
CONDITIONAL
EXECUTION
LECTURE 02-1
THE CONDITIONAL STATEMENT
THE BOOLEAN TYPE
LOOPS

JIM FIX, REED COLLEGE CSCI 121

THINGS
▸Homework 1 due tomorrow at 9am

➡ Any questions?

LECTURE 02-1: CONDITIONAL EXECUTION

THINGS
▸Homework 1 due tomorrow at 9am

➡ Any questions?

▸Drop-in tutoring:

➡ SuMTuWTh, Library 340, 7-9pm

LECTURE 02-1: CONDITIONAL EXECUTION

THINGS
▸Homework 1 due tomorrow at 9am

➡ Any questions?

▸Drop-in tutoring:

➡ SuMTuWTh, Library 340, 7-9pm

➡Tonight: Jim (me) in Library 314, 7-9pm

LECTURE 02-1: CONDITIONAL EXECUTION

THINGS
▸Homework 1 due tomorrow at 9am

➡ Any questions?

▸Drop-in tutoring:

➡ SuMTuWTh, Library 340, 7-9pm

➡Tonight: Jim (me) in Library 314, 7-9pm

▸Homework 2 assigned tomorrow in lab

▸I’ve linked two things as a moodle page:

➡ Adam Groce’s text Principled Programming

➡ Video lectures from this past fall version of CSCI 121

LECTURE 02-1: CONDITIONAL EXECUTION

THINGS
▸Homework 1 due tomorrow at 9am

➡ Any questions?

▸Drop-in tutoring:

➡ SuMTuWTh, Library 340, 7-9pm

➡Tonight: Jim (me) in Library 314, 7-9pm

▸Homework 2 assigned tomorrow in lab

▸I’ve linked two things as a moodle page:

➡ Adam Groce’s text Principled Programming

➡ Video lectures from this past fall version of CSCI 121

▸I’ve posted a semester schedule.

LECTURE 02-1: CONDITIONAL EXECUTION

LECTURE 02-1: CONDITIONAL EXECUTION
Date Week Monday (Lecture) Tuesday (Lab) Wednesday (Lecture) Thursday Friday

27-Jan-25

 " "
example scripts with % and //
booleans; conditions
if: the conditional statement

3-Feb-25

the frame mechanism
while loops
definite vs. indefinite loops

 " "

nested loops
functions: def and the return statement
expression evaluation

10-Feb-25

procedures: def and return revisited
the None type

 " ns and procedures"
the call stack mechanism

17-Feb-25

list construction and scanning
list item update
list mutability

 " "
list slicing; lists of lists
append, extend, insert, delete

24-Feb-25

dictionaries
the for loop

 " "
recursive functions and procedures
count up/down; sort preview

3-Mar-25

the call stack revisited
fibonacci, instrumented "recursion"

objects and classes

10-Mar-25

inheritance "
lambda
higher order functions

17-Mar-25

environment diagrams
linked list traversal; insertion

24-Mar-25

31-Mar-25

linked list deletion
linked list traversal

•

linked list reversal
algorithm efficiency
big Oh and big Theta notation

7-Apr-25

binary search
bubblesort; insertion sort

•
 quicksort; mergesort

14-Apr-25

bst insertion and search
bst traversal "bsts" bst deletion

21-Apr-25

file I/O exceptions

28-Apr-25

review
networked game demo

5-May-25

12-May-25

course overview
interaction: integers; strings; floats
scripts: input; print; assignment

•

1

• Homework 1 out

2

• Homework 2 out

» Homework 1 due

3

§ Quiz #1 on scripting and //% • Homework 3 out

» Homework 2 due
« Project 1 " " out

4

• Homework 4 out

» Homework 3 due

5

§ Quiz #2 on functions and loops • Homework 5 out

» Homework 4 due « Project 2 "ciphers" out

» Project 1 due

6

• Homework 6 out

» Homework 5 due

7

§ Quiz #3 on lists and dictionaries • Homework 7 out

» Homework 6 due

8

• Homework 8 out

» Homework 7 due « Project 3 "hawk/dove" out

» Project 2 due

SPRING BREAK SPRING BREAK SPRING BREAK SPRING BREAK

9

§ Quiz #4 on object orientation Homework 9 out

» Homework 8 due

10 « Project 4: "adventure" or "arcade" out

 Homework 10 out

» Homework 9 due

§ Quiz #5 on recursion » Project 3 due

11

• Homework 11 out

» Homework 10 due

§ Quiz #6 on linked lists

12

13 » Homework 12 due

» Project 4 due

READING WEEK READING WEEK READING WEEK

§ Comprehensive Final Exam

§ Exam on Homework 1-5

 Homework 12 out

§ Exam on Homework 6-9 • Continue Homework 12
» Project 4 beta test

input, calculation, output

conditionals and loops

functio

lists

dictionaries

classes and inheritance"

"higher order functions"

"linked lists"

"sorting and searching"

time/place to be determined

scripting, conditionals, loops, functions,
lists, dictionaries

"files and exceptions"

recursion; objects, inheritance;
higher order functions; linked lists

greed

» Homework 11 due

LECTURE 02-1: CONDITIONAL EXECUTION
Date Week Monday (Lecture) Tuesday (Lab) Wednesday (Lecture) Thursday Friday

27-Jan-25

 " "
example scripts with % and //
booleans; conditions
if: the conditional statement

3-Feb-25

the frame mechanism
while loops
definite vs. indefinite loops

 " "

nested loops
functions: def and the return statement
expression evaluation

10-Feb-25

procedures: def and return revisited
the None type

 " ns and procedures"
the call stack mechanism

17-Feb-25

list construction and scanning
list item update
list mutability

 " "
list slicing; lists of lists
append, extend, insert, delete

24-Feb-25

dictionaries
the for loop

 " "
recursive functions and procedures
count up/down; sort preview

3-Mar-25

the call stack revisited
fibonacci, instrumented "recursion"

objects and classes

10-Mar-25

inheritance "
lambda
higher order functions

17-Mar-25

environment diagrams
linked list traversal; insertion

24-Mar-25

31-Mar-25

linked list deletion
linked list traversal

•

linked list reversal
algorithm efficiency
big Oh and big Theta notation

7-Apr-25

binary search
bubblesort; insertion sort

•
 quicksort; mergesort

14-Apr-25

bst insertion and search
bst traversal "bsts" bst deletion

21-Apr-25

file I/O exceptions

28-Apr-25

review
networked game demo

5-May-25

12-May-25

course overview
interaction: integers; strings; floats
scripts: input; print; assignment

•

1

• Homework 1 out

2

• Homework 2 out

» Homework 1 due

3

§ Quiz #1 on scripting and //% • Homework 3 out

» Homework 2 due
« Project 1 " " out

4

• Homework 4 out

» Homework 3 due

5

§ Quiz #2 on functions and loops • Homework 5 out

» Homework 4 due « Project 2 "ciphers" out

» Project 1 due

6

• Homework 6 out

» Homework 5 due

7

§ Quiz #3 on lists and dictionaries • Homework 7 out

» Homework 6 due

8

• Homework 8 out

» Homework 7 due « Project 3 "hawk/dove" out

» Project 2 due

SPRING BREAK SPRING BREAK SPRING BREAK SPRING BREAK

9

§ Quiz #4 on object orientation Homework 9 out

» Homework 8 due

10 « Project 4: "adventure" or "arcade" out

 Homework 10 out

» Homework 9 due

§ Quiz #5 on recursion » Project 3 due

11

• Homework 11 out

» Homework 10 due

§ Quiz #6 on linked lists

12

13 » Homework 12 due

» Project 4 due

READING WEEK READING WEEK READING WEEK

§ Comprehensive Final Exam

§ Exam on Homework 1-5

 Homework 12 out

§ Exam on Homework 6-9 • Continue Homework 12
» Project 4 beta test

input, calculation, output

conditionals and loops

functio

lists

dictionaries

classes and inheritance"

"higher order functions"

"linked lists"

"sorting and searching"

time/place to be determined

scripting, conditionals, loops, functions,
lists, dictionaries

"files and exceptions"

recursion; objects, inheritance;
higher order functions; linked lists

greed

» Homework 11 due

CONDITIONAL EXECUTION
▸We look at writing code that can run in several different ways.

▸Which statements it executes depend on the conditions it checks.

▸We introduce if and if-else statements, and their variants.

▸Reading for this material:

✦PP Ch 1.7 (along with loops)

✦ TP Ch 4.1 and 4.8

✦CP Ch 1.5 (along with loops)

LECTURE 02-1: CONDITIONAL EXECUTION

"BRANCHING"
▸Here is an example of a conditional (or "if") statement:

pi = 3.14159
area = float(input("Circle area? "))
if area < 0.0:
 print(“Error: That’s not a valid area.")
else:
 radius = (area / pi) ** 0.5
 print("That circle’s radius is "+str(radius)+".")  

▸Depending on the value of area, either
➡ the error will get printed, or
➡ the calculation will be made and its result reported

LECTURE 02-1: CONDITIONAL EXECUTION

▸Python allows us to reason about values and act on them conditionally.
▸For another example, consider this script:
 x = float(input("Enter a value: "))  
 if x < 0:  
 abs_x = -x  
 else:  
 abs_x = x  
 print("The absolute value of it is " + str(abs_x))  

 

THE "IF-ELSE" CONDITIONAL STATEMENT
LECTURE 02-1: CONDITIONAL EXECUTION

▸Python allows us to reason about values and act on them conditionally.
▸For another example, consider this script:
 x = float(input("Enter a value: "))  
 if x < 0:  
 abs_x = -x  
 else:  
 abs_x = x  
 print("The absolute value of it is " + str(abs_x))

% python3 absolute.py
Enter a value: -5.5  
The absolute value of it is 5.5
% python3 absolute.py
Enter a value: 105.77  
The absolute value of it is 105.77
% python3 absolute.py
Enter a value: 0.0  
The absolute value of it is 0.0

THE "IF-ELSE" CONDITIONAL STATEMENT
LECTURE 02-1: CONDITIONAL EXECUTION

▸Python allows us to reason about values and act on them conditionally.
▸For another example, consider this script:

x = float(input("Enter a value: "))  
if x < 0:  
 abs_x = -x  
else:  
 abs_x = x  
print("The absolute value of it is " + str(abs_x))  

▸When fed a negative x, it sets the value abs_x with its sign flipped.
➡ the positive value with the same magnitude: -5.5 yields 5.5

▸Otherwise, if x positive or 0.0, it just sets abs_x to that value.
 

THE "IF-ELSE" CONDITIONAL STATEMENT
LECTURE 02-1: CONDITIONAL EXECUTION

▸Python allows us to reason about values and act on them conditionally.
▸For another example, consider this script:

x = float(input("Enter a value: "))  
if x < 0:  
 abs_x = -x  
else:  
 abs_x = x  
print("The absolute value of it is " + str(abs_x))  

When the script is run, the if code gets executed as follows:
▸Python first checks the condition before the colon.

➡ If the condition is True, it executes the first assignment statement.
➡ If instead the condition is False, it executes the second assignment

statement. This is the one sitting under the else line. 

CONDITIONAL STATEMENT EXECUTION
LECTURE 02-1: CONDITIONAL EXECUTION

▸Python allows us to reason about values and act on them conditionally.
▸For another example, consider this script:

 x = float(input("Enter a value: "))  
 if x < 0:  
 abs_x = -x  
 else:  
 abs_x = x
 print("The absolute value of it is " + str(abs_x))  

▸You could maybe say that if-else gives Python code “intelligence.”
➡ It reasons about the value of x and behaves one way or the other.

▸The code is smart!
 

CONDITIONAL STATEMENT EXECUTION
LECTURE 02-1: CONDITIONAL EXECUTION

Below is a template for conditional statements:

if condition-expression:
 lines of statements executed if the condition holds
 ...
else:
 lines of statements executed if the condition does not hold
 ...
lines of code executed after, in either case

 

SYNTAX: IF-ELSE STATEMENT
LECTURE 02-1: CONDITIONAL EXECUTION

Below is a template for conditional statements:

if condition-expression:
 lines of statements executed if the condition holds
 ...
else:
 lines of statements executed if the condition does not hold
 ...
lines of code executed after, in either case

▸Use indentation to indicate the "true" code block and the "false" code block.

SYNTAX: IF-ELSE STATEMENT
LECTURE 02-1: CONDITIONAL EXECUTION

▸Here is a script that acts differently, depending on the parity of a number.

 n = int("Enter an integer: ")  
 if n % 2 == 0:  
 print(“even”)  
 else:  
 print(“odd”)
 

▸The equality test == is used to compare...
• the left-hand expression’s value n % 2
•with the right-hand expression’s value 0.
▸It is used to check whether they are equal.

 

CHECKING PARITY
LECTURE 02-1: CONDITIONAL EXECUTION

▸Here is a script that acts differently, depending on the parity of a number.

 n = int("Enter an integer: ")  
 if n % 2 == 0:  
 print(“even”)  
 else:  
 print(“odd”)
 

▸Below is it in use:
% python3 parity.py
Enter an integer: -11  
odd
% python3 parity.py
Enter an integer: 0  
even

 

CHECKING PARITY
LECTURE 02-1: CONDITIONAL EXECUTION

▸ The full range of comparisons you can make are:

== equality
!= inequality
< less than
> greater than
>= greater than or equal
<= less than or equal

 

COMPARISON OPERATIONS
LECTURE 02-1: CONDITIONAL EXECUTION

CONDITION EXPRESSIONS COMPUTE A BOOL VALUE
>>> 345 < 10  
False  
>>> 345 == 300 + 50 - 5  
True  
>>> type(True)
<class 'bool'>
>>> type(False)
<class 'bool'>  
>>> x = 57
>>> x == 57
True
>>> x != 57
False
>>> x > 0
True
>>> x <= 100  
True
>>> x > 100  
False
 

LECTURE 02-1: CONDITIONAL EXECUTION

▸ The code below determines whether an integer rating is from 1 to 100:
 rating = int(input("Enter a rating: "))  
 if (rating > 0) and (rating <= 100):  
 print("Thanks for that rating!")  
 else:  
 print("That is not a rating.")
 

 

EXPRESSING COMPLEX CONDITIONS
LECTURE 02-1: CONDITIONAL EXECUTION

▸ The code below determines whether an integer rating is from 1 to 100:
 rating = int(input("Enter a rating: "))  
 if (rating > 0) and (rating <= 100):  
 print("Thanks for that rating!")  
 else:  
 print("That is not a rating.")
 

▸This is using the logical connective and to check whether both conditions
hold. This is their logical conjunction.

 

EXPRESSING COMPLEX CONDITIONS: AND
LECTURE 02-1: CONDITIONAL EXECUTION

▸ The code below determines whether an integer rating is from 1 to 100:
 rating = int(input("Enter a rating: ")  
 if (rating <= 0) or (rating > 100):  
 print("That is not a rating.")  
 else:  
 print("Thanks for that rating!")
 

▸This is using the logical connective and to check whether both conditions
hold. This is their logical conjunction.
▸There is also the connective or for checking whether at least one condition

holds. It described logical disjunction.

EXPRESSING COMPLEX CONDITIONS: OR
LECTURE 02-1: CONDITIONAL EXECUTION

▸ The code below determines whether an integer rating is from 1 to 100:
 rating = int(input("Enter a rating: "))  
 if not ((rating <= 0) or (rating > 100)):  
 print("Thanks for that rating!")  
 else:  
 print("That is not a rating.")  

▸This is using the logical connective and to check whether both conditions
hold. This is their logical conjunction.
▸There is also the connective or for checking whether at least one condition

holds. It described logical disjunction.
▸There is also logical negation using not.

EXPRESSING COMPLEX CONDITIONS: NOT
LECTURE 02-1: CONDITIONAL EXECUTION

LOGICAL CONNECTIVES ARE BOOL OPERATORS
>>> x = 57
>>> (x > 0) and (x <= 100)  
True
>>> (x <= 0) or (x > 100)  
False
>>> not (345 < 10)  
True
>>> not ((x <= 0) or (x > 100))  
True  
 

LECTURE 02-1: CONDITIONAL EXECUTION

▸ The logical connectives and, or, and not can be thought of as operations
that act on boolean values and return a boolean value:

>>> (7 > 3) and (2 < 4)  
True  
>>> (4 < 2) and False  
False
>>> (2 > 3) or (not (7 < 10))  
False  
>>> True and False  
False  
>>> True or False  
True  
>>> not (True or False)  
False
 

LOGIC CONNECTIVES ARE BOOLEAN OPERATORS
LECTURE 02-1: CONDITIONAL EXECUTION

Below is a template for conditional statements:

if condition-expression:
 lines of statements executed if the condition holds
 ...
else:
 lines of statements executed if the condition does not hold
 ...
lines of code executed after, in either case

▸Use indentation to indicate the "true" code block and the "false" code block.

SYNTAX: IF-ELSE STATEMENT
LECTURE 02-1: CONDITIONAL EXECUTION

▸ The code below is like some code in some autograder:

if on_time:

 if all_correct:
 mesg = "Great work passing all the tests!\n"
 mesg += "You've earned the points for this problem."
 else:
 mesg = "To earn points, make sure all the tests pass."

else:

 if all_correct:
 mesg = "Great work making all the tests pass.\n"
 mesg += "Sadly we can't offer you any points.\n"
 mesg += "You submitted this after the deadline."
 else:
 mesg = "Sorry! There’s still a problem. No points.”

print(mesg)

NESTING CONDITIONAL STATEMENTS
LECTURE 02-1: CONDITIONAL EXECUTION

Below is a template for conditional statements with no "else" block:

if condition-expression:
 lines of statements executed only if the condition holds
 ...
lines of code executed after, in either case

▸Use indentation to indicate the "true" code block.

SYNTAX: IF STATEMENT
LECTURE 02-1: CONDITIONAL EXECUTION

▸A different version of the absolute value script:

 x = float(input("Enter a value: “))  
 if x < 0:  
 x = -x
 print("The absolute value of it is " + str(x))
 

CONDITIONAL STATEMENT WITH NO ELSE
LECTURE 02-1: CONDITIONAL EXECUTION

▸ The code below is like some code in some autograder:

all_correct = (passed == tested)
print("Your code passed " + str(passed))
print(" out of " + str(tested) + "tests.")
if all_correct:
 print("Your code passed all our tests!")
 if not on_time:
 print("But you submitted after the deadline.")
 

CONDITIONAL STATEMENT WITH NO ELSE
LECTURE 02-1: CONDITIONAL EXECUTION

Below is a template for conditional statements:
if condition-1:
 execute if condition 1 holds
 ...
elif condition-2:
 execute if condition 1 does not hold but condition 2 does
 ...
...
else:
 executed if no condition above holds
 ...
lines of code executed after, in all cases

SYNTAX: CASCADING IF-ELIF-...-ELSE STATEMENT
LECTURE 02-1: CONDITIONAL EXECUTION

▸Here is some other autograder code using the cascading conditional:

attempts = number_previous_submissions + 1
mesg = "Great work passing all the tests!\n"
mesg += "You submitted " + str(attempts) + " times.\n"

if attempts <= 2:
 mesg += "You earned the full points.\n"
 mesg += "Excellent!"
elif attempts <= 6:
 mesg += "You earned 80% of the points.\n"
 mesg += "Nicely done."
else:
 mesg += "This is a few more times than we'd prefer.\n"
 mesg += "We awarded half of the points."

print(mesg)

CASCADING IF STATEMENT
LECTURE 02-1: CONDITIONAL EXECUTION

Below is a template for conditional statements:
if condition-1:
 execute if condition1 holds
 ...
elif condition-2:
 execute if condition1 does not hold but condition2 does
 ...
...
elif condition-n:
 execute if conditions 1 through (n-1) do not hold but condition n does
 ...
lines of code executed after, in all cases

SYNTAX: CASCADING IF-ELIF-...-ELIF STATEMENT
LECTURE 02-1: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS
▸Binary operations

• for integers: + - * // % **

• for floats: + - * / **

• for strings: + *

LECTURE 02-1: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS
▸Binary operations

• for integers: + - * // % ** < <= > >= == !=

• for floats: + - * / ** < <= > >= == !=

• for strings: + * < <= > >= == !=

LECTURE 02-1: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS
▸Binary operations

• for integers: + - * // % ** < <= > >= == !=

• for floats: + - * / ** < <= > >= == !=

• for strings: + * < <= > >= == !=

LECTURE 02-1: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS
▸Binary operations

• for integers: + - * // % ** < <= > >= == !=

• for floats: + - * / ** < <= > >= == !=

• for strings: + * < <= > >= == !=

These are comparison operations

LECTURE 02-1: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS
▸Binary operations

• for integers: + - * // % ** < <= > >= == !=

• for floats: + - * / ** < <= > >= == !=

• for strings: + * < <= > >= == !=

These are comparison operations.
They produce a boolean value.

LECTURE 02-1: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS
▸Binary operations

• for integers: + - * // % ** < <= > >= == !=

• for floats: + - * / ** < <= > >= == !=

• for strings: + * < <= > >= == !=

• for booleans: and or not

LECTURE 02-1: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS
▸Binary operations

• for integers: + - * // % ** < <= > >= == !=

• for floats: + - * / ** < <= > >= == !=

• for strings: + * < <= > >= == !=

• for booleans: and or not == !=

LECTURE 02-1: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS
▸Binary operations

• for integers: + - * // % ** < <= > >= == !=

• for floats: + - * / ** < <= > >= == !=

• for strings: + * < <= > >= == !=

• for booleans: and or not == !=

LECTURE 02-1: CONDITIONAL EXECUTION

SUMMARY OF THE CONDITIONAL STATEMENT
▸The Python interpreter can be made to conditionally execute code.

▸You can do so with the conditional, or if statement.

if condition-expression:
 lines of statements executed only if the condition holds

▸You can do so with the conditional, or if statement.

if condition-expression:
 lines of statements executed only if the condition holds
else:
 lines of statements executed if the condition doesn’t hold

▸This is sometimes called a “branch”

▸Indentation means something in Python! It is sensitive to it,

LECTURE 01-2: CONDITIONAL EXECUTION

ITERATION; LOOPS

LECTURE 02-1

JIM FIX, REED COLLEGE CSCI 121

"LOOPING"
▸Here is an example of a looping "while" statement:

pi = 3.14159
area = float(input("Circle area? “))
while area < 0.0:
 print(“That’s not a valid area.”)
 area = float(input(“Try again:”))
radius = (area / pi) ** 0.5
print("That circle’s radius is “+str(radius)+”.”)  

▸Because of that while statement, the re-prompting and re-input of an
area with that second input can be repeatedly executed.
➡ Lines 3 and 4 are repeated until the user enters a good area value.

LECTURE 02-1: LOOPS

ITERATION WITH LOOPS
▸We look at code that uses iteration or loop statements.

➡ In Python, these are the while and for statements.

➡ These statements allow us to repeat actions several times.

✦Definite loops: perform an action several times.

✦ Indefinite loops: perform an action until a condition is met.

▸Reading about loops and iteration:

✦PP Ch 1.7

✦ TP Ch 5

✦CP Ch 1.5

LECTURE 02-1: LOOPS

▸Python lets you execute the same statement repeatedly with a while loop
statement. For example:

print(“This line runs once, first.”)  
while True:  
 print(“This line keeps getting run.”)  
print(“This line never runs.”)

▸Output of the script above:
This line runs once, first.  
This line keeps getting run.  
This line keeps getting run.  
This line keeps getting run.  
This line keeps getting run.  
…

▸NOTE: hit [CTRL-c] to terminate the Python script's execution. 

AN INFINITE LOOP
LECTURE 02-1: LOOPS

▸ The prior example loops forever. And so does this one:
print(“This line runs once, first.”)  
while True:  
 print(“This line keeps getting run.”)
 print(“And so does this one.”)  
print(“This line never runs.”)

▸Output of the script above:
This line runs once, first.  
This line keeps getting run.  
And so does this one.  
This line keeps getting run.  
And so does this one.  
This line keeps getting run.  
And so does this one.  
…

MORE LOOPING FOREVER
LECTURE 02-1: LOOPS

▸ The prior example loops forever. And so does this one:
hellos_said = 0  
while True:  
 print(“Hello!!!”)
 hellos_said = hellos_said + 1
 print(“That was 'hello' #” + str(hellos_said) + ".")  
print(“This line never runs.”)

▸Output of the script above:
Hello!!!  
That was 'hello' #1.  
Hello!!!  
That was 'hello' #2.
Hello!!!  
That was 'hello' #3.
Hello!!!  
That was 'hello' #4.  
…

COUNTING FOREVER
LECTURE 02-1: LOOPS

▸ This outputs a count from 0 up to 5:
print(“I'm going to count for you.”)
count = 0  
while count < 6:  
 print(count)
 count = count + 1  
print(“I'm done counting now.”)

▸Output of the script above:
I'm going to count for you.  
0
1  
2  
3
4  
5
I'm done counting now.

COUNTING ONLY SO FAR
LECTURE 02-1: LOOPS

▸ This outputs a count from 0 up to 2:
print(“I'm going to count for you.”)
count = 0  
while count < 3:  
 print(count)
 count = count + 1  
print(“I'm done counting now.”)

▸Output of the script above:
I'm going to count for you.  
0
1  
2
I'm done counting now.

COUNTING ONLY SO FAR
LECTURE 02-1: LOOPS

▸ This outputs a count from 0 up to some input value:
print(“I'm going to count for you.”)
max = int(input("Enter how far you'd like me to count: "))
count = 0  
while count <= max:  
 print(count)
 count = count + 1  
print(“I'm done counting now.”)

▸Output of the script above:
I'm going to count for you.
Enter how far you'd like me to count: 4  
0
1  
2
3
4
I'm done counting now.

COUNTING ACCORDING TO AN INPUT
LECTURE 02-1: LOOPS

▸ The template below gives the syntax of a while loop statement:
lines of statements to execute first
while condition-expression:
 lines of statements to execute if the condition holds
 ...
lines of statements to executed when the condition no longer holds

ANATOMY OF A WHILE LOOP
LECTURE 02-1: LOOPS

▸ The template below gives the syntax of a while loop statement:
lines of "set up" statements to execute first
while condition-expression:
 lines of "loop body" statements to execute if the condition holds
 ...
lines of "follow up" to execute when the condition no longer holds

▸Here is how Python executes this code:

1. Executes the set up code.

2. It evaluates the condition. If False it skips to Step 5.

3. Otherwise, if True, it evaluates the loop body's code.

4. It goes back to Step 2.

5. It executes the follow up, and subsequent, code.

EXECUTION OF A WHILE LOOP
LECTURE 02-1: LOOPS

▸Here is the standard structure of a "counting loop":
initialize the count to the start-value
while count < one-too-far:
 actions to perform with that particular count value
 increment the count by 1
at this point can now use the fact that count == one-too-far

▸This is an extremely common coding pattern...

➡ PLEASE TAKE THIS TEMPLATE TO HEART!!!!

ANATOMY OF A COUNTING LOOP
LECTURE 02-1: LOOPS

▸Some terminology:
• "Count up to 6." and "Count up to the input value." are examples of

definite loops.
• "Get an input until they've entered something valid." is an example of an

indefinite loop. The number of repetitions isn't known.

▸An example of the second kind of coding:
def get_float(prompt):  
 return float(input(prompt))  

def get_area():  
 a = get_float(“Circle area? “)  
 while a < 0.0:  
 a = get_float(“Not an area. Try again:”)  
 return a

DEFINITE VS. INDEFINITE LOOPS
LECTURE 02-1: LOOPS

▸Some terminology:
• "Count up to 6." and "Count up to the input value." are examples of

definite loops.
• "Get an input until they've entered something valid." is an example of an

indefinite loop. The number of repetitions isn't known.

▸An example of the second kind of coding:
 
a = get_float(“Circle area? “)  
while a < 0.0:  
 a = get_float(“Not an area. Try again:”)  
return a

DEFINITE VS. INDEFINITE LOOPS

Note that the loop body might not run at all!

LECTURE 02-1: LOOPS

▸Of course you can put a conditional statement within a loop's body.
 count = 0  
 while count < 6:  
 if count % 2 == 0:  
 print(str(count) + ” is even.”)  
 else:  
 print(str(count) + ” is odd.”)  
 count = count + 1  
 print(“Done.”)

▸Output of the script above:
0 is even.
1 is odd.  
2 is even.
3 is odd.
4 is even.
5 is odd.
Done.

NESTING CONTROL STATEMENTS WITHIN A LOOP
LECTURE 02-1: LOOPS

▸Nested loops are a common programming pattern:
a = 0  
while a < 6:  
 b = 0  
 while b < 8:  
 print(str(a)+str(b),end=“ ”)  
 b = b + 1  
 print()  
 a = a + 1  
print(“Done.”)

▸What does the code above do???

NESTING A LOOP WITHIN A LOOP
LECTURE 02-1: LOOPS

▸Nested loops are a common programming pattern:
a = 0  
while a < 6:  
 b = 0  
 while b < 8:  
 print(str(a)+str(b),end=“ ”)  
 b = b + 1  
 print()  
 a = a + 1  
print(“Done.”)

▸It outputs a sequence of digit pairs, separated by spaces:
00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
Done.

NESTING A LOOP WITHIN A LOOP
LECTURE 02-1: LOOPS

▸Nested loops are a common programming pattern:
a = 0  
while a < 6:  
 b = 0  
 while b < 8:  
 print(str(a)+str(b),end=“ ”)  
 b = b + 1  
 print()  
 a = a + 1  
print(“Done.”)

▸It outputs a sequence of digit pairs, separated by spaces:
00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
Done.

NESTING A LOOP WITHIN A LOOP

Inner loop, along with set-up/follow-up

LECTURE 02-1: LOOPS

▸Nested loops are a common programming pattern:
a = 0  
while a < 6:  
 b = 0  
 while b < 8:  
 print(str(a)+str(b),end=“ ”)  
 b = b + 1  
 print()  
 a = a + 1  
print(“Done.”)

▸It outputs a sequence of digit pairs, separated by spaces:
00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
Done.

NESTING A LOOP WITHIN A LOOP

Inner loop, along with set-up/follow-up

Outer loop, along with set-up/follow-up

LECTURE 02-1: LOOPS

▸Nested loops are a common programming pattern:
a = 0  
while a < 6:  
 b = 0  
 while b < 8:  
 print(str(a)+str(b),end=“ ”)  
 b = b + 1  
 print()  
 a = a + 1  
print(“Done.”)

▸It outputs a sequence of digit pairs, separated by spaces:
00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
Done.

NESTING A LOOP WITHIN A LOOP

Executed once for each value of a.

Inner loop, along with set-up/follow-up

Outer loop, along with set-up/follow-up

LECTURE 02-1: LOOPS

▸Here is another way of writing the counting loop.
 print(“Counting from 0 to 5:”)  
 count = 0  
 while True:  
 if count >= 6:  
 break  
 print(count)  
 count = count + 1  
 print(“Done.”)

▸ The code uses a break statement to jump down to the follow-up code.
▸If within several loops, it jumps to just after the innermost one.
▸This is an artificial example
▸Using break statements can sometimes make code more readable than

code that expresses all the "break out" or stopping conditions.

BREAKING OUT OF A LOOP
LECTURE 02-1: LOOPS

▸Using break to express other break-out conditions: 
 while count < 6:  
 if somethingElseMakesMeStop(...)  
 break  
 ...  
 count = count + 1  
 print(“Done.”)
▸ I worry that break can sometimes be missed by other coders.
▸ I usually prefer using explicit break-out conditions instead, like so: 
 done = False  
 while !done and count < 6:  
 if somethingElseMakesMeStop(...)  
 done = True  
 if not done:  
 ...  
 count = count + 1  
 print(“Done.”)

USING CONDITION VARIABLES TO GOVERN LOOPING
LECTURE 02-1: LOOPS

▸Using break to express other break-out conditions: 
 while count < 6:  
 if somethingElseMakesMeStop(...)  
 break  
 ...  
 count = count + 1  
 print(“Done.”)
▸ I worry that break can sometimes be missed by other coders.
▸ I usually prefer using explicit break-out conditions instead, like so: 
 done = False  
 while !done and count < 6:  
 if somethingElseMakesMeStop(...)  
 done = True  
 if not done:  
 ...  
 count = count + 1  
 print(“Done.”)

USING CONDITION VARIABLES TO GOVERN LOOPING

PLEASE use break sparingly, and with taste.

LECTURE 02-1: LOOPS

SUMMARY
▸The while loop statement expresses iterative code.

➡ Allows you to perform a series of actions until a condition holds.

➡ The negation of this terminating condition is the loop's condition.

▸It's possible for the code to loop forever. This is an infinite loop.

▸Counting loops are common examples of definite loops.

▸Loops that iterate an undetermined number of times are indefinite.

LECTURE 02-1: LOOPS

SUMMARY (CONT'D)
▸Loop bodies can contain other control statements:

• For example, you can have if statements or other while statements.

• If another loop statement is inside, then it is a nested loop.

• If a break statement, we can jump out of the loop mid-body.

LECTURE 02-1: LOOPS

