passed == tested)
print ("Your code passed " + str(passed))
print (" out of " + str(tested) + "tests.")
if all correct:

print ("Your code passed all our tests!")

if not on time:
print ("But you submitted after the deadline.")

LECTURE 02-1: CONDITIONAL EXECUTION

SYNTAX: CASCADING IF-ELIF-...-ELSE STATEMENT

Below is a template for conditional statements:
if condition1:

. execute if condition1 holds

elif condition2:
. execute if condition1 but condition2 does

else:

. executed if

lines of code executed after, in all cases

LECTURE 02-1: CONDITIONAL EXECUTION

CASCADING IF STATEMENT

» The code below is also like the award prize codein the autograder:

attempts = number previous submissions + 1
mesg = "Great work passing all the tests!\n"
mesg += "You submitted " + str(attempts) + " times.\n"

if attempts <= 2:
mesg += "You earned the full prize points.\n"
mesg += "Excellent!”
elif attempts <= 6:
mesg += "You earned 80% of the prize points.\n"
mesg += "Nicely done."
else:
mesg += "This is a few more times than we'd prefer.\n'
mesg += "We awarded half of the prize points.”

print (mesqg)

LECTURE 02-1: CONDITIONAL EXECUTION

SYNTAX: CASCADING IF-ELIF-...-ELIF STATEMENT

Below is a template for conditional statements:
if condition-1:

.execute if condition1 holds

elif condition-2:
.execute if condition1 but condition2 does

elif condition-n:
.execute if conditions 1 through (n-1) but condition-n does

lines of code executed after, in all cases

LECTURE 02-1: CONDITIONAL EXECUTION

CHECKING BOOLEAN VALUES

» Many beginning programmers are tempted to write this code:

all correct = (passed == tested)
print ("Your code passed " + str(passed))
print (" out of " + str(tested) + "tests.")

if all correct == True:
print ("Your code passed all our tests!")

if not on time:
print ("But you submitted after the deadline.")

LECTURE 02-1: CONDITIONAL EXECUTION

CHECKING BOOLEAN VALUES IS REDUNDANT

» Many beginning programmers are tempted to write this code:

all correct = (passed == tested)
print ("Your code passed " + str(passed))
print (" out of " + str(tested) + "tests.")
if all correct == True:
print ("Your code passed all our tests!")
if not on time:
print ("But you submitted after the deadline.")

LECTURE 02-1: CONDITIONAL EXECUTION

CHECKING BOOLEAN VALUES IS REDUNDANT

» Write this code instead:

all correct = (passed == tested)
print ("Your code passed " + str(passed))
print (" out of " + str(tested) + "tests.")

if all correct == True:
print ("Your code passed all our tests!")

if not on time:
print ("But you submitted after the deadline.")

» By using i £, you are already checking whether the condition == True.

LECTURE 02-1: CONDITIONAL EXECUTION

CHECKING BOOLEAN VALUES IS REDUNDANT

» Write this code instead:

all correct = (passed == tested)
print ("Your code passed " + str(passed))
print (" out of " + str(tested) + "tests.")

if all correct:
print ("Your code passed all our tests!")

if not on time:
print ("But you submitted after the deadline.")

» By using i £, you are already checking whether the condition == True.

CONTROL FLOW PREVIEW: LOOPING

Here is an example of a looping "while" statement:

pi = 3.14159
area = float(input("Circle area? "))
while area < 0.0:

area = float(input(”“Not an area. Try again:"))
radius = (area / pi) ** 0.5
print ("That circle’s radius is “+str(radius)+”.”)

Because of that whi 1 e statement, the re-prompting and re-input of an
area with that second input can be repeatedly executed.
Lines 3 and 4 are repeated until the user enters a good area value.

LECTURE 02-1: PYTHON FUNCTIONS

CONTROL FLOW PREVIEW: CALL AND RETURN

» Python lets us define our own functions.
» Below is an example with two: getArea and radiusOfCircle.

def getArea():
a = float(input("Circle area? “))
while a < 0.0:

a = float(input (“Not an area. Try again:”))
return a

def radiusOfCircle(someArea):
from math import pi, sqrt
return sqrt(someArea / pi)

area = getArea()
radius = radiusOfCircle(area)
print ("That circle’s radius is “+str(radius)+”."”)

LECTURE 02-1: PYTHON FUNCTIONS

CONTROL FLOW PREVIEW: CALL AND RETURN

» Python lets us define our own functions.
» Below is an example with two: getArea and radiusOfCircle.

LECTURE 02-1: PYTHON FUNCTIONS

CONTROL FLOW PREVIEW: CALL AND RETURN

» The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

LECTURE 02-1: PYTHON FUNCTIONS

CONTROL FLOW PREVIEW: CALL AND RETURN

» The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

LECTURE 02-1: PYTHON FUNCTIONS

CONTROL FLOW PREVIEW: CALL AND RETURN

» The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

LECTURE 02-1: PYTHON FUNCTIONS

CONTROL FLOW PREVIEW: CALL AND RETURN

» The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

LECTURE 02-1: PYTHON FUNCTIONS

CONTROL FLOW PREVIEW: CALL AND RETURN

» The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

LECTURE 02-1: PYTHON FUNCTIONS

CONTROL FLOW PREVIEW: CALL AND RETURN

» The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

LECTURE 02-1: PYTHON FUNCTIONS

CONTROL FLOW PREVIEW: CALL AND RETURN

» The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

LECTURE 02-1: PYTHON FUNCTIONS

CONTROL FLOW PREVIEW: CALL AND RETURN

» The instruction pointer jumps from the main script code, up to the
function's code, and then returns back.

READING

This and next week's lecture material can be supplemented with:
Reading:
TP Chs 4.1-4.8 (conditionals)
Ch. 3, 6 (functions)
CP 1.3-1.4 (user-defined functions); 1.5 ("control")

