
MORE PYTHON

LECTURE 01-2:
EXECUTING A PYTHON SCRIPT
HOURS & MINUTES EXERCISE

JIM FIX, REED COLLEGE CSCI 121

SUMMARY OF PYTHON SO FAR
▸The Python interpreter can be run interactively or not.

•When interactive, you type in a statement or an expression.

➡ When a statement is entered, it gets executed.

✦ If there is any output, it appears on subsequent lines.

➡When an expression is entered, it gets evaluated.

✦ The value that results is displayed on the next line.

•When not interactive, Python just loads and runs a script.

➡Its code is executed, line by line (statement followed by statement).

WEEK 01-A: PYTHON SCRIPTING

SUMMARY OF PYTHON SO FAR
▸So far, three kinds of statements:

•print statement

• assignment statement

•import statement

LECTURE 01-2: PYTHON SCRIPTING

SUMMARY OF PYTHON SO FAR
▸So far, three four (um, ish) kinds of statements:

•print statement

• assignment statement

•import statement

• the “input statement,” an assignment statement like one of these below.

✦ to get an integer input from the program’s user:

variable = int(input(prompt-string))

✦ to get a floating point value…

variable = float(input(prompt-string))

✦ to get a string of text…

variable = input(prompt-string))

LECTURE 01-2: PYTHON SCRIPTING

BACK TO PYTHON SCRIPTING
▸Consider this Python program:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("The radius of that circle is "+str(radius)+" units.")

LECTURE 01-2: PYTHON SCRIPTING

BACK TO PYTHON SCRIPTING
▸Consider this Python program:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("The radius of that circle is "+str(radius)+" units.")

▸ This has is 3 assignment statements and a print statement.
▸ The first defines/assigns the variable named pi.
▸ The second gets a floating point value (a “calculator number”) as input,

assigned to area. We compute that using an arithmetic formula.
▸ The functions float and str convert values of one type to values of

another type.

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at execution of this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸ The Python interpreter runs the code, line by line, from the top line to the
bottom line.

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's associated value is changed with each assignment statement.

pi: 3.14159
global frame

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's value is changed with each assignment statement.

pi: 3.14159
area: 314.159

global frame

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's value is changed with each assignment statement.

pi: 3.14159
area: 314.159
radius: 10.0

global frame

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's value is changed with each assignment statement.

pi: 3.14159
area: 314.159
radius: 10.0

global frame

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's value is changed with each assignment statement.
➡ The collection of variable slots of a script is called the global frame

pi: 3.14159
area: 314.159
radius: 10.0

global frame

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸ If you ever want to "watch" a Python program, try out The Python Tutor
https://pythontutor.com/

LECTURE 01-2: PYTHON SCRIPTING

IMPORTS
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

LECTURE 01-2: PYTHON SCRIPTING

IMPORTS
▸ Let's take a look at this script:

from math import pi, sqrt
area = float(input("Circle area? "))
radius = sqrt(area / pi)
print("That circle’s radius is "+str(radius)+".")  

LECTURE 01-2: PYTHON SCRIPTING

SUMMARY OF PYTHON SO FAR
▸So far, three kinds of statements:

•print statement

• assignment statement

•import statement

▸Several built-in functions

•input
• conversions: str, int, float

•abs, min, max, pow, and many more from the math library

•len
•type

LECTURE 01-2: PYTHON SCRIPTING

SUMMARY (CONT'D)
▸Binary operations (so far)

• for integers: + - * // % **

• for floats: + - * / **

• for strings: + *

LECTURE 01-2: PYTHON SCRIPTING

SUMMARY (CONT'D)
▸Binary operations (so far)

• for integers: + - * // % **

• for floats: + - * / **

• for strings: + *

LECTURE 01-2: PYTHON SCRIPTING

SUMMARY (CONT'D)
▸Binary operations (so far)

• for integers: + - * // % **

• for floats: + - * / **

• for strings: + *

LECTURE 01-2: PYTHON SCRIPTING

EXERCISE: 24 HOUR CLOCK
▸ Let’s write a script that does the following:

Compute the time for a 24-hour clock after some number of minutes
have passed from the current time.

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK
▸Here is that full script:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes

time_passes = int(input(“Minutes that pass? “))
time = time + time_passes

hours = time // 60 % 24  
minutes = time % 60

print(“The clock reads: “, end=“”)
print(hours, “hours and”, minutes, “minutes”, end=“”)
print(“.”)

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK
▸Here is that full script:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes

time_passes = int(input(“Minutes that pass? “))
time = time + time_passes

hh = str(time // 60 % 24)  
mm = str(time % 60)

hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm  

print(hh + “:” + mm)

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK
▸Python execution:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes  
time_passes = int(input(“Minutes that pass? “))
time = time + time_passes
hh = str(time // 60 % 24)  
mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm
print(hh + “:” + mm)

▸Console interaction:
terminal% python3 clock24.py|

LECTURE 01-2: PYTHON SCRIPTING

REPORT AS 24-HOUR CLOCK
▸Python execution:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes  
time_passes = int(input(“Minutes that pass? “))
time = time + time_passes
hh = str(time // 60 % 24)  
mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm
print(hh + “:” + mm)

▸Console interaction:
terminal% python3 clock24.py

LECTURE 01-2: PYTHON SCRIPTING

global frame

REPORT AS 24-HOUR CLOCK
▸Python execution:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes  
time_passes = int(input(“Minutes that pass? “))
time = time + time_passes
hh = str(time // 60 % 24)  
mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm
print(hh + “:” + mm)

▸Console interaction:
terminal% python3 clock24.py
Hours on the clock? |

LECTURE 01-2: PYTHON SCRIPTING

hours:

global frame

REPORT AS 24-HOUR CLOCK
▸Python execution:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes  
time_passes = int(input(“Minutes that pass? “))
time = time + time_passes
hh = str(time // 60 % 24)  
mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm
print(hh + “:” + mm)

▸Console interaction:
terminal% python3 clock24.py
Hours on the clock? 10

LECTURE 01-2: PYTHON SCRIPTING

hours: 10

global frame

REPORT AS 24-HOUR CLOCK
▸Python execution:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes  
time_passes = int(input(“Minutes that pass? “))
time = time + time_passes
hh = str(time // 60 % 24)  
mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm
print(hh + “:” + mm)

▸Console interaction:
terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? |

LECTURE 01-2: PYTHON SCRIPTING

hours: 10
minutes:

global frame

REPORT AS 24-HOUR CLOCK
▸Python execution:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes  
time_passes = int(input(“Minutes that pass? “))
time = time + time_passes
hh = str(time // 60 % 24)  
mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm
print(hh + “:” + mm)

▸Console interaction:
terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16

LECTURE 01-2: PYTHON SCRIPTING

hours: 10
minutes: 16

global frame

REPORT AS 24-HOUR CLOCK
▸Python execution:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes  
time_passes = int(input(“Minutes that pass? “))
time = time + time_passes
hh = str(time // 60 % 24)  
mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm
print(hh + “:” + mm)

▸Console interaction:
terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16

LECTURE 01-2: PYTHON SCRIPTING

hours: 10
minutes: 16
time:

global frame

REPORT AS 24-HOUR CLOCK
▸Python execution:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes  
time_passes = int(input(“Minutes that pass? “))
time = time + time_passes
hh = str(time // 60 % 24)  
mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm
print(hh + “:” + mm)

▸Console interaction:
terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16

LECTURE 01-2: PYTHON SCRIPTING

global frame
hours: 10
minutes: 16
time: 616

REPORT AS 24-HOUR CLOCK
▸Python execution:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes  
time_passes = int(input(“Minutes that pass? “))
time = time + time_passes
hh = str(time // 60 % 24)  
mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm
print(hh + “:” + mm)

▸Console interaction:
terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? |

LECTURE 01-2: PYTHON SCRIPTING

global frame
hours: 10
minutes: 16
time: 616
time_passes:

REPORT AS 24-HOUR CLOCK
▸Python execution:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes  
time_passes = int(input(“Minutes that pass? “))
time = time + time_passes
hh = str(time // 60 % 24)  
mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm
print(hh + “:” + mm)

▸Console interaction:
terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51

LECTURE 01-2: PYTHON SCRIPTING

hours: 10
minutes: 16
time: 616
time_passes: 51

global frame

REPORT AS 24-HOUR CLOCK
▸Python execution:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes  
time_passes = int(input(“Minutes that pass? “))
time = time + time_passes
hh = str(time // 60 % 24)  
mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm
print(hh + “:” + mm)

▸Console interaction:
terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51

LECTURE 01-2: PYTHON SCRIPTING

global frame
hours: 10
minutes: 16
time: 616
time_passes: 51

REPORT AS 24-HOUR CLOCK
▸Python execution:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes  
time_passes = int(input(“Minutes that pass? “))
time = time + time_passes
hh = str(time // 60 % 24)  
mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm
print(hh + “:” + mm)

▸Console interaction:
terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51

LECTURE 01-2: PYTHON SCRIPTING

global frame
hours: 10
minutes: 16
time: 667
time_passes: 51

REPORT AS 24-HOUR CLOCK
▸Python execution:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes  
time_passes = int(input(“Minutes that pass? “))
time = time + time_passes
hh = str(time // 60 % 24)  
mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm
print(hh + “:” + mm)

▸Console interaction:
terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51

LECTURE 01-2: PYTHON SCRIPTING

hours: 10
minutes: 16
time: 667
time_passes: 51
hh:

global frame

REPORT AS 24-HOUR CLOCK
▸Python execution:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes  
time_passes = int(input(“Minutes that pass? “))
time = time + time_passes
hh = str(time // 60 % 24)  
mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm
print(hh + “:” + mm)

▸Console interaction:
terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51

LECTURE 01-2: PYTHON SCRIPTING

hours: 10
minutes: 16
time: 667
time_passes: 51
hh: “ 11 “

global frame

REPORT AS 24-HOUR CLOCK
▸Python execution:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes  
time_passes = int(input(“Minutes that pass? “))
time = time + time_passes
hh = str(time // 60 % 24)  
mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm
print(hh + “:” + mm)

▸Console interaction:
terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51

LECTURE 01-2: PYTHON SCRIPTING

hours: 10
minutes: 16
time: 667
time_passes: 51
hh: “ 11 “
mm:

global frame

REPORT AS 24-HOUR CLOCK
▸Python execution:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes  
time_passes = int(input(“Minutes that pass? “))
time = time + time_passes
hh = str(time // 60 % 24)  
mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm
print(hh + “:” + mm)

▸Console interaction:
terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51

LECTURE 01-2: PYTHON SCRIPTING

hours: 10
minutes: 16
time: 667
time_passes: 51
hh: “ 11 “
mm: “ 7 “

global frame

REPORT AS 24-HOUR CLOCK
▸Python execution:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes  
time_passes = int(input(“Minutes that pass? “))
time = time + time_passes
hh = str(time // 60 % 24)  
mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm
print(hh + “:” + mm)

▸Console interaction:
terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51

LECTURE 01-2: PYTHON SCRIPTING

global frame
hours: 10
minutes: 16
time: 667
time_passes: 51
hh: “ 11 “
mm: “ 7 “

REPORT AS 24-HOUR CLOCK
▸Python execution:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes  
time_passes = int(input(“Minutes that pass? “))
time = time + time_passes
hh = str(time // 60 % 24)  
mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm
print(hh + “:” + mm)

▸Console interaction:
terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51

LECTURE 01-2: PYTHON SCRIPTING

global frame
hours: 10
minutes: 16
time: 667
time_passes: 51
hh: “ 11 “
mm: “ 7 “

REPORT AS 24-HOUR CLOCK
▸Python execution:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes  
time_passes = int(input(“Minutes that pass? “))
time = time + time_passes
hh = str(time // 60 % 24)  
mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm
print(hh + “:” + mm)

▸Console interaction:
terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51

LECTURE 01-2: PYTHON SCRIPTING

global frame
hours: 10
minutes: 16
time: 667
time_passes: 51
hh: “ 11 “
mm: “ 7 “

REPORT AS 24-HOUR CLOCK
▸Python execution:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes  
time_passes = int(input(“Minutes that pass? “))
time = time + time_passes
hh = str(time // 60 % 24)  
mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm
print(hh + “:” + mm)

▸Console interaction:
terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51

LECTURE 01-2: PYTHON SCRIPTING

global frame
hours: 10
minutes: 16
time: 667
time_passes: 51
hh: “ 11 “
mm: “ 07 “

REPORT AS 24-HOUR CLOCK
▸Python execution:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes  
time_passes = int(input(“Minutes that pass? “))
time = time + time_passes
hh = str(time // 60 % 24)  
mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm
print(hh + “:” + mm)

▸Console interaction:
terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51

LECTURE 01-2: PYTHON SCRIPTING

global frame
hours: 10
minutes: 16
time: 667
time_passes: 51
hh: “ 11 “
mm: “ 07 “

REPORT AS 24-HOUR CLOCK
▸Python execution:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes  
time_passes = int(input(“Minutes that pass? “))
time = time + time_passes
hh = str(time // 60 % 24)  
mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm
print(hh + “:” + mm)

▸Console interaction:
terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51
11:07

LECTURE 01-2: PYTHON SCRIPTING

global frame
hours: 10
minutes: 16
time: 667
time_passes: 51
hh: “ 11 “
mm: “ 07 “

REPORT AS 24-HOUR CLOCK
▸Python execution:

hours = int(input(“Hours on the clock? “))
minutes = int(input(“Minutes on the clock? “))
time = hours * 60 + minutes  
time_passes = int(input(“Minutes that pass? “))
time = time + time_passes
hh = str(time // 60 % 24)  
mm = str(time % 60)
hh = “0” * (2-len(hh)) + hh
mm = “0” * (2-len(mm)) + mm
print(hh + “:” + mm)

▸Console interaction:
terminal% python3 clock24.py
Hours on the clock? 10
Minutes on the clock? 16
Minutes that pass? 51
11:07
terminal% |

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸ If you ever want to "watch" a Python program, try out The Python Tutor
https://pythontutor.com/

▸Using it, you'll see something like this...

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's associated value is changed with each assignment statement.

pi: 3.14159
global frame

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's value is changed with each assignment statement.

pi: 3.14159
area: 314.159

global frame

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's value is changed with each assignment statement.

pi: 3.14159
area: 314.159
radius: 10.0

global frame

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's value is changed with each assignment statement.

pi: 3.14159
area: 314.159
radius: 10.0

global frame

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's value is changed with each assignment statement.
➡ The collection of variable slots of a script is called the global frame

pi: 3.14159
area: 314.159
radius: 10.0

global frame

LECTURE 01-2: PYTHON SCRIPTING

CONDITIONAL
EXECUTION

LECTURE 02-1
THE CONDITIONAL STATEMENT
THE BOOLEAN TYPE

JIM FIX, REED COLLEGE CSCI 121

"FLOW OF CONTROL"
Recall: our animation of the "circle area to radius" calculation...

The interpreter goes through the code line-by-line, tracking where it’s at with
an instruction pointer.

➡ The movement of that pointer is called the program’s flow of control.

▸When write code with conditional statements and loops, we’ll see program
flow that’s not just top to bottom.
➡ Lines might get repeatedly executed, or lines might get skipped.

LECTURE 01-2: CONDITIONAL EXECUTION

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

pi: 3.14159
global frame

RECALL: STRAIGHT LINE PYTHON EXECUTION
LECTURE 01-2: CONDITIONAL EXECUTION

RECALL: STRAIGHT LINE PYTHON EXECUTION

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

pi: 3.14159
area: 314.159

global frame

LECTURE 01-2: CONDITIONAL EXECUTION

RECALL: STRAIGHT LINE PYTHON EXECUTION

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

pi: 3.14159
area: 314.159
radius: 10.0

global frame

LECTURE 01-2: CONDITIONAL EXECUTION

RECALL: STRAIGHT LINE PYTHON EXECUTION

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

pi: 3.14159
area: 314.159
radius: 10.0

global frame

LECTURE 01-2: CONDITIONAL EXECUTION

"BRANCHING"
▸Here is an example of a conditional (or "if") statement:

pi = 3.14159
area = float(input("Circle area? "))
if area < 0.0:
 print("That’s not a valid area.")
else:
 radius = (area / pi) ** 0.5
 print("That circle’s radius is "+str(radius)+".")  

▸Depending on the value of area, either the first print or the second
print will execute.
➡ The other one will get skipped.

LECTURE 01-2: CONDITIONAL EXECUTION

"LOOPING"
▸Here is an example of a looping "while" statement:

pi = 3.14159
area = float(input("Circle area? “))
while area < 0.0:
 print(“That’s not a valid area.”)
 area = float(input(“Try again:”))
radius = (area / pi) ** 0.5
print("That circle’s radius is “+str(radius)+”.”)  

▸Because of that while statement, the re-prompting and re-input of an
area with that second input can be repeatedly executed.
➡ Lines 3 and 4 are repeated until the user enters a good area value.

LECTURE 01-2: CONDITIONAL EXECUTION

CONDITION EXPRESSIONS COMPUTE A BOOL VALUE
>>> 345 < 10  
False  
>>> 345 == 300 + 50 - 5  
True  
>>> type(True)
<class 'bool'>
>>> type(False)
<class 'bool'>  
>>> x = 57
>>> (x > 0) and (x <= 100)  
True
>>> (x <= 0) or (x > 100)  
False
>>> not (345 < 10)  
True
>>> not ((x <= 0) or (x > 100))  
True  
 

LECTURE 01-2: CONDITIONAL EXECUTION

▸Python allows us to reason about values and act on them conditionally.
▸For example, consider this script:
 x = float(input("Enter a value: "))  
 if x < 0:  
 abs_x = -x  
 else:  
 abs_x = x

 print("The absolute value of it is " + str(abs_x))  

 

THE "IF-ELSE" CONDITIONAL STATEMENT
LECTURE 01-2: CONDITIONAL EXECUTION

▸Python allows us to reason about values and act on them conditionally.
▸For example, consider this script:
 x = float(input("Enter a value: "))  
 if x < 0:  
 abs_x = -x  
 else:  
 abs_x = x

 print("The absolute value of it is " + str(abs_x))

% python3 absolute.py
Enter a value: -5.5  
The absolute value of it is 5.5
% python3 absolute.py
Enter a value: 105.77  
The absolute value of it is 105.77
% python3 absolute.py
Enter a value: 0.0  
The absolute value of it is 0.0

THE "IF-ELSE" CONDITIONAL STATEMENT
LECTURE 01-2: CONDITIONAL EXECUTION

▸Python allows us to reason about values and act on them conditionally.
▸For example, consider this script:

 x = float(input("Enter a value: "))  
 if x < 0:  
 abs_x = -x  
 else:  
 abs_x = x
 print("The absolute value of it is " + str(abs_x))  

▸When fed a negative value, it prints the value with its sign flipped.
➡I.e. the positive value with the same magnitude. -5.5 ~> 5.5

▸Otherwise, if positive or 0.0, it just prints that value.
 

THE "IF-ELSE" CONDITIONAL STATEMENT
LECTURE 01-2: CONDITIONAL EXECUTION

Below is a template for conditional statements:

if condition-expression:
 lines of statements executed if the condition holds
 ...
else:
 lines of statements executed if the condition does not hold
 ...
lines of code executed after, in either case

 

SYNTAX: IF-ELSE STATEMENT
LECTURE 01-2: CONDITIONAL EXECUTION

▸Python allows us to reason about values and act on them conditionally.
▸For example, consider this script:

 x = float(input("Enter a value: "))  
 if x < 0:  
 abs_x = -x  
 else:  
 abs_x = x
 print("The absolute value of it is " + str(abs_x))  

When the script is run, the if code gets executed as follows:
▸Python first checks the condition before the colon.

➡ If the condition is True, it executes the first return statement.
➡ If the condition is False, it executes the second return statement.

This is the one sitting under the else line.
 

CONDITIONAL STATEMENT EXECUTION
LECTURE 01-2: CONDITIONAL EXECUTION

▸Python allows us to reason about values and act on them conditionally.
▸For example, consider this script:

 x = float(input("Enter a value: "))  
 if x < 0:  
 abs_x = -x  
 else:  
 abs_x = x
 print("The absolute value of it is " + str(abs_x))  

▸You could maybe say that if-else gives Python code “intelligence.”
➡ It reasons about the value of x and behaves one way or the other.

▸The code is smart!
 

CONDITIONAL STATEMENT EXECUTION
LECTURE 01-2: CONDITIONAL EXECUTION

Below is a template for conditional statements:

if condition-expression:
 lines of statements executed if the condition holds
 ...
else:
 lines of statements executed if the condition does not hold
 ...
lines of code executed after, in either case

▸Use indentation to indicate the "true" code block and the "false" code block.

SYNTAX: IF-ELSE STATEMENT
LECTURE 01-2: CONDITIONAL EXECUTION

▸Python allows us to reason about values and act on them conditionally.
▸For example, consider this script:

 x = float(input("Enter a value: "))  
 if x < 0:  
 abs_x = -x  
 else:  
 abs_x = x
 print("The absolute value of it is " + str(abs_x))  

▸You could maybe say that if-else gives Python code “intelligence.”
➡ It reasons about the value of x and behaves one way or the other.

▸The code is smart!
 

CONDITIONAL STATEMENT EXECUTION
LECTURE 01-2: CONDITIONAL EXECUTION

▸Here is a script that acts differently, depending on the parity of a number.

 n = int("Enter an integer: ")  
 if n % 2 == 0:  
 print(“even”)  
 else:  
 print(“odd”)
 

▸The equality test == is used to compare...
• the left-hand expression’s value n % 2
•with the right-hand expression’s value 0.
▸It is used to check whether they are equal.

 

CHECKING PARITY
LECTURE 01-2: CONDITIONAL EXECUTION

▸Here is a script that acts differently, depending on the parity of a number.

 n = int("Enter an integer: ")  
 if n % 2 == 0:  
 print(“even”)  
 else:  
 print(“odd”)
 

▸Below is it in use:
% python3 parity.py
Enter an integer: -10  
odd
% python3 parity.py
Enter an integer: 0  
even

 

CHECKING PARITY
LECTURE 01-2: CONDITIONAL EXECUTION

▸ The full range of comparisons you can make are:

== equality
!= inequality
< less than
> greater than
>= greater than or equal
<= less than or equal

 

COMPARISON OPERATIONS
LECTURE 01-2: CONDITIONAL EXECUTION

▸ The code below determines whether an integer rating is from 1 to 100:
 rating = int(input("Enter a rating: "))  
 if (rating > 0) and (rating <= 100):  
 print("Thanks for that rating!")  
 else:  
 print("That is not a rating.")
 

 

EXPRESSING COMPLEX CONDITIONS
LECTURE 01-2: CONDITIONAL EXECUTION

▸ The code below determines whether an integer rating is from 1 to 100:
 rating = int(input("Enter a rating: "))  
 if (rating > 0) and (rating <= 100):  
 print("Thanks for that rating!")  
 else:  
 print("That is not a rating.")
 

▸This is using the logical connective and to check whether both conditions
hold. This is their logical conjunction.

 

EXPRESSING COMPLEX CONDITIONS: AND
LECTURE 01-2: CONDITIONAL EXECUTION

▸ The code below determines whether an integer rating is from 1 to 100:
 rating = int(input("Enter a rating: ")  
 if (rating <= 0) or (rating > 100):  
 print("That is not a rating.")  
 else:  
 print("Thanks for that rating!")
 

▸This is using the logical connective and to check whether both conditions
hold. This is their logical conjunction.
▸There is also the connective or for checking whether at least one condition

holds. It described logical disjunction.

EXPRESSING COMPLEX CONDITIONS: OR
LECTURE 02-1: CONDITIONAL EXECUTION

▸ The code below determines whether an integer rating is from 1 to 100:
 rating = int(input("Enter a rating: "))  
 if not ((rating <= 0) or (rating > 100)):  
 print("Thanks for that rating!")  
 else:  
 print("That is not a rating.")  

▸This is using the logical connective and to check whether both conditions
hold. This is their logical conjunction.
▸There is also the connective or for checking whether at least one condition

holds. It described logical disjunction.
▸There is also logical negation using not.

EXPRESSING COMPLEX CONDITIONS: NOT
LECTURE 01-2: CONDITIONAL EXECUTION

▸ The logical connectives and, or, and not can be thought of as operations
that act on boolean values and return a boolean value:

>>> (7 > 3) and (2 < 4)  
True  
>>> (4 < 2) and False  
False
>>> (2 > 3) or (not (7 < 10))  
False  
>>> True and False  
False  
>>> True or False  
True  
>>> not (True or False)  
False
 

LOGIC CONNECTIVES ARE BOOLEAN OPERATORS
LECTURE 01-2: CONDITIONAL EXECUTION

▸Evaluation of and and or is short-circuited:
>>> x = 0  
>>> 45 / x  
ERROR!!!
>>> (x == 0) or ((45 / x) > 10)  
True  
>>> (x != 0) and ((45 / x) > 10)  
False

▸ Python doesn't bother with the right of or if the left is True.

▸ Python doesn't bother with the right of and if the left is False.

▸This means, for example, that and is executed like this: 
 if x != 0:  
 return (45 / x) > 10  
 else:  
 return False

SHORT-CIRCUITED LOGIC CONNECTIVES
LECTURE 01-2: CONDITIONAL EXECUTION

Below is a template for conditional statements:

if condition-expression:
 lines of statements executed if the condition holds
 ...
else:
 lines of statements executed if the condition does not hold
 ...
lines of code executed after, in either case

▸Use indentation to indicate the "true" code block and the "false" code block.

SYNTAX: IF-ELSE STATEMENT
LECTURE 01-2: CONDITIONAL EXECUTION

▸ The code below is like some code in some autograder:

if on_time:

 if all_correct:
 mesg = "Great work passing all the tests!\n"
 mesg += "You've earned the points for this problem."
 else:
 mesg = "To earn points, make sure all the tests pass."

else:

 if all_correct:
 mesg = "Great work making all the tests pass.\n"
 mesg += "Sadly we can't offer you any points.\n"
 mesg += "You submitted this after the deadline."
 else:
 mesg = "Sorry! There’s still a problem. No points.”

print(mesg)

NESTING CONDITIONAL STATEMENTS
LECTURE 01-2: CONDITIONAL EXECUTION

Below is a template for conditional statements with no "else" block:

if condition-expression:
 lines of statements executed only if the condition holds
 ...
lines of code executed after, in either case

▸Use indentation to indicate the "true" code block.

SYNTAX: IF STATEMENT
LECTURE 01-2: CONDITIONAL EXECUTION

▸A different version of the absolute value script:

 x = float(input("Enter a value: “))  
 if x < 0:  
 x = -x
 print("The absolute value of it is " + str(x))
 

CONDITIONAL STATEMENT WITH NO ELSE
LECTURE 01-2: CONDITIONAL EXECUTION

▸ The code below is like some code in some autograder:

all_correct = (passed == tested)
print("Your code passed " + str(passed))
print(" out of " + str(tested) + "tests.")
if all_correct:
 print("Your code passed all our tests!")
 if not on_time:
 print("But you submitted after the deadline.")
 

CONDITIONAL STATEMENT WITH NO ELSE
LECTURE 01-2: CONDITIONAL EXECUTION

Below is a template for conditional statements:
if condition1:
 execute if condition1 holds
 ...
elif condition2:
 execute if condition1 does not hold but condition2 does
 ...
...
else:
 executed if no condition holds
 ...
lines of code executed after, in all cases

SYNTAX: CASCADING IF-ELIF-...-ELSE STATEMENT
LECTURE 01-2: CONDITIONAL EXECUTION

▸Here is some other autograder code using the cascading conditional:

attempts = number_previous_submissions + 1
mesg = "Great work passing all the tests!\n"
mesg += "You submitted " + str(attempts) + " times.\n"

if attempts <= 2:
 mesg += "You earned the full points.\n"
 mesg += "Excellent!"
elif attempts <= 6:
 mesg += "You earned 80% of the points.\n"
 mesg += "Nicely done."
else:
 mesg += "This is a few more times than we'd prefer.\n"
 mesg += "We awarded half of the points."

print(mesg)

CASCADING IF STATEMENT
LECTURE 01-2: CONDITIONAL EXECUTION

Below is a template for conditional statements:
if condition-1:
 execute if condition1 holds
 ...
elif condition-2:
 execute if condition1 does not hold but condition2 does
 ...
...
elif condition-n:
 execute if conditions 1 through (n-1) do not hold but condition-n does
 ...
lines of code executed after, in all cases

SYNTAX: CASCADING IF-ELIF-...-ELIF STATEMENT
LECTURE 01-2: CONDITIONAL EXECUTION

▸Many beginning programmers are tempted to write this code:
all_correct = (passed == tested)
print("Your code passed " + str(passed))
print(" out of " + str(tested) + "tests.")
if all_correct == True:
 print("Your code passed all our tests!")
 if not on_time:
 print("But you submitted after the deadline.")
 

CHECKING BOOLEAN VALUES
LECTURE 01-2: CONDITIONAL EXECUTION

▸Many beginning programmers are tempted to write this code:
all_correct = (passed == tested)
print("Your code passed " + str(passed))
print(" out of " + str(tested) + "tests.")
if all_correct == True:
 print("Your code passed all our tests!")
 if not on_time:
 print("But you submitted after the deadline.")
 

CHECKING BOOLEAN VALUES IS REDUNDANT
LECTURE 02-1: CONDITIONAL EXECUTIONLECTURE 01-2: CONDITIONAL EXECUTION

▸Write this code instead:
all_correct = (passed == tested)
print("Your code passed " + str(passed))
print(" out of " + str(tested) + "tests.")
if all_correct == True:
 print("Your code passed all our tests!")
 if not on_time:
 print("But you submitted after the deadline.")  

▸By using if, you are already checking whether the condition == True.

 

CHECKING BOOLEAN VALUES IS REDUNDANT
LECTURE 01-2: CONDITIONAL EXECUTION

▸Write this code instead:
all_correct = (passed == tested)
print("Your code passed " + str(passed))
print(" out of " + str(tested) + "tests.")
if all_correct:
 print("Your code passed all our tests!")
 if not on_time:
 print("But you submitted after the deadline.")  

▸By using if, you are already checking whether the condition == True.

 

CHECKING BOOLEAN VALUES IS REDUNDANT
LECTURE 01-2: CONDITIONAL EXECUTION

CONTROL FLOW PREVIEW: LOOPING
▸Here is an example of a looping "while" statement:

pi = 3.14159
area = float(input("Circle area? “))
while area < 0.0:
 area = float(input(“Not an area. Try again:”))
radius = (area / pi) ** 0.5
print("That circle’s radius is “+str(radius)+”.”)  

▸Because of that while statement, the re-prompting and re-input of an
area with that second input can be repeatedly executed.
➡ Lines 3 and 4 are repeated until the user enters a good area value.

LECTURE 01-2: CONDITIONAL EXECUTION

SUMMARY OF THE CONDITIONAL STATEMENT
▸The Python interpreter can be made to conditionally execute code.

▸You can do so with the conditional, or if statement.

if condition-expression:
 lines of statements executed only if the condition holds

▸You can do so with the conditional, or if statement.

if condition-expression:
 lines of statements executed only if the condition holds
else:
 lines of statements executed if the condition doesn’t hold

▸This is sometimes called a “branch”

▸Indentation means something in Python! It is sensitive to it,

LECTURE 01-2: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS
▸Binary operations

• for integers: + - * // % **

• for floats: + - * / **

• for strings: + *

LECTURE 01-2: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS
▸Binary operations

• for integers: + - * // % ** < <= > >= == !=

• for floats: + - * / ** < <= > >= == !=

• for strings: + * < <= > >= == !=

LECTURE 01-2: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS
▸Binary operations

• for integers: + - * // % ** < <= > >= == !=

• for floats: + - * / ** < <= > >= == !=

• for strings: + * < <= > >= == !=

LECTURE 01-2: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS
▸Binary operations

• for integers: + - * // % ** < <= > >= == !=

• for floats: + - * / ** < <= > >= == !=

• for strings: + * < <= > >= == !=

These are comparison operations

LECTURE 01-2: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS
▸Binary operations

• for integers: + - * // % ** < <= > >= == !=

• for floats: + - * / ** < <= > >= == !=

• for strings: + * < <= > >= == !=

These are comparison operations.
They produce a boolean value.

LECTURE 01-2: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS
▸Binary operations

• for integers: + - * // % ** < <= > >= == !=

• for floats: + - * / ** < <= > >= == !=

• for strings: + * < <= > >= == !=

• for booleans: and or not

LECTURE 01-2: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS
▸Binary operations

• for integers: + - * // % ** < <= > >= == !=

• for floats: + - * / ** < <= > >= == !=

• for strings: + * < <= > >= == !=

• for booleans: and or not == !=

LECTURE 01-2: CONDITIONAL EXECUTION

SUMMARY OF OPERATIONS
▸Binary operations

• for integers: + - * // % ** < <= > >= == !=

• for floats: + - * / ** < <= > >= == !=

• for strings: + * < <= > >= == !=

• for booleans: and or not == !=

LECTURE 01-2: CONDITIONAL EXECUTION

