
PYTHON SCRIPTING (CONT'D)
CONDITIONS

LECTURE 01-2

JIM FIX, REED COLLEGE CSCI 121

COURSE WEB PAGE
▸ There is a course webpage at http://jimfix.github.io/csci121
• It has the syllabus and a schedule of topics covered.
• There I'll post readings, assignments, lecture materials.

LECTURE 01-2: PYTHON SCRIPTING

LECTURE 01-2: PYTHON SCRIPTING

COURSE WEB PAGE
▸ There is a course webpage at http://jimfix.github.io/csci121
• It has the syllabus and a schedule of topics covered.
• There I'll post readings, assignments, lecture materials.

For now and in the near future, it is at
http://xifmij.github.io/csci121

HOMEWORK? LAB? HOW ARE THINGS?
▸Don't forget to complete the Homework 1 assignment:

•due next Wednesday 9/8, before lecture

• the description is at https://xifmij.github.io/csci121/assign.html

•write several Python scripts much like today's examples

▸Any questions from yesterday's lab? about Homework 1?

LECTURE 01-2: PYTHON SCRIPTING

DROP-IN TUTORING; OFFICE HOURS

• EVENING TUTORING: Sunday through Thursdays, 7-9pm, ETC 208
➡Starts tonight!

• MY OFFICE HOURS:
10-11:20am Monday, 10-11:20am Wednesday
Also generally in my office 10-1:10 Monday and Wednesday

I'm also available on Zoom by appointment on Fridays.

LECTURE 01-2: PYTHON SCRIPTING

LAB SWITCHING
▸Some of you might still be seeking a different lab section

➡ There may be some room for students in a different section.

➡Email Jim/Meaw about joining that section.

➡ If you can, just bring us an ADD/DROP form from the Registrar.

LECTURE 01-2: PYTHON SCRIPTING

CSCI 122
▸ If you have significant programming experience already, maybe email me

about taking the 0.5 credit CSCI 122.

LECTURE 01-2: PYTHON SCRIPTING

PYTHON SCRIPTING
▸We start by looking at Python scripting:
• A script is a text file containing lines of Python code.
• Each line is a Python statement.
• The Python interpreter (the python3 command) executes each statement,

line by line, from top to bottom.
• A statement directs that an action be made by the interpreter, which has a

state-changing effect.

LECTURE 01-2: PYTHON SCRIPTING

PYTHON SCRIPTING (REVIEW)
Each Python statement directs that an action be taken, which has an effect on
the runtime system.

▸Some examples of effects:
➡ some text gets output (printed) to the console
➡ some typed console input is read
➡ some named variable gets assigned a newly computed value
➡ a window is displayed, a file is read, a URL's content is fetched, the

program connects to a database or a network service, a noise is made,
etc., etc.

LECTURE 01-2: PYTHON SCRIPTING

INTERACTIVE SCRIPTS
▸ This program is interacts with the program's user:

name = input("Could someone volunteer their name? ")
print("Hello there, “ + name + "!")
print("Thanks for volunteering like that.")
print("This is our seventh Python program.")

▸Here is one such interaction within Terminal:
C02MX1KLFH04:examples jimfix$ python3 shoutout.py
Could someone volunteer their name? Audrey Bilger
Hello there, Audrey Bilger!
Thanks for volunteering like that.
This is our seventh Python program.
C02MX1KLFH04:examples jimfix$

▸ The program has an assignment statement followed by 3 print statements.
▸ The assignment's right hand side uses a function named input
▸ That function first outputs a prompt string to the console...

➡And then it reads a string of input typed into the console.

LECTURE 01-2: PYTHON SCRIPTING

INTERACTIVE SCRIPTS
▸ This program is interacts with the program's user:

name = input("Could someone volunteer their name? ")
print("Hello there, “ + name + "!")
print("Thanks for volunteering like that.")
print("This is our seventh Python program.")

▸Here is one such interaction within Terminal:
C02MX1KLFH04:examples jimfix$ python3 shoutout.py
Could someone volunteer their name? Audrey Bilger
Hello there, Audrey Bilger!
Thanks for volunteering like that.
This is our seventh Python program.
C02MX1KLFH04:examples jimfix$

▸ The program has an assignment statement followed by 3 print statements.
▸ The assignment's right hand side uses a function named input
▸ That function first outputs a prompt string to the console...

➡And then it reads a string of input typed into the console.

LECTURE 01-2: PYTHON SCRIPTING

STRING ARITHMETIC
▸Another sample program:

name = input("Could someone volunteer their name? ")
print("Hello there, "+name+"!")
print("Thanks for volunteering like that.")
print("This is our eighth Python program.”)
repeated = (name + “, “) * 3 + name
print(“Below is your name repeated four times:”)
print(repeated)

▸ Its execution within Terminal
C02MX1KLFH04:examples jimfix$ python3 shoutout4x.py
Could someone volunteer their name? Audrey Bilger
Hello there, Audrey Bilger!
Thanks for volunteering like that.
This is our eighth Python program.
Below is your name repeated four times:
Audrey Bilger, Audrey Bilger, Audrey Bilger, Audrey Bilger
C02MX1KLFH04:examples jimfix$

LECTURE 01-2: PYTHON SCRIPTING

ANOTHER EXAMPLE
▸Consider this Python program:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("The radius of that circle is "+str(radius)+" units.")

▸ This has is 3 assignment statements and a print statement.
▸ The first defines/assigns the variable named pi.
▸ The second gets a floating point value (a “calculator number”) as input,

assigned to area. We compute that using an arithmetic formula.
▸ The functions float and str convert values of one type to values of

another type.

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸ If you ever want to "watch" a Python program, try out The Python Tutor
https://pythontutor.com/

▸Using it, you'll see something like this...

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's associated value is changed with each assignment statement.

pi: 3.14159
global frame

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's associated value is changed with each assignment statement.

pi: 3.14159
area: 314.159

global frame

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's associated value is changed with each assignment statement.

pi: 3.14159
area: 314.159
radius: 10.0

global frame

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's associated value is changed with each assignment statement.

pi: 3.14159
area: 314.159
radius: 10.0

global frame

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's associated value is changed with each assignment statement.
➡ The collection of variable slots of a script is called the global frame

pi: 3.14159
area: 314.159
radius: 10.0

global frame

LECTURE 01-2: PYTHON SCRIPTING

SAME, BUT DIFFERENT
▸Consider this Python program:

from math import pi, sqrt
area = float(input("Circle area? "))
radius = sqrt(area / pi)
print("The radius of that circle is "+str(radius)+" units.")

▸Here we import some definitions from a Python package named math.
▸pi is the name of a floating point constant.
▸ sqrt is the name of a floating point function.
▸ There are packages for all sorts of useful Python libraries.

LECTURE 01-2: PYTHON SCRIPTING

SOME ISSUES I'D LIKE TO ADDRESS
▸values versus variables versus expressions
▸ functions, calling functions, defining functions (next week)
▸different types: int versus float versus str
▸operations on each type (and the “overloaded” meanings of + and *)
▸built-in functions for each type
▸managing print output carefully
▸ special characters (tab, end of line, quote, …)

Let’s switch modes in how we use the Python interpreter…

LECTURE 01-2: PYTHON SCRIPTING

INTERACTING WITH THE PYTHON INTERPRETER
▸Python can be used to "live script":

C02MX1KLFH04:examples jimfix$ python3
>>> print(“hello”)
hello
>>> print(6 * 7)
42
>>> result = 6 * 7
>>> print(result)
42
>>>

▸We can try a Python coding by interacting directly with the interpreter.
▸We type in Python statements one at a time.
▸Each line gets executed immediately.

LECTURE 01-2: PYTHON SCRIPTING

THE INTERPRETER AS CALCULATOR
▸Python can be used to evaluate expressions:

C02MX1KLFH04:examples jimfix$ python3
>>> “hello”
hello
>>> 6 * 7
42
>>> result = 6 * 7
>>> result
42
>>>

▸We enter Python expressions instead.
➡Python evaluates it and shows its value on the next line.

▸A Python statement describes an action to be performed.
▸A Python expression describes a value to be calculated.

➡ This evaluation is different than printing.

LECTURE 01-2: PYTHON SCRIPTING

THE INTERPRETER AS CALCULATOR
▸Python can be used to evaluate expressions:

C02MX1KLFH04:examples jimfix$ python3
>>> “hello”
hello
>>> 6 * 7
42
>>> result = 6 * 7
>>> result
42
>>>

▸Here, Python is acting differently. It calculates the value of the expression,
then (quietly) converts that to a string of text, then reports that text
representing the value.

LECTURE 01-2: PYTHON SCRIPTING

THE INTERPRETER AS CALCULATOR
▸Python can be used to evaluate expressions:

C02MX1KLFH04:examples jimfix$ python3
>>> “hello”
hello
>>> 6 * 7
42
>>> result = 6 * 7
>>> result
42
>>>

▸ It follows three steps:
• READs: it looks at the expression entered after >>>
• EVALUATEs: it performs that calculation, obtaining a value, including

looking up variables’ values
• PRINTs: it converts that value to a string; displays it.

LECTURE 01-2: PYTHON SCRIPTING

THE INTERPRETER AS CALCULATOR
▸Python can be used to evaluate expressions:

C02MX1KLFH04:examples jimfix$ python3
>>> “hello”
hello
>>> 6 * 7
42
>>> result = 6 * 7
>>> result
42
>>>

▸ This is the “READ - EVALUATE - PRINT LOOP” (or “REPL”).
▸Having access to a REPL for a programming language is wonderful!
▸ It’s a big reason we teach programming in Python.

LECTURE 01-2: PYTHON SCRIPTING

PYTHON PROVIDES SOME USEFUL FUNCTIONS...
>>> pow(2,3)
8
>>> abs(-3)
3
>>> abs(4 + 2)
6
>>> min(3,7)
3
>>> max(4, 10.5 + 8.3, 6)
18.8
>>> from math import sqrt, pow
>>> sqrt(2.0)
1.4142135623730951
>>> pow(2.0,4.5)
22.627416997969522

LECTURE 01-2: PYTHON SCRIPTING

PYTHON PROVIDES ARITHMETIC
>>> 3 + 7
10
>>> 4 + 2 * 3
10
>>> (4 + 2) * 3
18
>>> 4 / 16
0.25
>>> 2 ** 4
16
>>> 0.1 + 0.2
0.30000000000000004

LECTURE 01-2: PYTHON SCRIPTING

PYTHON PROVIDES ARITHMETIC
>>> 3 + 7
10
>>> 4 + 2 * 3
10
>>> (4 + 2) * 3
18
>>> 4 / 16
0.25
>>> 2 ** 4
16
>>> 0.1 + 0.2
0.30000000000000004
>>> type(4)
<class 'int'>
>>> type(0.25)
<class 'float'>

LECTURE 01-2: PYTHON SCRIPTING

INTEGERS VERSUS FLOATING POINT NUMBERS
▸Python has two types of number values: int and float
▸With integers, computation is exact.
▸With floating point numbers (“floats”), computation is approximate.

>>> 10 / 2
5.0
>>> 3 + 4.0
7.0
>>> int(8.7)
8

LECTURE 01-2: PYTHON SCRIPTING

INTEGER VERSUS FLOATING POINT DIVISION
▸With the normal division operation, the slash /, you get a float.

>>> 10.2 / 2.0
5.1
>>> 10 / 2
5.0
>>> 10 // 2
5
>>> 87 / 10
8.7
>>> 87 // 10
8

▸ There is also an integer division operation, the double slash operator //.
➡ This gives the integer quotient.
➡ The remainder due to the division is discarded.

LECTURE 01-2: PYTHON SCRIPTING

RECALL: LONG DIVISION
LECTURE 01-2: PYTHON SCRIPTING

RECALL: LONG DIVISION
LECTURE 01-2: PYTHON SCRIPTING

RECALL: LONG DIVISION
LECTURE 01-2: PYTHON SCRIPTING

RECALL: LONG DIVISION
LECTURE 01-2: PYTHON SCRIPTING

RECALL: LONG DIVISION
LECTURE 01-2: PYTHON SCRIPTING

RECALL: LONG DIVISION
LECTURE 01-2: PYTHON SCRIPTING

the quotient

RECALL: LONG DIVISION
LECTURE 01-2: PYTHON SCRIPTING

the quotient

the remainder

PYTHON HAS // AND % OPERATORS
▸ The // operation (“div”) gives the integer quotient due to the division of

two integers:
>>> 345 // 12
28  

▸ The % operation (“mod”) gives the integer remainder due to the division of
two integers:
>>> 345 % 12
9  

▸ This property always holds: n == q * d + r
>>> 28 * 12 + 9
345

LECTURE 01-2: PYTHON SCRIPTING

EXAMPLE USES
>>> 345 % 10  
????????  
>>> 345 // 10  
????????  
>>> 6789 % 2  
????????  
>>> 6790 % 2  
????????  
>>> -26 % 2  
????????  
>>> -76 % 10  
????????  
>>> -26 // 2  
????????  
>>> -76 // 10  
????????

LECTURE 01-2: PYTHON SCRIPTING

EXAMPLE USES
>>> 345 % 10  
5  
>>> 345 // 10  
34  
>>> 6789 % 2  
1  
>>> 6790 % 2  
0  
>>> -26 % 2  
0  
>>> -76 % 10  
4  
>>> -26 // 2  
-13  
>>> -76 // 10  
-8

LECTURE 01-2: PYTHON SCRIPTING

SPECIAL CHARACTERS
▸A backslash character \ followed by a second character expresses special characters

➡ a tab is \t, a new line is \n, a quote is \', a backslash is \\

>>> z = input('What\'s your name?')
What's your name?John
>>> x + ” “ + z
'Hello John'
>>> print(“I\’ve “+str(19)+“ characters.\nSee?”)
I've 19 characters.  
See?
>>> len(“I\’ve “+str(19)+“ characters.\nSee?”)  
19
>>> print(“\thello\nthere”)
 hello  
there
>>> print("/\\/\\/\\/\\"
/\/\/\/\

LECTURE 01-2: PYTHON SCRIPTING

AN INFORMAL QUIZ
>>> z = 7  
>>> x = 5 + z  
>>> z = z + 1  
>>> print(str(z) + str(z))  
??????????  
>>> 0.2 + 0.1  
??????????  
>>> 0.2 - 0.1  
??????????  
>>> len(‘Jim\’s example:\t done.\n’)  
??????????  
>>> print(“abc\n”*4)  
??????????  
??????????  
...?  
>>> “hello” - “llo”  
??????????  

LECTURE 01-2: PYTHON SCRIPTING

AN INFORMAL QUIZ (CONT'D)
>>> int(-1.375)  
??????????  
>>> 40 / 5  
??????????  
>>> float(40 / 5)  
??????????  
>>> print(input("hello") + input(“goodbye”))  
??????????  
>>> ???????????  
 * * * * * *
 * * * * *
 * * * * * *
 * * * * *
 * * * * * *
 * * * * *
 * * * * * *
 * * * * *
 * * * * * *  
>>>  

LECTURE 01-2: PYTHON SCRIPTING

I then hit
the 6 key,
the RETURN key,
the 7 key, and
the RETURN key.

SUMMARY
▸So far, three kinds of statements:

•print statement

• assignment statement

•import statement

▸Several built-in functions

•input
• conversions: str, int, float

•abs, min, max, pow, and many more from the math library

•len
•type

LECTURE 01-2: PYTHON SCRIPTING

SUMMARY (CONT'D)
▸Binary operations (so far)

• for integers: + - * // % **

• for floats: + - * / **

• for strings: + * %

LECTURE 01-2: PYTHON SCRIPTING

SUMMARY (CONT'D)
▸The Python interpreter can be run interactively or not.

•When interactive, you type in a statement or an expression.

➡ When a statement is entered, it gets executed.

✦ If there is any output, it appears on subsequent lines.

➡When an expression is entered, it gets evaluated.

✦ The value that results is displayed on the next line.

•When not interactive, Python just loads and runs a script.

➡Its code is executed, line by line (statement followed by statement).

LECTURE 01-2: PYTHON SCRIPTING

READINGS; NEXT WEEK
▸This week's lecture material can be supplemented with:

•Reading: TP Ch. 1 and 2; CP Ch 1.1-1.2

▸Next week we'll

➡try the conditional statement (i.e. if) in Tuesday's lab

➡define functions (i.e. def ...) in Wednesday's lecture

•Reading:

✦ TP Ch. 3, 6 (functions); TP Chs 4.1-4.8 (conditionals)

✦CP 1.3-1.4

LECTURE 01-2: PYTHON SCRIPTING

READINGS; NEXT WEEK
▸This week's lecture material can be supplemented with:

•Reading: TP Ch. 1 and 2; CP Ch 1.1-1.2

▸Next week we'll

➡try the conditional statement (i.e. if) in Tuesday's lab

➡define functions (i.e. def ...) in Wednesday's lecture

•Reading:

✦ TP Ch. 3, 6 (functions); TP Chs 4.1-4.8 (conditionals)

✦CP 1.3-1.4

LECTURE 01-2: PYTHON SCRIPTING
"Think Python" text

"Composing Programs" text

READINGS; NEXT WEEK
▸This week's lecture material can be supplemented with:

•Reading: TP Ch. 1 and 2; CP Ch 1.1-1.2

▸Next week we'll

➡try the conditional statement (i.e. if) in Tuesday's lab

➡define functions (i.e. def ...) in Wednesday's lecture

•Reading:

✦ TP Ch. 3, 6 (functions); TP Chs 4.1-4.8 (conditionals)

✦CP 1.3-1.4

▸No lecture MONDAY. Happy labor day!

LECTURE 01-2: PYTHON SCRIPTING
"Think Python" text

"Composing Programs" text

"FLOW OF CONTROL"
Recall: our animation of the "circle area to radius" calculation...

The interpreter goes through the code line-by-line, tracking where it’s at with
an instruction pointer.

➡ The movement of that pointer is called the program’s flow of control.

▸When write code with conditional statements and loops, we’ll see program
flow that’s not just top to bottom.
➡ Lines might get repeatedly executed, or lines might get skipped.

LECTURE 01-2: CONDITIONS

"BRANCHING"
▸Here is an example of a conditional (or "if") statement:

pi = 3.14159
area = float(input("Circle area? "))
if area < 0.0:
 print("That’s not an area.")
else:
 radius = (area / pi) ** 0.5
 print("That circle’s radius is "+str(radius)+".")  

▸Depending on the value of area, either the first print or the second
print will execute.
➡ The other one will get skipped.

LECTURE 01-2: CONDITIONS

"LOOPING"
▸Here is an example of a looping "while" statement:

pi = 3.14159
area = float(input("Circle area? “))
while area < 0.0:
 area = float(input(“Not an area. Try again:”))
radius = (area / pi) ** 0.5
print("That circle’s radius is “+str(radius)+”.”)  

▸Because of that while statement, the re-prompting and re-input of an
area with that second input can be repeatedly executed.
➡ Lines 3 and 4 are repeated until the user enters a good area value.

LECTURE 01-2: CONDITIONS

CONDITION EXPRESSIONS COMPUTE A BOOL VALUE
>>> 345 < 10  
False  
>>> 345 == 300 + 50 - 5  
True  
>>> type(True)
<class 'bool'>
>>> type(False)
<class 'bool'>  
>>> x = 57
>>> (x > 0) and (x <= 100)  
True
>>> (x <= 0) or (x > 100)  
False
>>> not (345 < 10)  
True
>>> not ((x <= 0) or (x > 100))  
True  
 

LECTURE 01-2: CONDITIONS

▸Python allows us to reason about values and act on them conditionally.
▸For example, consider this script:

 x = float(input("Enter a value: "))  
 if x < 0:  
 abs_x = -x))  
 else:  
 abs_x = x
 print("The absolute value of it is " + str(abs_x))  

 

LECTURE 01-2: CONDITIONAL STATEMENTS

THE "IF-ELSE" CONDITIONAL STATEMENT

▸Python allows us to reason about values and act on them conditionally.
▸For example, consider this script:

 x = float(input("Enter a value: "))  
 if x < 0:  
 abs_x = -x))  
 else:  
 abs_x = x
 print("The absolute value of it is " + str(abs_x))  

▸Below is it in use:
% python3 absolute.py
Enter a value: -5.5  
The absolute value of it is 5.5
% python3 absolute.py
Enter a value: 105.77  
The absolute value of it is 105.77
% python3 absolute.py
Enter a value: 0.0  
The absolute value of it is 0.0

 

THE "IF-ELSE" CONDITIONAL STATEMENT
LECTURE 01-2: CONDITIONAL STATEMENTS

▸Python allows us to reason about values and act on them conditionally.
▸For example, consider this script:

 x = float(input("Enter a value: "))  
 if x < 0:  
 abs_x = -x))  
 else:  
 abs_x = x
 print("The absolute value of it is " + str(abs_x))  

▸When fed a negative value, it prints the value with its sign flipped.
➡I.e. the positive value with the same magnitude. -5.5 ~> 5.5

▸Otherwise, if positive or 0.0, it just prints that value.
 

THE "IF-ELSE" CONDITIONAL STATEMENT
LECTURE 01-2: CONDITIONAL STATEMENTS

Below gives a template for conditional statements:

if condition-expression:
 lines of statements executed if the condition holds
 ...
else:
 lines of statements executed if the condition does not hold
 ...
lines of code executed after, in either case

 

SYNTAX: IF-ELSE STATEMENT
LECTURE 01-2: CONDITIONAL STATEMENTS

▸Python allows us to reason about values and act on them conditionally.
▸For example, consider this script:

 x = float(input("Enter a value: "))  
 if x < 0:  
 abs_x = -x))  
 else:  
 abs_x = x
 print("The absolute value of it is " + str(abs_x))  

When the script is run, the if code gets executed as follows:
▸Python first checks the condition before the colon.

➡ If the condition is True, it executes the first return statement.
➡ If the condition is False, it executes the second return statement.

This is the one sitting under the else line.
 

CONDITIONAL STATEMENT EXECUTION
LECTURE 01-2: CONDITIONAL STATEMENTS

▸Python allows us to reason about values and act on them conditionally.
▸For example, consider this script:

 x = float(input("Enter a value: "))  
 if x < 0:  
 abs_x = -x))  
 else:  
 abs_x = x
 print("The absolute value of it is " + str(abs_x))  

▸You could maybe say that if-else gives Python code “intelligence.”
➡ It reasons about the value of x and behaves one way or the other.

▸The code is smart!
 

CONDITIONAL STATEMENT EXECUTION
LECTURE 01-2: CONDITIONAL STATEMENTS

Below gives a template for conditional statements:

if condition-expression:
 lines of statements executed if the condition holds
 ...
else:
 lines of statements executed if the condition does not hold
 ...
lines of code executed after, in either case

▸Like function def, we use indentation to indicate the "true" block of code
and the "false" block of code.

SYNTAX: IF-ELSE STATEMENT
LECTURE 01-2: CONDITIONAL STATEMENTS

▸Python allows us to reason about values and act on them conditionally.
▸For example, consider this script:

 x = float(input("Enter a value: "))  
 if x < 0:  
 abs_x = -x))  
 else:  
 abs_x = x
 print("The absolute value of it is " + str(abs_x))  

▸You could maybe say that if-else gives Python code “intelligence.”
➡ It reasons about the value of x and behaves one way or the other.

▸The code is smart!
 

CONDITIONAL STATEMENT EXECUTION
LECTURE 01-2: CONDITIONAL STATEMENTS

▸Here is a script that acts differently, depending on the parity of a number.

 n = int("Enter an integer: ")  
 if n % 2 == 0:  
 print(“even”)  
 else:  
 print(“odd”)
 

▸The equality test == is used to compare...
• the left-hand expression’s value n % 2
•with the right-hand expression’s value 0.
▸It is used to check whether they are equal.

 

CHECKING PARITY
LECTURE 01-2: CONDITIONAL STATEMENTS

▸Here is a script that acts differently, depending on the parity of a number.

 n = int("Enter an integer: ")  
 if n % 2 == 0:  
 print(“even”)  
 else:  
 print(“odd”)
 

▸The equality test == is used to compare...
• the left-hand expression’s value n % 2
•with the right-hand expression’s value 0.
▸It is used to check whether they are equal.

 

CHECKING PARITY
LECTURE 01-2: CONDITIONAL STATEMENTS

▸Here is a script that acts differently, depending on the parity of a number.

 n = int("Enter an integer: ")  
 if n % 2 == 0:  
 print(“even”)  
 else:  
 print(“odd”)
 

▸Below is it in use:
% python3 parity.py
Enter an integer: -10  
odd
% python3 parity.py
Enter an integer: 0  
even

 

CHECKING PARITY
LECTURE 01-2: CONDITIONAL STATEMENTS

▸ The full range of comparisons you can make are:

== equality
!= inequality
< less than
> greater than
>= greater than or equal
<= less than or equal

 

COMPARISON OPERATIONS
LECTURE 01-2: CONDITIONAL STATEMENTS

▸ The function below determines whether an integer rating is from 1 to
100:

 rating = int(input("Enter a rating: "))  
 if (rating > 0) and (rating <= 100):  
 print("Thanks for that rating!")  
 else:  
 print("That is not a rating.")
 

 

EXPRESSING COMPLEX CONDITIONS
LECTURE 01-2: CONDITIONAL STATEMENTS

▸ The function below determines whether an integer rating is from 1 to
100:

 rating = int(input("Enter a rating: "))  
 if (rating > 0) and (rating <= 100):  
 print("Thanks for that rating!")  
 else:  
 print("That is not a rating.")
 

▸This is using the logical connective and to check whether both conditions
hold. This is their logical conjunction.

 

EXPRESSING COMPLEX CONDITIONS: AND
LECTURE 01-2: CONDITIONAL STATEMENTS

▸ The function below determines whether an integer rating is from 1 to
100:

 rating = int(input("Enter a rating: ")  
 if (rating <= 0) or (rating > 100):  
 print("That is not a rating.")  
 else:  
 print("Thanks for that rating!")
 

▸This is using the logical connective and to check whether both conditions
hold. This is their logical conjunction.
▸There is also the connective or for checking whether at least one condition

holds. It described logical disjunction.

EXPRESSING COMPLEX CONDITIONS: OR
LECTURE 01-2: CONDITIONAL STATEMENTS

▸ The function below determines whether an integer rating is from 1 to
100:

 rating = int(input("Enter a rating: "))  
 if not ((rating <= 0) or (rating > 100)):  
 print("Thanks for that rating!")  
 else:  
 print("That is not a rating.")  

▸This is using the logical connective and to check whether both conditions
hold. This is their logical conjunction.
▸There is also the connective or for checking whether at least one condition

holds. It described logical disjunction.
▸There is also logical negation using not.

EXPRESSING COMPLEX CONDITIONS: NOT
LECTURE 01-2: CONDITIONAL STATEMENTS

READINGS; NEXT WEEK
▸This week's lecture material can be supplemented with:

•Reading: TP Ch. 1 and 2; CP Ch 1.1-1.2

▸Next week we'll

➡try the conditional statement (i.e. if) in Tuesday's lab

➡define functions (i.e. def ...) in Wednesday's lecture

•Reading:

✦ TP Ch. 3, 6 (functions); TP Chs 4.1-4.8 (conditionals)

✦CP 1.3-1.4

▸No lecture MONDAY. Happy labor day!

"Think Python" text

"Composing Programs" text

LECTURE 01-2: CONDITIONAL STATEMENTS

