
MORE ON PYTHON

LECTURE 01-2 PART 1
THOUGHTS ON LAB
MORE ON PYTHON SCRIPTING

JIM FIX, REED COLLEGE CSCI 121

ADDITIONAL COURSE STAFF
▸ Tutors:

✦ Yulin Meng
✦ Charlotte Brohme-Chen
✦ Grey Nielson
✦ Kellyn Cowger

➡Will staff Library 340 7-9pm Su through Th. I’m still setting this up.
➡Some might also attend lab.

▸ Teaching consultant:
✦ Fatima Campbell

➡Will observe lectures and some labs.
➡Setting up anonymous feedback form.
➡Will take survey around/after week 6.

LECTURE 01-2: MORE PYTHON

READINGS
▸This week's lecture material can be supplemented with:

•Reading: PP 1.1-1.3; TP Ch. 1 and 2; CP Ch 1.1-1.2

▸At the end of lecture we'll also look at:

➡the conditional statement (i.e. if)

➡ the boolean values True and False

LECTURE 01-2: MORE PYTHON

READINGS
▸This week's lecture material can be supplemented with:

•Reading: PP 1.1-1.3; TP Ch. 1 and 2; CP Ch 1.1-1.2

▸At the end of lecture we'll also look at:

➡the conditional statement (i.e. if)

➡ the boolean values True and False

"Think Python" text

"Composing Programs" text

Prof. Groce’s ”Principled Programming” text

LECTURE 01-2: MORE PYTHON

NOTES FROM LAB
▸ I thought the first lab went particularly well for everyone.

➡ Next week I’ll pair you.
▸Some thoughts from lab:
• navigating in Terminal and your file system
• using your editor
• string versus integer versus floating point; Python input
• Python output
• function notation
• working with Gradescope and the autograder

LECTURE 01-2: MORE PYTHON

NAVIGATING W/IN TERMINAL, EDITOR, BROWSER, FILESYSTEM
▸Advice: name folders without spaces or punctuation
▸Make sure Python program file (i.e. scripts) names end with .py
▸ Learn Terminal commands cd, cd .., cd folder-name, ls, pwd
▸You might sometimes be in the Python interpreter instead of Terminal:

➡prompt is >>> when in Python
➡ can leave Python with quit() or by typing control-d
➡Note: control-c is a way to stop programs running
➡python3 my-script .py command versus python3 command

▸Be mindful of where files live.
➡You might e.g. have copies of the same-named script.

▸ Learn paths for your folders:
➡ Documents, Desktop, Downloads, user’s home (i.e. ~)

▸Don’t forget to Save within the editor.

LECTURE 01-2: MORE PYTHON

GRADESCOPE AND THE AUTOGRADER
▸You have to get prompt text and program output exactly right.

➡Spelling, spacing, punctuation, line breaks etc. must match exactly.

▸ If everything looks good…
➡ You’ll get a score of 10.0 from the autograder. Otherwise 0.0.
➡ We give up to an additional 10.0 points for programming “style” and approach.
-More on this later…

▸ There are visible versus hidden tests:
➡ For visible tests we will reveal what we input to test your code.
➡ For hidden tests we won’t reveal these; we’ll just tell you “something’s not

right.”
• Goal: to get you used to checking the work yourself.

LECTURE 01-2: MORE PYTHON

PYTHON OUTPUT
▸Suppose the script text below is saved as print_fun.py

print("Hello there! Isn’t this \”fun\” stuff?”)
print()
print(“Yes\nI\nagree.”)
x = “ my” * 3
y = 3.5
print(“Oh“ + x + “. The value is ” + str(y) + “.”) 

▸On my Mac, within Terminal, after the prompt, I enter the command:
C02MX1KLFH04:examples jimfix$ python3 print_fun.py
Hello there! Isn’t this ”fun” stuff?

Yes
I
agree.
Oh my my my. The value is 3.5.
C02MX1KLFH04:examples jimfix$  

▸ The Python interpreter outputs those six lines of text.

LECTURE 01-2: MORE PYTHON

PYTHON INPUT; VALUE TYPES; CONVERTING TO STRINGS
▸Suppose the script text below is saved as types.py

a = input(“Enter A: ”)
b = float(input(“Enter B: ”))
c = int(input(“Enter C: ”))
print(“A is “ + a + “ and has type “ + str(type(a)) + “.”)
print(“B is “ + b + “ and has type “ + str(type(b)) + “.”)
print(“C is “ + c + “ and has type “ + str(type(c)) + “.”)

 

▸Here is what gets output by Python:
C02MX1KLFH04:examples jimfix$ python3 types.py
Enter A: 2
Enter B: 2
Enter C: 2
A is 2 and has type <class ‘str’>.
A is 2.0 and has type <class ‘float’>.
A is 2 and has type <class ‘int’>.
C02MX1KLFH04:examples jimfix$  

LECTURE 01-2: MORE PYTHON

INTERACTING WITH THE PYTHON INTERPRETER
▸Python can be used to "live script":

C02MX1KLFH04:examples jimfix$ python3
>>> print(“hello”)
hello
>>> print(6 * 7)
42
>>> result = 6 * 7
>>> print(result)
42
>>>

▸We can try a Python coding by interacting directly with the interpreter.
▸We type in Python statements one at a time.
▸Each line gets executed immediately.
▸Each statement typically performs an action, has an effect.

LECTURE 01-2: MORE PYTHON

THE INTERPRETER AS CALCULATOR
▸Python can also evaluate expressions; compute and display their result:

C02MX1KLFH04:examples jimfix$ python3
>>> 6 * 7
42
>>> result = 6 * 7
>>> result
42
>>> “hello” + “ “ + “there”
’hello there’
>>>

▸Here, Python is acting differently. It calculates the value of the expression,
then (quietly) converts that value into some readable text characters, then
displays that text.

LECTURE 01-2: MORE PYTHON

THE INTERPRETER AS CALCULATOR
▸Python can be also be used to evaluate expressions:

C02MX1KLFH04:examples jimfix$ python3
>>> 6 * 7
42
>>> result = 6 * 7
>>> result
42
>>> “hello” + “ “ + “there”
’hello there’
>>>

▸ It repeatly applies three steps as a “Read-Eval-Print Loop” or REPL:
• READ: it looks at the expression entered after >>>
• EVALUATE: it performs a calculation to obtain a value
• PRINT: it displays the result as some text.

LECTURE 01-2: MORE PYTHON

THE INTERPRETER AS CALCULATOR
▸Python can be used to evaluate expressions:

C02MX1KLFH04:examples jimfix$ python3
>>> 6 * 7
42
>>> result = 6 * 7
>>> result
42
>>> “hello” + “ “ + “there”
’hello there’
>>>

▸ This is the “READ - EVALUATE - PRINT LOOP” (or “REPL”).
▸Having access to a REPL for a programming language is wonderful!
▸ It’s a big reason we teach programming in Python.

LECTURE 01-2: MORE PYTHON

PYTHON PROVIDES ARITHMETIC
>>> 3 + 7
10
>>> 4 + 2 * 3
10
>>> (4 + 2) * 3
18
>>> 4 / 16
0.25
>>> 2 ** 4
16
>>> 0.1 + 0.2
0.30000000000000004

LECTURE 01-2: MORE PYTHON

PYTHON PROVIDES ARITHMETIC
>>> 3 + 7
10
>>> 4 + 2 * 3
10
>>> (4 + 2) * 3
18
>>> 4 / 16
0.25
>>> 2 ** 4
16
>>> 0.1 + 0.2
0.30000000000000004
>>> type(4)
<class 'int'>
>>> type(0.25)
<class 'float'>

LECTURE 01-2: MORE PYTHON

INTEGERS VERSUS FLOATING POINT NUMBERS
▸Python has two types of number values: int and float
▸With integers, computation is exact.
▸With floating point numbers (“floats”), computation is approximate.

>>> 10 / 2
5.0
>>> 3 + 4.0
7.0
>>> int(8.7)
8

LECTURE 01-2: MORE PYTHON

INTEGER VERSUS FLOATING POINT DIVISION
▸With the normal division operation, the slash /, you get a float.

>>> 10.2 / 2.0
5.1
>>> 10 / 2
5.0
>>> 87 / 10
8.7

LECTURE 01-2: MORE PYTHON

INTEGER VERSUS FLOATING POINT DIVISION
▸ There is also an integer division operation, the double slash operator //.

➡ This gives the integer quotient.
➡ The remainder due to the division is discarded.
>>> 10 // 2
5
>>> 87 // 10
8

LECTURE 01-2: MORE PYTHON

PYTHON HAS // AND % OPERATORS
▸ The // operation (“div”) gives the integer quotient due to the division of

two integers:
>>> 345 // 12
28  

▸ The % operation (“mod”) gives the integer remainder due to the division of
two integers:
>>> 345 % 12
9  

▸ This property always holds:
➡number = quotient x divisor + remainder
>>> 28 * 12 + 9
345

LECTURE 01-2: MORE PYTHON

EXAMPLE USES
>>> 345 % 10  
????????  
>>> 345 // 10  
????????  
>>> 6789 % 2  
????????  
>>> 6790 % 2  
????????  
>>> -26 % 2  
????????  
>>> -76 % 10  
????????  
>>> -26 // 2  
????????  
>>> -76 // 10  
????????

LECTURE 01-2: MORE PYTHON

EXAMPLE USES
>>> 345 % 10  
5  
>>> 345 // 10  
34  
>>> 6789 % 2  
1  
>>> 6790 % 2  
0  
>>> -26 % 2  
0  
>>> -76 % 10  
4  
>>> -26 // 2  
-13  
>>> -76 // 10  
-8

LECTURE 01-2: MORE PYTHON

PYTHON CAN APPLY KNOWN FUNCTIONS...
>>> pow(2,3)
8
>>> abs(-3)
3
>>> abs(4 + 2)
6
>>> min(3,7)
3
>>> max(4, 10.5 + 8.3, 6)
18.8
>>> from math import sqrt, pow
>>> sqrt(2.0)
1.4142135623730951
>>> pow(2.0,4.5)
22.627416997969522

LECTURE 01-2: MORE PYTHON

TEXT STRINGS
▸Python can store and compute with text:

>>> entry = input(“Enter something: “)
Enter something: some thing
>>> entry
‘some thing’
>>> type(entry)
<class ‘str'>
>>> “hello”
‘hello’
>>> type(“hello”)
<class ‘str’>
>>> ‘hello’
‘hello’
>>> len(entry)
10
>>> len(“hello”)
10  

▸ To describe a string of characters, you put those literal characters between double quotes.
▸You can also use single quotes, and Python chooses to report strings that way,

➡ These distinguish the text from a variable name.

LECTURE 01-2: MORE PYTHON

STRING ARITHMETIC
>>> “hello” + “there”
‘hellothere’
>>> x = “hello”
>>> x = x + “ there”
>>> x
‘hello there’
>>> x = x + “ i must”
>>> x = x + “ be going”
>>> x
‘hello there i must be going’

LECTURE 01-2: MORE PYTHON

STRING ARITHMETIC (CONT’D)
>>> “hello” * 3
‘hellohellohello’
>>> 4 * “hello”
‘hellohellohellohello’
>>> “hello” * 0
‘’
>>>

LECTURE 01-2: MORE PYTHON

STRING ARITHMETIC (CONT’D)
>>> “hello” * 3
‘hellohellohello’
>>> 4 * “hello”
‘hellohellohellohello’
>>> “hello” * 0
‘’
>>> “hello” + 3
Error!
>>> “76” + 3
Error!
>>> “76” + str(3)
‘763’
>>> int(“76”) + 3
79
>>> int(“hello”) + 3
Error!

LECTURE 01-2: MORE PYTHON

SPECIAL CHARACTERS
▸A backslash character \ followed by a second character expresses special characters

➡ a tab is \t, a new line is \n, a quote is \', a backslash is \\

>>> z = input('What\'s your name?')
What's your name?John
>>> “Hello “ + z
'Hello John'
>>> print(“I\’ve “+str(19)+“ characters.\nSee?”)
I've 19 characters.  
See?
>>> len(“I\’ve “+str(19)+“ characters.\nSee?”)  
19
>>> print(“\thello\nthere”)
 hello  
there
>>> print("/\\/\\/\\/\\"
/\/\/\/\

LECTURE 01-2: MORE PYTHON

BACK TO PYTHON SCRIPTING
▸Consider this Python program:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("The radius of that circle is "+str(radius)+" units.")

LECTURE 01-2: MORE PYTHON

BACK TO PYTHON SCRIPTING
▸Consider this Python program:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("The radius of that circle is "+str(radius)+" units.")

▸ This has is 3 assignment statements and a print statement.
▸ The first defines/assigns the variable named pi.
▸ The second gets a floating point value (a “calculator number”) as input,

assigned to area. We compute that using an arithmetic formula.
▸ The functions float and str convert values of one type to values of

another type.

LECTURE 01-2: MORE PYTHON

PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸

LECTURE 01-2: MORE PYTHON

PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸

LECTURE 01-2: MORE PYTHON

PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸

LECTURE 01-2: MORE PYTHON

PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.

LECTURE 01-2: MORE PYTHON

PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.

LECTURE 01-2: MORE PYTHON

PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸ If you ever want to "watch" a Python program, try out The Python Tutor
https://pythontutor.com/

▸Using it, you'll see something like this...

LECTURE 01-2: MORE PYTHON

PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's associated value is changed with each assignment statement.

pi: 3.14159
global frame

LECTURE 01-2: MORE PYTHON

PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's associated value is changed with each assignment statement.

pi: 3.14159
area: 314.159

global frame

LECTURE 01-2: MORE PYTHON

PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's associated value is changed with each assignment statement.

pi: 3.14159
area: 314.159
radius: 10.0

global frame

LECTURE 01-2: MORE PYTHON

PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's associated value is changed with each assignment statement.

pi: 3.14159
area: 314.159
radius: 10.0

global frame

LECTURE 01-2: MORE PYTHON

PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's associated value is changed with each assignment statement.
➡ The collection of variable slots of a script is called the global frame

pi: 3.14159
area: 314.159
radius: 10.0

global frame

LECTURE 01-2: MORE PYTHON

SUMMARY OF PYTHON SO FAR
▸So far, three kinds of statements:

•print statement

• assignment statement

•import statement

▸Several built-in functions

•input
• conversions: str, int, float

•abs, min, max, pow, and many more from the math library

•len
•type

LECTURE 01-2: MORE PYTHON

SUMMARY (CONT'D)
▸Binary operations (so far)

• for integers: + - * // % **

• for floats: + - * / **

• for strings: + *

LECTURE 01-2: MORE PYTHON

SUMMARY (CONT'D)
▸Binary operations (so far)

• for integers: + - * // % **

• for floats: + - * / **

• for strings: + *

LECTURE 01-2: MORE PYTHON

SUMMARY (CONT'D)
▸The Python interpreter can be run interactively or not.

•When interactive, you type in a statement or an expression.

➡ When a statement is entered, it gets executed.

✦ If there is any output, it appears on subsequent lines.

➡When an expression is entered, it gets evaluated.

✦ The value that results is displayed on the next line.

•When not interactive, Python just loads and runs a script.

➡Its code is executed, line by line (statement followed by statement).

LECTURE 01-2: MORE PYTHON

CONDITIONAL
EXECUTION

LECTURE 01-2 PART 2
THE CONDITIONAL STATEMENT
THE BOOLEAN TYPE

JIM FIX, REED COLLEGE CSCI 121

"FLOW OF CONTROL"
NOTE: so far, Python programs perform “straight-line” execution.
▸The interpreter goes through the code line-by-line, tracking where it’s at

with an instruction pointer.
➡ The movement of that pointer is called the program’s flow of control.

▸With code that has conditional statements and loops, we’ll see flow that’s
not just top to bottom.
➡ Lines might get repeatedly executed, or lines might get skipped.

• With conditions and loops, there are branches in the possible flows.

LECTURE 01-2: CONDITIONAL EXECUTION

"BRANCHING"
▸Here is an example of a conditional (or "if") statement:

pi = 3.14159
area = float(input("Circle area? "))
if area < 0.0:
 print("That’s not a valid area.")
else:
 radius = (area / pi) ** 0.5
 print("That circle’s radius is "+str(radius)+".")  

▸Depending on the value of area, either the first print or the second
print will execute.
➡ The other one will get skipped.

LECTURE 01-2: CONDITIONAL EXECUTION

"LOOPING"
▸Here is an example of a looping "while" statement:

pi = 3.14159
area = float(input("Circle area? “))
while area < 0.0:
 print(“That’s not a valid area.”)
 area = float(input(“Try again:”))
radius = (area / pi) ** 0.5
print("That circle’s radius is “+str(radius)+”.”)  

▸Because of that while statement, the re-prompting and re-input of an
area with that second input can be repeatedly executed.
➡ Lines 3 and 4 are repeated until the user enters a good area value.

LECTURE 01-2: CONDITIONAL EXECUTION

▸Python allows us to reason about values and act on them conditionally.
▸For example, consider this script:
 x = float(input("Enter a value: "))  
 if x < 0:  
 abs_x = -x  
 else:  
 abs_x = x

 print("The absolute value of it is " + str(abs_x))  

 

THE "IF-ELSE" CONDITIONAL STATEMENT
LECTURE 01-2: CONDITIONAL EXECUTION

▸Python allows us to reason about values and act on them conditionally.
▸For example, consider this script:
 x = float(input("Enter a value: "))  
 if x < 0:  
 abs_x = -x  
 else:  
 abs_x = x

 print("The absolute value of it is " + str(abs_x))

% python3 absolute.py
Enter a value: -5.5  
The absolute value of it is 5.5
% python3 absolute.py
Enter a value: 105.77  
The absolute value of it is 105.77
% python3 absolute.py
Enter a value: 0.0  
The absolute value of it is 0.0

THE "IF-ELSE" CONDITIONAL STATEMENT
LECTURE 01-2: CONDITIONAL EXECUTION

▸Python allows us to reason about values and act on them conditionally.
▸For example, consider this script:

 x = float(input("Enter a value: "))  
 if x < 0:  
 abs_x = -x  
 else:  
 abs_x = x
 print("The absolute value of it is " + str(abs_x))  

▸When fed a negative value, it prints the value with its sign flipped.
➡I.e. the positive value with the same magnitude. -5.5 ~> 5.5

▸Otherwise, if positive or 0.0, it just prints that value.
 

THE "IF-ELSE" CONDITIONAL STATEMENT
LECTURE 01-2: CONDITIONAL EXECUTION

Below is a template for conditional statements:

if condition-expression:
 lines of statements executed if the condition holds
 ...
else:
 lines of statements executed if the condition does not hold
 ...
lines of code executed after, in either case

 

SYNTAX: IF-ELSE STATEMENT
LECTURE 01-2: CONDITIONAL EXECUTION

CONDITION EXPRESSIONS COMPUTE A BOOL VALUE
>>> 345 < 10  
False  
>>> 345 == 300 + 50 - 5  
True  
>>> type(True)
<class 'bool'>
>>> type(False)
<class 'bool'>  
>>> x = 57
>>> (x > 0) and (x <= 100)  
True
>>> (x <= 0) or (x > 100)  
False
>>> not (345 < 10)  
True
>>> not ((x <= 0) or (x > 100))  
True  
 

LECTURE 01-2: CONDITIONAL EXECUTION

▸Python allows us to reason about values and act on them conditionally.
▸For example, consider this script:

 x = float(input("Enter a value: "))  
 if x < 0:  
 abs_x = -x  
 else:  
 abs_x = x
 print("The absolute value of it is " + str(abs_x))  

When the script is run, the if code gets executed as follows:
▸Python first checks the condition before the colon.

➡ If the condition is True, it executes the first return statement.
➡ If the condition is False, it executes the second return statement.

This is the one sitting under the else line.
 

CONDITIONAL STATEMENT EXECUTION
LECTURE 01-2: CONDITIONAL EXECUTION

▸Python allows us to reason about values and act on them conditionally.
▸For example, consider this script:

 x = float(input("Enter a value: "))  
 if x < 0:  
 abs_x = -x  
 else:  
 abs_x = x
 print("The absolute value of it is " + str(abs_x))  

▸You could maybe say that if-else gives Python code “intelligence.”
➡ It reasons about the value of x and behaves one way or the other.

▸The code is smart!
 

CONDITIONAL STATEMENT EXECUTION
LECTURE 01-2: CONDITIONAL EXECUTION

Below is a template for conditional statements:

if condition-expression:
 lines of statements executed if the condition holds
 ...
else:
 lines of statements executed if the condition does not hold
 ...
lines of code executed after, in either case

▸Use indentation to indicate the "true" code block and the "false" code block.

SYNTAX: IF-ELSE STATEMENT
LECTURE 01-2: CONDITIONAL EXECUTION

▸Here is a script that acts differently, depending on the parity of a number.

 n = int("Enter an integer: ")  
 if n % 2 == 0:  
 print(“That number is even.”)  
 else:  
 print(“That number is odd.”)
 

▸The equality test == is used to compare...
• the left-hand expression’s value n % 2
•with the right-hand expression’s value 0.
▸It is used to check whether they are equal.

 

ANOTHER EXAMPLE: CHECKING PARITY
LECTURE 01-2: CONDITIONAL EXECUTION

▸A different version of the absolute value script:

 x = float(input("Enter a value: “))  
 if x < 0:  
 x = -x
 print("The absolute value of it is " + str(x))
 

CONDITIONAL STATEMENT WITH NO ELSE
LECTURE 01-2: CONDITIONAL EXECUTION

Below is a template for conditional statements with no "else" block:

if condition-expression:
 lines of statements executed only if the condition holds
 ...
lines of code executed after, in either case

▸Use indentation to indicate the "true" code block.

SYNTAX: IF STATEMENT
LECTURE 01-2: CONDITIONAL EXECUTION

▸ The code below is like some code in some autograder:

print("Your code passed " + str(passed))
print(" out of " + str(tested) + "tests.")
if passed == tested:
 print("Your code passed all our tests!")
 if not on_time:
 print("But you submitted after the deadline.")
 

ANOTHER EXAMPLE: AUTOGRADER FEEDBACK
LECTURE 01-2: CONDITIONAL EXECUTION

▸ The code below is like some code in some autograder:

if on_time:

 if all_correct:
 mesg = "Great work passing all the tests!\n"
 mesg += "You've earned the points for this problem."
 else:
 mesg = "To earn points, make sure all the tests pass."

else:

 if all_correct:
 mesg = "Great work making all the tests pass.\n"
 mesg += "Sadly we can't offer you any points.\n"
 mesg += "You submitted this after the deadline."
 else:
 mesg = "Sorry! There’s still a problem. No points.”

print(mesg)

NESTING CONDITIONAL STATEMENTS
LECTURE 01-2: CONDITIONAL EXECUTION

▸More examples using if.
▸More about boolean expressions.
• comparisons: < <= > >=
• logical operations: and or not
• storing boolean results
▸ Looping with while.

NEXT TIME
LECTURE 01-2: CONDITIONAL EXECUTION

