MORE ON PYTHON

LECTURE 01-2 PART 1
THOUGHTS ON LAB
MORE ON PYTHON SCRIPTING

JIM FIX, REED COLLEGE CSCI 121

ADDITIONAL COURSE STAFF

Tutors:
Yulin Meng
Charlotte Brohme-Chen
Grey Nielson
Kellyn Cowger
Will staff Library 340 7-9pm Su through Th. I'm still setting this up.
Some might also attend lab.

Teaching consultant:
Fatima Campbell
Will observe lectures and some labs.
Setting up anonymous feedback form.
Will take survey around/after week 6.

READINGS

This week's lecture material can be supplemented with:
Reading: PP 1.1-1.3; TP Ch. 1 and 2; CP Ch 1.1-1.2
At the end of lecture we'll also look at:
the conditional statement (i.e. 1 £)

the boolean values True and False

“Think Python" text

READINGS

This week S Iecture materlal can besuppl fented with:
2 PP 1.1-1.3 TP Ch. 1 and 2CP Ch 1.1-1.2

—:—-—m-—— e '::(‘

ke we'll also look at:
the conditionalstatement (i.e. i £)

the boolean va " es True and False

Prof. Groce’s “Principled Programming” text

NOTES FROM LAB

| thought the first lab went particularly well for everyone.
Next week I'll pair you.
Some thoughts from lab:
navigating in Terminal and your file system
using your editor
string versus integer versus floating point; Python input
Python output
function notation
working with Gradescope and the autograder

NAVIGATING W/IN TERMINAL, EDITOR, BROWSER, FILESYSTEM

Advice: name folders without spaces or punctuation
Make sure Python program file (i.e. scripts) names end with . py
Learn Terminal commands ed, ed . ., cd folder-name, 1s, pwd
You might sometimes be in the Python interpreter instead of Terminal:

prompt is >>> when in Python

can leave Python with quit () or by typing control-d

Note: control-cis a way to stop programs running

python3 my-script . py command versus python3 command
Be mindful of where files live.

You might e.g. have copies of the same-named script.
Learn paths for your folders:

Documents, Desktop, Downloads, user's home (i.e. ~)
Don't forget to Save within the editor.

GRADESCOPE AND THE AUTOGRADER

You have to get prompt text and program output exactly right.
Spelling, spacing, punctuation, line breaks etc. must match exactly.

If everything looks good...
You'll get a score of 10.0 from the autograder. Otherwise 0.0.
We give up to an additional 10.0 points for programming “sty/e" and

There are visible versus hidden tests:
For visible tests we will reveal what we input to test your code.
For hidden tests we won't reveal these; we'll just tell you “something'’s not
right.”
Goal: to get you used to checking the work yourself.

PYTHON OUTPUT

Suppose the script text below is saved as print_fun.py

print ("Hello there! Isn’t this \”fun\” stuff?”)
print ()
print (“Yes\nI\nagree.”)

x=umyn*3
y = 3.5
print (“Oh” + x + “. The value 1is ” + str(y) + “.”)

On my Mac, within Terminal, after the prompt, | enter the command:

CO2MX1KLFHO4:examples jimfix$ python3 print fun.py
Hello there! Isn’t this ”"fun” stuff?

Yes

I

agree.

Oh my my my. The value is 3.5.
CO2MX1KLFHO4:examples jimfix$

The Python interpreter outputs those six lines of text.

LECTURE 01-2: MORE PYTHON

PYTHON INPUT; VALUE TYPES; CONVERTING TO STRINGS

) Suppose the script text below is saved as types.py

a = input(“Enter A: ")

b = float(input (“Enter B: "))

c int (input (“Enter C: "))

print(“A is “ + a + “ and has type “ + str(type(a)) + “.")
print(“B is “ + b + “ and has type “ + str(type(b)) + “.")
print(“C is “ + ¢ + “ and has type “ + str(type(c)) + “.")

» Here is what gets output by Python:

CO2MX1KLFHO4:examples jimfix$ python3 types.py
Enter A: 2

Enter B: 2

Enter C: 2

A is 2 and has type <class ‘str’>.

A is 2.0 and has type <class ‘float’>.

A is 2 and has type <class ‘int’>.
CO2MX1KLFHO4:examples jimfix$

INTERACTING WITH THE PYTHON INTERPRETER

Python can be used to "live script":

CO2MX1KLFHO4:examples jimfix$S python3
>>> print(“hello”)

hello

>>> print (6 * 7)

42

>>> result = 6 * 7

>>> print (result)

42

>>>

We can try a Python coding by interacting directly with the interpreter.
We type in Python statements one at a time.

Each line gets executed immediately.

Each statement typically performs an action, has an effect.

THE INTERPRETER AS CALCULATOR

Python can also evaluate expressions; compute and display their result:

CO2MX1KLFHO4 :examples jimfix$ python3
>>> 6 * 7

>>> result = 6 * 7
>>> result

>>> llhelloll + a4 a4 + lltherell

>>>

Here, Python is acting differently. It calculates the value of the expression,
then (quietly) converts that value into some readable text characters, then
displays that text.

THE INTERPRETER AS CALCULATOR

Python can be also be used to evaluate expressions:

CO2MX1KLFHO4 :examples jimfix$ python3
>>> 6 * 7

>>> result = 6 * 7
>>> result

>>> uhello" + i V7 + uthere”

>>>

It repeatly applies three steps as a “Read-Eval-Print Loop" or REPL.
READ: it looks at the expression entered after >>>
EVALUATE: it performs a calculation to obtain a value
PRINT: it displays the result as some text.

THE INTERPRETER AS CALCULATOR

Python can be used to evaluate expressions:

CO2MX1KLFHO4 :examples jimfix$ python3
>>> 6 * 7

>>> result = 6 * 7
>>> result

>>> uhello" + i V7 + uthere”

>>>

This is the “READ - EVALUATE - PRINT LOOP" (or “REPL").
Having access to a REPL for a programming language is wonderful!
It's a big reason we teach programming in Python.

LECTURE 01-2: MORE PYTHON

PYTHON PROVIDES ARITHMETIC

>>> 3 + 7

10

>>> 4 + 2 * 3
10

>>> (4 + 2) * 3
18

>>> 4 / 16

0.25

>>> 2 ** 4

16

>>> 0.1 + 0.2
0.30000000000000004

LECTURE 01-2: MORE PYTHON

PYTHON PROVIDES ARITHMETIC

>>> 3 + 7

10

>>> 4 + 2 * 3
10

>>> (4 + 2) * 3
18

>>> 4 / 16

0.25

>>> 2 ** 4

16

>>> 0.1 + 0.2

(o JmcYoToXoloToToXooToToXooTo oo X!
>>> type(4)
<class 'int'>
>>> type(0.25)
<class 'float'>

INTEGERS VERSUS FLOATING POINT NUMBERS

Python has two types of number values: int and £1oat
With integers, computation is exact.
With floating point numbers (“floats"), computation is approximate.

>>> 10 / 2
>>> 3 + 4.0

>>> 1nt (8.7)

LECTURE 01-2: MORE PYTHON

INTEGER VERSUS FLOATING POINT DIVISION

» With the normal division operation, the slash /, you get a float.

>>> 10.2 / 2.0
5.1

>>> 10 / 2

5.0

>>> 87 / 10
8.7

INTEGER VERSUS FLOATING POINT DIVISION

There is also an integer division operation, the double slash operator / /.
This gives the integer quotient.
The remainder due to the division is discarded.
>>> 10 // 2

>>> 87 // 10

PYTHON HAS // AND % OPERATORS

The / / operation (“div") gives the integer quotient due to the division of

two integers:
>>> 345 // 12

The % operation ("mod”) gives the integer remainder due to the division of

two integers:
>>> 345 % 12

This property always holds:

number = quotient x divisor + remainder
>>> 28 * 12 + 9

LECTURE 01-2: MORE PYTHON

EXAMPLE USES

>>> 345 % 10
222222727

>>> 345 // 10
22222227

\

>>> =26 // 2
P222222727

>>> -76 // 10
P2222227

LECTURE 01-2: MORE PYTHON

EXAMPLE USES

>>> 345 % 10

\

5

>>> 345 // 10
34

>>> 6789 % 2
1

>>> 6790 % 2
0]

>>> =26 % 2
0]

>>> =76 % 10
4

>>> -26 // 2
-13

>>> -76 // 10
-8

LECTURE 01-2: MORE PYTHON

PYTHON CAN APPLY KNOWN FUNCTIONS...

>>> pow(2,3)

8

>>> abs (-3)

3

>>> abs(4 + 2)

6

>>> min(3,7)

3

>>> max(4, 10.5 + 8.3, 6)
18.8

>>> from math import sqrt, pow
>>> sqrt(2.0)
1.4142135623730951

>>> pow(2.0,4.5)
22.627416997969522

TEXT STRINGS

Python can store and compute with text:

>>> entry = input(“Enter something: *)
Enter something: some thing

>>> entry

>>> type(entry)

>>> “hello”

>>> type(“hello”)

>>> ‘hello’

>>> len(entry)

>>> len(“hello”)

To describe a string of characters, you put those literal characters between double quotes.
You can also use single quotes, and Python chooses to report strings that way,
These distinguish the text from a variable name.

LECTURE 01-2: MORE PYTHON

STRING ARITHMETIC

>>> “hello” + “there”

‘hellothere’

>>> x = “hello”

>>> x = x + “ there”
>>> x

‘hello there’

>>> x = x + “ 1 must”
>>> x = x + “ be going”
>>> x

‘hello there i must be going’

LECTURE 01-2: MORE PYTHON

STRING ARITHMETIC (CONT'D)

>>> “hello” * 3
‘hellohellohello’

>>> 4 * “hello”
‘hellohellohellohello’
>>> “hello” * O

>>>

LECTURE 01-2: MORE PYTHON

STRING ARITHMETIC (CONT'D)

>>> “hello” * 3
‘hellohellohello’

>>> 4 * “hello”
‘hellohellohellohello’
>>> “hello” * O

>>> “hello” + 3
Error!

>>> “76" + 3

Error!

>>> “76" + str(3)
7637

>>> int(“76") + 3

79

>>> int(“hello”) + 3
Error!

LECTURE 01-2: MORE PYTHON

SPECIAL CHARACTERS

» A backslash character \ followed by a second character expresses special characters

= atabis \t,anewlineis \n,aquoteis \ ', a backslash is \'\

>>> z = input('What\'s your name?')
What's your name?John
>>> “Hello “ + z
'Hello John'
>>> print (“I\’'ve “+str(19)+“ characters.\nSee?”)
I've 19 characters.
See?
>>> len(“I\’'ve “+str(19)+“ characters.\nSee?"”)
19
>>> print (“\thello\nthere”)
hello
there
>>> print ("/\\/\\/\\/\\"
JAVAVYAVYA

LECTURE 01-2: MORE PYTHON

BACK TO PYTHON SCRIPTING

» Consider this Python program:

pi = 3.14159

area = float(input("Circle area? "))

radius = (area / pi) ** 0.5

print ("The radius of that circle is "+str(radius)+" units.")

BACK TO PYTHON SCRIPTING

Consider this Python program:

pi = 3.14159

area = float(input("Circle area? "))

radius = (area / pi) ** 0.5

print ("The radius of that circle is "+str(radius)+" units.")

This has is 3 assignment statements and a print statement.

The first defines/assigns the variable named pi.

The second gets a floating point value (a “calculator number”) as input,
assigned to area. We compute that using an arithmetic formula.

The functions £1oat and str convert values of one type to values of
another type.

PYTHON EXECUTION

Let's take a look at this script:

pi = 3.14159

area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.

LECTURE 01-2: MORE PYTHON

PYTHON EXECUTION

» Let's take a look at this script:

+pi = 3.14159
area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

» What we know is that the Python interpreter runs the code, line by line,

from the top line to the bottom line.
)

LECTURE 01-2: MORE PYTHON

PYTHON EXECUTION

» Let's take a look at this script:

pi = 3.14159
»area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

» What we know is that the Python interpreter runs the code, line by line,

from the top line to the bottom line.
)

LECTURE 01-2: MORE PYTHON

PYTHON EXECUTION

» Let's take a look at this script:

pi = 3.14159
I area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

» What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.

LECTURE 01-2: MORE PYTHON

PYTHON EXECUTION

» Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
»print("That circle’s radius is "+str(radius)+".")

» What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.

LECTURE 01-2: MORE PYTHON

PYTHON EXECUTION

» Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
»print("That circle’s radius is "+str(radius)+".")

» If you ever want to "watch" a Python program, try out The Python Tutor
https://pythontutor.com/

» Using it, you'll see something like this...

PYTHON EXECUTION globalframe vvveesssssasann E

Let's take a look at this script:

»pi = 3.14159
area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
It also creates named memory slots for each variable that gets introduced.
That named slot stores a calculated value.
Avariable's associated value is changed with each assignment statement.

PYTHON EXECUTION e E

Let's take a look at this script:

pi = 3.14159
*area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
It also creates named memory slots for each variable that gets introduced.
That named slot stores a calculated value.
Avariable's associated value is changed with each assignment statement.

PYTHON EXECUTION globalframe veeesssssssann E

 area: 314,159
Let's take a look at this script: g?gﬁ?u& 100

pi = 3.14159
I area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
It also creates named memory slots for each variable that gets introduced.
That named slot stores a calculated value.
Avariable's associated value is changed with each assignment statement.

PYTHON EXECUTION globalframe veeesssssssann E

 area: 314.159
Let's take a look at this script: E?arg?us: 100

pi = 3.14159
area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
+print("That circle’s radius is "+str(radius)+".")

What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
It also creates named memory slots for each variable that gets introduced.
That named slot stores a calculated value.
Avariable's associated value is changed with each assignment statement.

PYTHON EXECUTION globalframe veeesssssssann E

. : = area: 314.159
Let's take a look at this script: radius: 10.0
pi = 3.14159
area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
»print("That circle’s radius is "+str(radius)+".")

What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.

It also creates named memory slots for each variable that gets introduced.
That named slot stores a calculated value.

Avariable's associated value is changed with each assignment statement.
The collection of variable slots of a script is called the global frame

SUMMARY OF PYTHON S0 FAR

So far, three kinds of statements:
print statement
assignment statement
import statement
Several built-in functions
input
conversions: str, int, float
abs, min, max, pow, and many more from the math library

len

type

LECTURE 01-2: MORE PYTHON

SUMMARY (CONT'D)

»Binary operations (so far)
forintegers: + - * // % **
oforfloats: + - * / *%

o forstrings: + *

LECTURE 01-2: MORE PYTHON

SUMMARY (CONT'D)

»Binary operations (so far)
forintegers: + - * // % *%
oforfloats: + - * / *%

o forstrings: + *

SUMMARY (CONT'D)

The Python interpreter can be run interactively or not.

When interactive, you type in a statement or an expression.

When a statement is entered, it gets executed.

If there is any output, it appears on subsequent lines.
When an expression is entered, it gets evaluated.

The value that results is displayed on the next line.

When not interactive, Python just loads and runs a script.

Its code is executed, line by line (statement followed by statement).

CONDITIONAL
EXECUTION

LECTURE 01-2 PART 2
THE CONDITIONAL STATEMENT
THE BOOLEAN TYPE

JIM FIX, REED COLLEGE CSCI 121

"FLOW OF CONTROL"

NOTE: so far, Python programs perform “straight-line" execution.
The interpreter goes through the code line-by-line, tracking where it's at
with an instruction pointer.
The movement of that pointer is called the program’s flow of control.

With code that has conditional statements and loops, we'll see flow that's
not just top to bottom.

Lines might get repeatedly executed, or lines might get skipped.

With conditions and loops, there are branches in the possible flows.

"BRANCHING"

Here is an example of a conditional (or "if") statement:

pi = 3.14159

area = float(input("Circle area? "))
if area < 0.0:

print ("That’s not a valid area.")
else:

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

Depending on the value of area, either the first print or the second
print will execute.

The other one will get skipped.

"LOOPING”

Here is an example of a looping "while" statement:

pi = 3.14159
area = float(input("Circle area? “))
while area < 0.0:
print (“That’s not a valid area.”)
area = float(input(“Try again:”))
radius = (area / pi) ** 0.5
print ("That circle’s radius is “+str(radius)+”.")

Because of that whi 1 e statement, the re-prompting and re-input of an
area with that second input can be repeatedly executed.
Lines 3 and 4 are repeated until the user enters a good area value.

LECTURE 01-2: CONDITIONAL EXECUTION

THE "IF-ELSE™ CONDITIONAL STATEMENT

» Python allows us to reason about values and act on them conditionally.
» For example, consider this script:

x = float(input("Enter a value: "))
if x < O:

abs x = -x
else:

abs x = x
print ("The absolute value of it is " + str(abs_x))

LECTURE 01-2: CONDITIONAL EXECUTION

THE "IF-ELSE™ CONDITIONAL STATEMENT

» Python allows us to reason about values and act on them conditionally.
» For example, consider this script:

x = float(input("Enter a value: "))
if x < O:

abs x = -x
else:

abs x = x
print ("The absolute value of it is " + str(abs_x))

% python3 absolute.py

Enter a value: -5.5

The absolute value of it is 5.5

% python3 absolute.py

Enter a value: 105.77

The absolute value of it is 105.77
% python3 absolute.py

Enter a value: 0.0

The absolute value of it is 0.0

THE "IF-ELSE" CONDITIONAL STATEMENT

Python allows us to reason about values and act on them conditionally.
For example, consider this script:

x = float(input("Enter a value: "))
if x < O:

abs x = -x
else:

abs x = x

print ("The absolute value of it is " + str(abs_x))

When fed a negative value, it prints the value with its sign flipped.
|.e. the positive value with the same magnitude. -5.5 ~>5.5
Otherwise, if positive or 0 . 0, it just prints that value.

LECTURE 01-2: CONDITIONAL EXECUTION

SYNTAX: IF-ELSE STATEMENT

Below is a template for conditional statements:

if condition-expression :
lines of statements executed if the condition holds

else:
lines of statements executed if the condition

lines of code executed after, in either case

LECTURE 01-2: CONDITIONAL EXECUTION

CONDITION EXPRESSIONS COMPUTE A BOOL VALUE

>>> 345 < 10

False

>>> 345 == 300 + 50 - 5
True

>>> type(True)

<class 'bool'>

>>> type(False)

<class 'bool'>

>>> x = 57

>>> (x > 0) and (x <= 100)
True

>>> (x <= 0) or (x > 100)
False

>>> not (345 < 10)

True

>>> not ((x <= 0) or (x > 100))
True

CONDITIONAL STATEMENT EXECUTION

Python allows us to reason about values and act on them conditionally.
For example, consider this script:

x = float(input("Enter a value: "))
if x < O:

abs x = -x
else:

abs x = x
print ("The absolute value of it is " + str(abs_x))

When the scriptis run, the i £ code gets executed as follows:
Python first checks the condition before the colon.
If the condition is True, it executes the first ret urn statement.
If the condition is False, it executes the second return statement.
This is the one sitting under the else line.

CONDITIONAL STATEMENT EXECUTION

Python allows us to reason about values and act on them conditionally.
For example, consider this script:

x = float(input("Enter a value: "))
if x < O:
abs x = -x
else:
abs x = x
print ("The absolute value of it is " + str(abs x))

You could maybe say that i f-else gives Python code “intelligence.”
It reasons about the value of x and behaves one way or the other.

The code is smart!

LECTURE 01-2: CONDITIONAL EXECUTION

SYNTAX: IF-ELSE STATEMENT

Below is a template for conditional statements:

if condition-expression :
. lines of statements executed if the condition holds

else:

. lines of statements executed if the condition

lines of code executed after, in either case

» Use indentation to indicate the "true" code block and the "false" code block.

ANOTHER EXAMPLE: CHECKING PARITY

Here is a script that acts differently, depending on the parity of a number.

n = int("Enter an integer: ")
if n § 2 == 0:

print (“That number is even.”)
else:

print (“That number is odd.”)

The equality test == is used to compare...
the left-hand expression’svaluen % 2
with the right-hand expression’s value 0.

It is used to check whether they are equal.

LECTURE 01-2: CONDITIONAL EXECUTION

CONDITIONAL STATEMENT WITH NO ELSE

» A different version of the absolute value script:

x = float(input("Enter a value: “))
if x < O:
X = =X

print ("The absolute value of it is "

+ str(x))

LECTURE 01-2: CONDITIONAL EXECUTION

SYNTAX: |F STATEMENT

Below is a template for conditional statements with no "else" block:

if condition-expression :
. lines of statements executed only if the condition holds

lines of code executed after, in either case

» Use indentation to indicate the "true" code block.

LECTURE 01-2: CONDITIONAL EXECUTION

ANOTHER EXAMPLE: AUTOGRADER FEEDBACK

» The code below is like some code in some autograder:

print ("Your code passed " + str(passed))
print (" out of " + str(tested) + "tests.")
1f passed == tested:
print ("Your code passed all our tests!")
if not on time:
print ("But you submitted after the deadline.")

LECTURE 01-2: CONDITIONAL EXECUTION

NESTING CONDITIONAL STATEMENTS

» The code below is like some code in some autograder:

if on_time:

if all correct:

mesg = "Great work passing all the tests!\n"

mesg += "You've earned the points for this problem."”
else:

mesg = "To earn points, make sure all the tests pass.”

else:

if all correct:
mesg = "Great work making all the tests pass.\n"
mesg += "Sadly we can't offer you any points.\n"
mesg += "You submitted this after the deadline.”
else:
mesg = "Sorry! There’s still a problem. No points.”

print (mesgqg)

NEXT TIME

More examples using i £.

More about boolean expressions.
comparisons: < <= > >=
logical operations: and or not
storing boolean results

Looping withwhile.

