MORE PYTHON

LECTURE 01-2:
EXECUTING A PYTHON SCRIPT
HOURS & MINUTES EXERCISE

JIM FIX, REED COLLEGE CSCI 121

SUMMARY OF PYTHON S0 FAR

The Python interpreter can be run interactively or not.

When interactive, you type in a statement or an expression.

When a statement is entered, it gets executed.

If there is any output, it appears on subsequent lines.
When an expression is entered, it gets evaluated.

The value that results is displayed on the next line.

When not interactive, Python just loads and runs a script.

Its code is executed, line by line (statement followed by statement).

LECTURE 01-2: PYTHON SCRIPTING

SUMMARY OF PYTHON S0 FAR

»So far, three kinds of statements:
°* print statement
* assignment statement

°* import statement

SUMMARY OF PYTHON S0 FAR

So far;three- four (um, ish) kinds of statements:

print statement
assignment statement

import statement

the “input statement,” an assignment statement like one of these below.
to get an integer input from the program’s user:
variable = int (input (prompt-string))
to get a floating point value...
variable = float (input (prompt-string))
to get a string of text...

variable = input (prompt-string))

LECTURE 01-2: PYTHON SCRIPTING

BACK TO PYTHON SCRIPTING

» Consider this Python program:

pi = 3.14159

area = float(input("Circle area? "))

radius = (area / pi) ** 0.5

print ("The radius of that circle is "+str(radius)+" units.")

BACK TO PYTHON SCRIPTING

Consider this Python program:

pi = 3.14159

area = float(input("Circle area? "))

radius = (area / pi) ** 0.5

print ("The radius of that circle is "+str(radius)+" units.")

This has is 3 assignment statements and a print statement.

The first defines/assigns the variable named pi.

The second gets a floating point value (a “calculator number”) as input,
assigned to area. We compute that using an arithmetic formula.

The functions £1oat and str convert values of one type to values of
another type.

RECALL: PYTHON EXECUTION

Let's take a look at execution of this script:

pi = 3.14159

area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

The Python interpreter runs the code, line by line, from the top line to the
bottom line.

RECALL: PYTHON EXECUTION globalframe veeeeeeesssseen E

Let's take a look at this script:

»pi = 3.14159
area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
It also creates named memory slots for each variable that gets introduced.
That named slot stores a calculated value.
Avariable's associated value is changed with each assignment statement.

RECALL: PYTHON EXECUTION A E

Let's take a look at this script:

pi = 3.14159
*area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
It also creates named memory slots for each variable that gets introduced.
That named slot stores a calculated value.
Avariable's value is changed with each assignment statement.

RECALL: PYTHON EXECUTION globalframe vveeeeeesssseen E

. area: 314.159
Let's take a look at this script: g?gﬁ?u& 100

pi = 3.14159
I area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
It also creates named memory slots for each variable that gets introduced.
That named slot stores a calculated value.
Avariable's value is changed with each assignment statement.

RECALL: PYTHON EXECUTION globalframe vveeeeeesssseen E

. area: 314.159
Let's take a look at this script: E?arg?us: 100

pi = 3.14159
area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
»print("That circle’s radius is "+str(radius)+".")

What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
It also creates named memory slots for each variable that gets introduced.
That named slot stores a calculated value.
Avariable's value is changed with each assignment statement.

RECALL: PYTHON EXECUTION globalframe vveeeeeesssseen E

. : = area: 314.159
Let's take a look at this script: radius: 10.0
pi = 3.14159
area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
»print("That circle’s radius is "+str(radius)+".")

What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.

It also creates named memory slots for each variable that gets introduced.
That named slot stores a calculated value.

Avariable's value is changed with each assignment statement.
The collection of variable slots of a script is called the global frame

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION

» Let's take a look at this script:

pi = 3.14159

area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
' print ("That circle’s radius is "+str(radius)+".")

» If you ever want to "watch" a Python program, try out The Python Tutor
https://pythontutor.com/

LECTURE 01-2: PYTHON SCRIPTING

IMPORTS

» Let's take a look at this script:

pi = 3.14159

area = float(input("Circle area? "))

radius = (area / pi) ** 0.5

print ("That circle’s radius is "+str(radius)+".")

LECTURE 01-2: PYTHON SCRIPTING

IMPORTS

» Let's take a look at this script:

from math import pi, sqrt

area = float(input("Circle area? "))

radius = sqrt(area / pi)

print ("That circle’s radius is "+str(radius)+".")

SUMMARY OF PYTHON S0 FAR

So far, three kinds of statements:
print statement
assignment statement
import statement
Several built-in functions
input
conversions: str, int, float
abs, min, max, pow, and many more from the math library

len

type

LECTURE 01-2: PYTHON SCRIPTING

SUMMARY (CONT'D)

»Binary operations (so far)
forintegers: + - * // % **
oforfloats: + - * / *%

o forstrings: + *

LECTURE 01-2: PYTHON SCRIPTING

SUMMARY (CONT'D)

»Binary operations (so far)
forintegers: + - * // % **
oforfloats: + - * / *%

o forstrings: + *

LECTURE 01-2: PYTHON SCRIPTING

SUMMARY (CONT'D)

»Binary operations (so far)
forintegers: + - * // % *%
oforfloats: + - * / *%

o forstrings: + *

LECTURE 01-2: PYTHON SCRIPTING

EXERCISE: 24 HOUR CLOCK

» Let's write a script that does the following:

Compute the time for a 24-hour clock after some number of minutes
have passed from the current time.

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Here is that full script:

hours = int (input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes

time passes = int(input(“Minutes that pass? “))
time = time + time passes

hours = time // 60 % 24

o

minutes = time % 60

print (“The clock reads: “, end=*“")
print (hours, “hours and”, minutes, “minutes”, end="")
print(“."”)

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Here is that full script:

hours = int (input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes

time passes = int(input(“Minutes that pass? “))
time = time + time passes

hh = str(time // 60 % 24)
mm = str(time % 60)

hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm

print(hh + “:” + mm)

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Python execution:

hours = int (input (“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? *“))
time = hours * 60 + minutes

time passes = int(input(“Minutes that pass? “))
time = time + time passes

hh = str(time // 60 % 24)

mm = str(time % 60)

hh = “0” * (2-len(hh)) + hh

mm = “0” * (2-len(mm)) + mm

print(hh + “:” + mm)

» Console interaction:
terminal% python3 clock24.py|

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Pyvthon execution:

hours = int (input (“Hours on the clock? “))

minutes = int(input (“Minutes on the clock? “))

time = hours * 60 + minutes

time passes = int(input(“Minutes that pass? “))

time = time + time passes

hh = str(time // 60 % 24)

mm = str(time % 60)

hh = “0” * (2-len(hh)) + hh global frame

mm = 407 * (2-len(mm)) + mm iniiiassassassassecseccaay
print(hh + “:” + mm)

» Console interaction:
terminal% python3 clock24.py

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Python execution:

hours = int (input (“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? *“))
time = hours * 60 + minutes

time passes = int(input(“Minutes that pass? “))
time = time + time passes

hh = str(time // 60 % 24)

mm = str(time % 60)

hh = “0” * (2-len(hh)) + hh global frame

mm = “0” * (2-len(mm)) + mm : hours:
print(hh + “:” + mm) :

» Console interaction:

terminal% python3 clock24.py
Hours on the clock? |

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Python execution:
' hours = int (input (“Hours on the clock? “))

minutes = int(input(“Minutes on the clock? *“))

time = hours * 60 + minutes

time passes = int(input(“Minutes that pass? “))

time = time + time passes

hh = str(time // 60 % 24)

mm = str(time % 60)

hh = #0% * (2-len(hh)) + hh globalframe @ @ e

mm = “0” * (2-len(mm)) + mm hours: 10
print(hh + “:” + mm) '

» Console interaction:

terminal% python3 clock24.py
Hours on the clock? 10

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Python execution:
I hours = int (input (“Hours on the clock? “))

minutes = int(input(“Minutes on the clock? *“))
time = hours * 60 + minutes

time passes = int(input(“Minutes that pass? “))
time = time + time passes

hh = str(time // 60 % 24)

mm = str(time % 60)

hh = “0Q0" * (z_len(hh)) + hh globalframe
mm = “0” * (2-len(mm)) + mm hours: 10 '
print(hh + “:” + mm) ! minutes:

» Console interaction:

terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? |

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Python execution:

hours = int (input (“Hours on the clock? “))

minutes = int(input(“Minutes on the clock? *“))
*time = hours * 60 + minutes

time passes = int(input(“Minutes that pass? “))

time = time + time passes

hh = str(time // 60 % 24)

o

mm = str(time % 60)

hh = “0” * (2-len(hh)) + hh global frame
mm = “0” * (2-len(mm)) + mm hmm&10 g
print(hh + “:” + mm) minutes: 16

» Console interaction:

terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Python execution:

hours = int (input (“Hours on the clock? “))

minutes = int(input(“Minutes on the clock? *“))
»time = hours * 60 + minutes

time passes = int(input(“Minutes that pass? “))

time = time + time passes

hh = str(time // 60 % 24)

o

mm = str(time % 60)

hh = “0” * (2-len(hh)) + hh global frame
mm = “0” * (2-len(mm)) + mm hmm&10 g
print(hh + “:” + mm) minutes: 16

. . : time:
» Console interaction: '
terminal% python3 clock24.py

Hours on the clock? 10
Minutes on the clock? 16

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Python execution:

hours = int (input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? *“))

time = hours * 60 + minutes

*time_passes = int(input (“Minutes that pass? “))
time = time + time passes
hh = str(time // 60 % 24)

o

mm = str(time % 60)

hh = “0” * (2-len(hh)) + hh global frame
mm = “0” * (2-len(mm)) + mm hmm&10 g
print(hh + “:” + mm) minutes: 16

) . : time: 616
» Console interaction: :
terminal% python3 clock24.py

Hours on the clock? 10
Minutes on the clock? 16

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Python execution:

hours = int (input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? *“))

time = hours * 60 + minutes
» time passes =

time = time +
hh = str(time
mm = str(time

hh = “0"” * (2-
mm = “0” * (2-

int (input (“Minutes that pass? “))

time passes
// 60 % 24)

3 60)
len(hh)) + hh
len(mm)) + mm

print(hh + “:” + mm)

» Console interaction:

terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? |

global frame

= hours: 10

: minutes: 16

: time: 616
-time__passes:

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Python execution:

hours = int (input (“Hours on the clock? “))

minutes = int(input (“Minutes on the clock? “))
time = hours * 60 + minutes
int (input (“Minutes that pass? “))

time passes =
*time = time +
hh = str(time
mm = str(time

hh = “0"” * (2-
mm = “0” * (2-

time passes
// 60 % 24)

3 60)
len(hh)) + hh
len(mm)) + mm

print(hh + “:” + mm)

» Console interaction:

terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51

global frame

= hours: 10

: minutes: 16

: time: 616
-time_passes: 31

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Python execution:

hours = int (input (“Hours on the clock? “))

minutes = int(input (“Minutes on the clock? “))
time = hours * 60 + minutes
int (input (“Minutes that pass? “))

time passes =
*time = time +
hh = str(time

mm = str(time

hh = “0"” * (2-
mm = “0” * (2-

time passes
// 60 % 24)

3 60)
len(hh)) + hh
len(mm)) + mm

print(hh + “:” + mm)

» Console interaction:

terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51

global frame

= hours: 10

: minutes: 16

: time: 616
-time_passes: 31

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Python execution:

hours = int (input (“Hours on the clock? “))

minutes = int(input (“Minutes on the clock? “))
time = hours * 60 + minutes
int (input (“Minutes that pass? “))

time passes =

time = time +
hh = str(time

mm = str(time

hh = “0"” * (2-
mm = “0” * (2-

time passes
// 60 % 24)

3 60)
len(hh)) + hh
len(mm)) + mm

print(hh + “:” + mm)

» Console interaction:

terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51

global frame

= hours: 10

: minutes: 16

: time: 667
-time_passes: 31

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Python execution:

hours = int (input (“Hours on the clock? “))

minutes = int(input (“Minutes on the clock? “))
time = hours * 60 + minutes
int (input (“Minutes that pass? “))

time passes =

time = time +
» hh = str(time

mm = str(time

hh = “0"” * (2-
mm = “0” * (2-

time passes
// 60 % 24)

3 60)
len(hh)) + hh
len(mm)) + mm

print(hh + “:” + mm)

» Console interaction:

terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51

global frame

= hours: 10

: minutes: 16

: time: 667
-time_passes: 31
: hh

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Python execution:

hours = int (input (“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? *“))
time = hours * 60 + minutes

time passes = int(input(“Minutes that pass? “))
time = time + time passes

hh = str(time // 60 % 24)

mm = str(time % 60)

hh = “0” * (2-len(hh)) + hh global frame

mm = “Q" * (2—1611(111111)) + mm Ehours:"]
print(hh + “:” + mm) inmmm&16
- time: 667
» Console interaction: *time_passes: 51

terminal% python3 clock24.py ihm“ll“

Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Python execution:

hours = int (input (“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? *“))
time = hours * 60 + minutes

time passes = int(input(“Minutes that pass? “))
time = time + time passes

hh = str(time // 60 % 24)

»mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh global frame

mm = 07 * (2-len(mm)) + mm *hours: 10
print(hh + “:7 + mm) inmmm&16
- time: 667
» Console interaction: étime_passes: 51
terminal% python3 clock24.py i:;ﬂllu

Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Python execution:

hours = int (input (“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? *“))
time = hours * 60 + minutes

time passes = int(input(“Minutes that pass? “))
time = time + time passes

hh = str(time // 60 % 24)

mm = str(time % 60)

hh “0” * (2-len(hh)) + hh global frame

mm = “07 * (2-len(mm)) + mm : hours: 10
print(hh + “:7 + mm) inmmm&16
- time: 667
» Console interaction: étime_passes: 51
terminal% python3 clock24.py thh:" 11"

Hours on the clock? 10 smm:"7 "

Minutes on the clock? 16
Minutes that pass? 51

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Python execution:

hours = int (input (“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? *“))
time = hours * 60 + minutes

time passes = int(input(“Minutes that pass? “))
time = time + time passes

hh = str(time // 60 % 24)

S

mm = str(time % 60)
»hh = “0” * (2-len(hh)) + hh global frame

mm = “07 * (2-len(mm)) + mm : hours: 10
print(hh + “:7 + mm) inmmm&16
- time: 667
» Console interaction: étime_passes: 51
terminal% python3 clock24.py thh:" 11"

Hours on the clock? 10 smm:"7 "

Minutes on the clock? 16
Minutes that pass? 51

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Python execution:

hours = int (input (“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? *“))
time = hours * 60 + minutes

time passes = int(input(“Minutes that pass? “))
time = time + time passes

hh = str(time // 60 % 24)

mm = str(time % 60)

hh = “0” * (2-len(hh)) + hh global frame
mm = “0” * (2-len(mm)) + mm hoursm
print(hh + “:* + mm) inmmm&16
- time: 667
» Console interaction: étime_passes: 51
terminal% python3 clock24.py thh:" 11"

Hours on the clock? 10 smm:"7 "

Minutes on the clock? 16
Minutes that pass? 51

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Python execution:

hours = int (input (“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? *“))
time = hours * 60 + minutes

time passes = int(input(“Minutes that pass? “))
time = time + time passes

hh = str(time // 60 % 24)

mm = str(time % 60)

hh = “0” * (2-len(hh)) + hh global frame
' am = 40" % (2-len(mm)) + mm hours10
print(hh + “:" + mm) : minutes: 16 E
- time: 667
» Console interaction: étime_passes: 51
:hh:“11°

terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51

mm:“7"

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Python execution:

hours = int (input (“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? *“))
time = hours * 60 + minutes

time passes = int(input(“Minutes that pass? “))
time = time + time passes

hh = str(time // 60 % 24)

mm = str(time % 60)

hh = “0” * (2-len(hh)) + hh global frame

mm = “07 * (2-len(mm)) + mm : hours: 10
print(hh + “:7 + mm) inmmm&16
- time: 667
» Console interaction: étime_passes: 51
terminal% python3 clock24.py thh:" 11"

Hours on the clock? 10 :mm: 07 °

Minutes on the clock? 16
Minutes that pass? 51

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Python execution:

hours = int (input (“Hours on the clock? “))

minutes = int(input(“Minutes on the clock? *“))

time = hours * 60 + minutes

time passes = int(input(“Minutes that pass? “))

time = time + time passes

hh = str(time // 60 % 24)

mm = str(time % 60)

= B e (2 {lla)) 5 e globalframe @ e,

mm = “0” * (2-len(mm)) + mm EhOUI‘S:"] :
»print(hh + “:” + mm) iminutes:16

: time: 667

» Console interaction: iime_passes: 51
thh:"11°

terminal% python3 clock24.py - o
mm: 07

Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Python execution:

hours = int (input (“Hours on the clock? “))
minutes = int(input (“Minutes on the clock? “))
time = hours * 60 + minutes

time passes = int(input(“Minutes that pass? “))
time = time + time passes

hh = str(time // 60 % 24)

mm = str(time % 60)

hh = “0” * (2-len(hh)) + hh globalframe @ e
mm = “0” * (2-len(mm)) + mm hmm&10 .
print(hh + “:” + mm) : minutes: 16

» “time: 667

» Console interaction: Htime_passes: 51
:hh:“ 11"

terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51

11:07

mm: “07 “

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK

» Python execution:

hours = int (input (“Hours on the clock? “))
minutes = int(input (“Minutes on the clock? “))
time = hours * 60 + minutes

time passes = int(input(“Minutes that pass? “))
time = time + time passes

hh = str(time // 60 % 24)

mm = str(time % 60)

hh = “0” * (2-len(hh)) + hh

mm = “0” * (2-len(mm)) + mm

print(hh + “:” + mm)

» Console interaction:

terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51

11:07

terminalg |

RECALL: PYTHON EXECUTION

Let's take a look at this script:

pi = 3.14159

area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION

» Let's take a look at this script:

+pi = 3.14159
area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

» What we know is that the Python interpreter runs the code, line by line,

from the top line to the bottom line.
)

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION

» Let's take a look at this script:

pi = 3.14159
»area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

» What we know is that the Python interpreter runs the code, line by line,

from the top line to the bottom line.
)

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION

» Let's take a look at this script:

pi = 3.14159
I area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

» What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION

» Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
»print("That circle’s radius is "+str(radius)+".")

» What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION

» Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
»print("That circle’s radius is "+str(radius)+".")

» If you ever want to "watch" a Python program, try out The Python Tutor
https://pythontutor.com/

» Using it, you'll see something like this...

RECALL: PYTHON EXECUTION globalframe veeeeeeesssseen E

Let's take a look at this script:

»pi = 3.14159
area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
It also creates named memory slots for each variable that gets introduced.
That named slot stores a calculated value.
Avariable's associated value is changed with each assignment statement.

RECALL: PYTHON EXECUTION A E

Let's take a look at this script:

pi = 3.14159
*area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
It also creates named memory slots for each variable that gets introduced.
That named slot stores a calculated value.
Avariable's value is changed with each assignment statement.

RECALL: PYTHON EXECUTION globalframe vveeeeeesssseen E

. area: 314.159
Let's take a look at this script: g?gﬁ?u& 100

pi = 3.14159
I area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
It also creates named memory slots for each variable that gets introduced.
That named slot stores a calculated value.
Avariable's value is changed with each assignment statement.

RECALL: PYTHON EXECUTION globalframe vveeeeeesssseen E

. area: 314.159
Let's take a look at this script: E?arg?us: 100

pi = 3.14159
area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
»print("That circle’s radius is "+str(radius)+".")

What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
It also creates named memory slots for each variable that gets introduced.
That named slot stores a calculated value.
Avariable's value is changed with each assignment statement.

RECALL: PYTHON EXECUTION globalframe vveeeeeesssseen E

. : = area: 314.159
Let's take a look at this script: radius: 10.0
pi = 3.14159
area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
»print("That circle’s radius is "+str(radius)+".")

What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.

It also creates named memory slots for each variable that gets introduced.
That named slot stores a calculated value.

Avariable's value is changed with each assignment statement.
The collection of variable slots of a script is called the global frame

CONDITIONAL
EXECUTION

LECTURE 02-1
THE CONDITIONAL STATEMENT
THE BOOLEAN TYPE

JIM FIX, REED COLLEGE CSCI 121

"FLOW OF CONTROL"

our animation of the calculation...

The interpreter goes through the code line-by-line, tracking where it's at with
an instruction pointer.
The movement of that pointer is called the program's flow of control.

When write code with conditional statements and loops, we'll see program
flow that's not just top to bottom.
Lines might get repeatedly executed, or lines might get skipped.

LECTURE 01-2: CONDITIONAL EXECUTION

RECALL: STRAIGHT LINE PYTHON EXECUTION

»pi = 3.14159
area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

global frame

LECTURE 01-2: CONDITIONAL EXECUTION

RECALL: STRAIGHT LINE PYTHON EXECUTION

pi = 3.14159

area = float(input("Circle area? "))

radius = (area / pi) ** 0.5

print ("That circle’s radius is "+str(radius)+".")

=)

global frame

LECTURE 01-2: CONDITIONAL EXECUTION

RECALL: STRAIGHT LINE PYTHON EXECUTION

pi = 3.14159

area = float(input("Circle area? "))

radius = (area / pi) ** 0.5

print ("That circle’s radius is "+str(radius)+".")

=)

global frame

p
= area: 314.159
radius: 10.0

LECTURE 01-2: CONDITIONAL EXECUTION

RECALL: STRAIGHT LINE PYTHON EXECUTION

pi = 3.14159

area = float(input("Circle area? "))

radius = (area / pi) ** 0.5

print ("That circle’s radius is "+str(radius)+".")

=)

global frame

p
= area: 314.159
radius: 10.0

"BRANCHING"

Here is an example of a conditional (or "if") statement:

pi = 3.14159

area = float(input("Circle area? "))
if area < 0.0:

print ("That’s not a valid area.")
else:

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

Depending on the value of area, either the first print or the second
print will execute.

The other one will get skipped.

"LOOPING”

Here is an example of a looping "while" statement:

pi = 3.14159
area = float(input("Circle area? “))
while area < 0.0:
print (“That’s not a valid area.”)
area = float(input(“Try again:”))
radius = (area / pi) ** 0.5
print ("That circle’s radius is “+str(radius)+”.")

Because of that whi 1 e statement, the re-prompting and re-input of an
area with that second input can be repeatedly executed.
Lines 3 and 4 are repeated until the user enters a good area value.

LECTURE 01-2: CONDITIONAL EXECUTION

CONDITION EXPRESSIONS COMPUTE A BOOL VALUE

>>> 345 < 10

False

>>> 345 == 300 + 50 - 5
True

>>> type(True)

<class 'bool'>

>>> type(False)

<class 'bool'>

>>> x = 57

>>> (x > 0) and (x <= 100)
True

>>> (x <= 0) or (x > 100)
False

>>> not (345 < 10)

True

>>> not ((x <= 0) or (x > 100))
True

LECTURE 01-2: CONDITIONAL EXECUTION

THE "IF-ELSE™ CONDITIONAL STATEMENT

» Python allows us to reason about values and act on them conditionally.
» For example, consider this script:

x = float(input("Enter a value: "))
if x < O:

abs x = -x
else:

abs x = x
print ("The absolute value of it is " + str(abs_x))

LECTURE 01-2: CONDITIONAL EXECUTION

THE "IF-ELSE™ CONDITIONAL STATEMENT

» Python allows us to reason about values and act on them conditionally.
» For example, consider this script:

x = float(input("Enter a value: "))
if x < O:

abs x = -x
else:

abs x = x
print ("The absolute value of it is " + str(abs_x))

% python3 absolute.py

Enter a value: -5.5

The absolute value of it is 5.5

% python3 absolute.py

Enter a value: 105.77

The absolute value of it is 105.77
% python3 absolute.py

Enter a value: 0.0

The absolute value of it is 0.0

THE "IF-ELSE" CONDITIONAL STATEMENT

Python allows us to reason about values and act on them conditionally.
For example, consider this script:

x = float(input("Enter a value: "))
if x < O:

abs x = -x
else:

abs x = x

print ("The absolute value of it is " + str(abs_x))

When fed a negative value, it prints the value with its sign flipped.
|.e. the positive value with the same magnitude. -5.5 ~>5.5
Otherwise, if positive or 0 . 0, it just prints that value.

LECTURE 01-2: CONDITIONAL EXECUTION

SYNTAX: IF-ELSE STATEMENT

Below is a template for conditional statements:

if condition-expression :
lines of statements executed if the condition holds

else:
lines of statements executed if the condition

lines of code executed after, in either case

CONDITIONAL STATEMENT EXECUTION

Python allows us to reason about values and act on them conditionally.
For example, consider this script:

x = float(input("Enter a value: "))
if x < O:

abs x = -x
else:

abs x = x
print ("The absolute value of it is " + str(abs_x))

When the scriptis run, the i £ code gets executed as follows:
Python first checks the condition before the colon.
If the condition is True, it executes the first ret urn statement.
If the condition is False, it executes the second return statement.
This is the one sitting under the else line.

CONDITIONAL STATEMENT EXECUTION

Python allows us to reason about values and act on them conditionally.
For example, consider this script:

x = float(input("Enter a value: "))
if x < O:
abs x = -x
else:
abs x = x
print ("The absolute value of it is " + str(abs x))

You could maybe say that i f-else gives Python code “intelligence.”
It reasons about the value of x and behaves one way or the other.

The code is smart!

LECTURE 01-2: CONDITIONAL EXECUTION

SYNTAX: IF-ELSE STATEMENT

Below is a template for conditional statements:

if condition-expression :
. lines of statements executed if the condition holds

else:

. lines of statements executed if the condition

lines of code executed after, in either case

» Use indentation to indicate the "true" code block and the "false" code block.

CONDITIONAL STATEMENT EXECUTION

Python allows us to reason about values and act on them conditionally.
For example, consider this script:

x = float(input("Enter a value: "))
if x < O:
abs x = -x
else:
abs x = x
print ("The absolute value of it is " + str(abs x))

You could maybe say that i f-else gives Python code “intelligence.”
It reasons about the value of x and behaves one way or the other.

The code is smart!

CHECKING PARITY

Here is a script that acts differently, depending on the parity of a number.

n = int("Enter an integer: ")
if n § 2 == 0:

print (“even”)
else:

print (“odd”)

The equality test == is used to compare...
the left-hand expression’svaluen % 2
with the right-hand expression’s value 0.

It is used to check whether they are equal.

LECTURE 01-2: CONDITIONAL EXECUTION

CHECKING PARITY

» Here is a script that acts differently, depending on the parity of a number.

n = int("Enter an integer: ")
if n & 2 ==

print (“even”)
else:

print (“odd”)

»Below is it in use:

% python3 parity.py
Enter an integer: -10
odd

% python3 parity.py
Enter an integer: 0
even

COMPARISON OPERATIONS

The full range of comparisons you can make are:

equality

inequality

less than

greater than

>= greater than or equal
<= lessthan or equal

vV A

LECTURE 01-2: CONDITIONAL EXECUTION

EXPRESSING COMPLEX CONDITIONS

» The code below determines whether an integer rat ing is from 1 to 100:

rating = int(input("Enter a rating: "))
if (rating > 0) and (rating <= 100):
print ("Thanks for that rating!")
else:
print ("That is not a rating.")

EXPRESSING COMPLEX CONDITIONS: AND

The code below determines whether an integer rating is from 1 to 100:
rating = int(input("Enter a rating: "))
if (rating > 0) and (rating <= 100):
print ("Thanks for that rating!")

else:
print ("That is not a rating.")

This is using the logical connective and to check whether both conditions
hold. This is their logical conjunction.

EXPRESSING COMPLEX CONDITIONS: OR

The code below determines whether an integer rating is from 1 to 100:

rating = int(input("Enter a rating: ")
if (rating <= 0) or (rating > 100):
print ("That is not a rating.")
else:
print ("Thanks for that rating!")

This is using the logical connective and to check whether both conditions
hold. This is their logical conjunction.

There is also the connective ox for checking whether at least one condition
holds. It described logical disjunction.

EXPRESSING COMPLEX CONDITIONS: NOT

The code below determines whether an integer rating is from 1 to 100:

rating = int(input("Enter a rating: "))
if not ((rating <= 0) or (rating > 100)):
print ("Thanks for that rating!")
else:
print ("That is not a rating.")

This is using the logical connective and to check whether both conditions
hold. This is their logical conjunction.

There is also the connective ox for checking whether at least one condition
holds. It described logical disjunction.

There is also logical negation using not.

LECTURE 01-2: CONDITIONAL EXECUTION

LOGIC CONNECTIVES ARE BOOLEAN OPERATORS

» The logical connectives and, or, and not can be thought of as operations
that act on boolean values and return a boolean value:

>>> (7 > 3) and (2 < 4)
True

>>> (4 < 2) and False
False

>>> (2 > 3) or (not (7 < 10))
False

>>> True and False
False

>>> True or False

True

>>> not (True or False)
False

LECTURE 01-2: CONDITIONAL EXECUTION

SHORT-CIRCUITED LOGIC CONNECTIVES

» Evaluation of and and or is short-circuited:
>>> x =0
>>> 45 / x

ERROR! ! !

>>> (x == 0) or ((45 / x) > 10)
True

>>> (x != 0) and ((45 / x) > 10)
False

» Python doesn't bother with the right of ox if the left is True.
» Python doesn't bother with the right of and if the leftis False.

»This means, for example, that and is executed like this:
if x != 0:
return (45 / x) > 10

else:
return False

LECTURE 01-2: CONDITIONAL EXECUTION

SYNTAX: IF-ELSE STATEMENT

Below is a template for conditional statements:

if condition-expression :
. lines of statements executed if the condition holds

else:

. lines of statements executed if the condition

lines of code executed after, in either case

» Use indentation to indicate the "true" code block and the "false" code block.

LECTURE 01-2: CONDITIONAL EXECUTION

NESTING CONDITIONAL STATEMENTS

» The code below is like some code in some autograder:

if on_time:

if all correct:

mesg = "Great work passing all the tests!\n"

mesg += "You've earned the points for this problem."”
else:

mesg = "To earn points, make sure all the tests pass.”

else:

if all correct:
mesg = "Great work making all the tests pass.\n"
mesg += "Sadly we can't offer you any points.\n"
mesg += "You submitted this after the deadline.”
else:
mesg = "Sorry! There’s still a problem. No points.”

print (mesgqg)

LECTURE 01-2: CONDITIONAL EXECUTION

SYNTAX: |F STATEMENT

Below is a template for conditional statements with no "else" block:

if condition-expression :
. lines of statements executed only if the condition holds

lines of code executed after, in either case

» Use indentation to indicate the "true" code block.

LECTURE 01-2: CONDITIONAL EXECUTION

CONDITIONAL STATEMENT WITH NO ELSE

» A different version of the absolute value script:

x = float(input("Enter a value: “))
if x < O:
X = =X

print ("The absolute value of it is "

+ str(x))

LECTURE 01-2: CONDITIONAL EXECUTION

CONDITIONAL STATEMENT WITH NO ELSE

» The code below is like some code in some autograder:

all correct = (passed == tested)
print ("Your code passed " + str(passed))
print (" out of " + str(tested) + "tests.")
if all correct:

print ("Your code passed all our tests!")

if not on time:
print ("But you submitted after the deadline.")

LECTURE 01-2: CONDITIONAL EXECUTION

SYNTAX: CASCADING IF-ELIF-...-ELSE STATEMENT

Below is a template for conditional statements:
if condition1:

. execute if condition1 holds

elif condition2:
. execute if condition1 but condition2 does

else:

. executed if

lines of code executed after, in all cases

LECTURE 01-2: CONDITIONAL EXECUTION

CASCADING IF STATEMENT

» Here is some other autograder code using the cascading conditional:

attempts = number previous submissions + 1
mesg = "Great work passing all the tests!\n"
mesg += "You submitted " + str(attempts) + " times.\n"

if attempts <= 2:
mesg += "You earned the full points.\n"
mesg += "Excellent!”

elif attempts <= 6:
mesg += "You earned 80% of the points.\n"
mesg += "Nicely done."

else:
mesg += "This is a few more times than we'd prefer.\n"

mesg += "We awarded half of the points."”

print (mesqg)

LECTURE 01-2: CONDITIONAL EXECUTION

SYNTAX: CASCADING IF-ELIF-...-ELIF STATEMENT

Below is a template for conditional statements:
if condition-1:

.execute if condition1 holds

elif condition-2:
.execute if condition1 but condition2 does

elif condition-n:
.execute if conditions 1 through (n-1) but condition-n does

lines of code executed after, in all cases

LECTURE 01-2: CONDITIONAL EXECUTION

CHECKING BOOLEAN VALUES

» Many beginning programmers are tempted to write this code:

all correct = (passed == tested)
print ("Your code passed " + str(passed))
print (" out of " + str(tested) + "tests.")

if all correct == True:
print ("Your code passed all our tests!")

if not on time:
print ("But you submitted after the deadline.")

LECTURE 02-2: CONDITIONAL EXECUTION

CHECKING BOOLEAN VALUES IS REDUNDANT

» Many beginning programmers are tempted to write this code:

all correct = (passed == tested)
print ("Your code passed " + str(passed))
print (" out of " + str(tested) + "tests.")
if all correct == True:
print ("Your code passed all our tests!")
if not on time:
print ("But you submitted after the deadline.")

LECTURE 01-2: CONDITIONAL EXECUTION

CHECKING BOOLEAN VALUES IS REDUNDANT

» Write this code instead:

all correct = (passed == tested)
print ("Your code passed " + str(passed))
print (" out of " + str(tested) + "tests.")

if all correct == True:
print ("Your code passed all our tests!")

if not on time:
print ("But you submitted after the deadline.")

» By using i £, you are already checking whether the condition == True.

LECTURE 01-2: CONDITIONAL EXECUTION

CHECKING BOOLEAN VALUES IS REDUNDANT

» Write this code instead:

all correct = (passed == tested)
print ("Your code passed " + str(passed))
print (" out of " + str(tested) + "tests.")

if all correct:
print ("Your code passed all our tests!")

if not on time:
print ("But you submitted after the deadline.")

» By using i £, you are already checking whether the condition == True.

CONTROL FLOW PREVIEW: LOOPING

Here is an example of a looping "while" statement:

pi = 3.14159
area = float(input("Circle area? "))
while area < 0.0:

area = float(input(”“Not an area. Try again:"))
radius = (area / pi) ** 0.5
print ("That circle’s radius is “+str(radius)+”.”)

Because of that whi 1 e statement, the re-prompting and re-input of an
area with that second input can be repeatedly executed.
Lines 3 and 4 are repeated until the user enters a good area value.

LECTURE 01-2: CONDITIONAL EXECUTION

SUMMARY OF THE CONDITIONAL STATEMENT

»The Python interpreter can be made to conditionally execute code.
»You can do so with the conditional, or i £ statement.

if condition-expression :
lines of statements executed only if the condition holds
»You can do so with the conditional, or i £ statement.

if condition-expression :

lines of statements executed only if the condition holds
else:
lines of statements executed if the condition doesn’t hold

»This is sometimes called a "branch”

» Indentation means something in Python! It is sensitive to it,

LECTURE 01-2: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS

»Binary operations
forintegers: + - * // % **
oforfloats: + - * / *=%

o forstrings: + *

LECTURE 01-2: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS

»Binary operations
forintegers: + — * // § ** < <=
oforfloats: + = * / #** < <= > >=

oforstrings: + * < <= > >= == |I=

Vv

LECTURE 01-2: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS

»Binary operations e e
*forintegers: + - * // % **§< <= > >= == |=
oforfloats: + - * / *% < <= > >= == = ;

o forstrings: + * ‘< <= > >= == |I=

LECTURE 01-2: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS

»Binary operations
forintegers: + - * // % **. < <= > >= == |=
oforfloats: + - * / #*=* 'L <= > >= == |=

o forstrings: + *

These are comparison operations

LECTURE 01-2: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS

»Binary operations

forintegers: + - * // % **. < <= > >= == |=
oforfloats: + - * / #*=* 'L <= > >= == |I=

o forstrings: + *

These are comparison operations.
They produce a boolean value.

LECTURE 01-2: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS

»Binary operations

forintegers: + — * // § ** < <=
oforfloats: + = * / #** < <= > >=
oforstrings: + * < <= > >= == |I=

» for booleans: and or not

LECTURE 01-2: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS

»Binary operations

forintegers: + — * // § ** < <=
oforfloats: + = * / #** < <= > >=
oforstrings: + * < <= > >= == |I=

»forbooleans: and or not == !=

LECTURE 01-2: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS

»Binary operations

oforintegers: + - * // § ** < <=
oforfloats: + = * / ** < <= > >=
oforstrings: + * < <= > >= == |I=

»forbooleans: and or not == !=

\Y

