
WELCOME TO CS1!

• Jim Fix, lecturer and lab instructor

Also: Several 121 alums as TAs

REED COLLEGE CSCI 121 SPRING 2025

COURSE OVERVIEW

LECTURE 00

JIM FIX, REED COLLEGE CSCI 121

LECTURE 00: COURSE OVERVIEW

COURSE OVERVIEW
▸ There is a course webpage at http://jimfix.github.io/csci121
• It has the syllabus and a schedule of topics covered.
• There I'll post lecture materials, assignments, and supplemental readings.

ASSIGNMENT SUBMISSION THRU GRADESCOPE
▸ There is a Gradescope "course" for submitting completed assignments.

➡You should have received an invitation to join it.
➡You hand in homework and project work there.

• I’ve already posted a Project 0 for you to work on today/tonight.
➡ It will help you set up your computer.
➡ It will give you practice submitting assignments.
➡Complete it before our first lab meeting tomorrow.

• Tomorrow a Homework 1 will be started in lab, due by the next lab.
➡You'll write some basic interactive Python programs.

▸ I post homework descriptions at http://jimfix.github.io/csci121/assign.html

LECTURE 00: COURSE OVERVIEW

CS1 IS AN INTRODUCTION TO SEVERAL THINGS
▸Course topics:

➡An introduction to programming. We will use the Python language.
➡An introduction to the discipline of computer science.
➡An introduction to object-oriented programming.
➡An introduction to data structures and algorithms.

LECTURE 00: COURSE OVERVIEW

CS1 IS AN INTRODUCTION TO SEVERAL THINGS
▸Course topics:

➡An introduction to programming. We will use the Python language.
➡An introduction to the discipline of computer science.
➡An introduction to object-oriented programming.
➡An introduction to data structures and algorithms.

LECTURE 00: COURSE OVERVIEW

CS1 IS AN INTRODUCTION TO SEVERAL THINGS
▸Course topics:

➡An introduction to programming. We will use the Python language.
➡An introduction to the discipline of computer science.
➡An introduction to object-oriented programming.
➡An introduction to data structures and algorithms.

No prerequisites.
No prior programming experience expected.

LECTURE 00: COURSE OVERVIEW

WHY PYTHON?
▸ It’s a good first language.

➡ It’s easy to learn, loose, feature-rich.
➡Has features from several language families.

▸ It has a large programmer base.
➡Used by the open source community for scripting, glue.
➡Used by several scientific communities:
✦ bioinformatics, computational chemistry, SAGE math.

➡Programming tools and docs are freely available.

▸ It’s great fun.

LECTURE 00: COURSE OVERVIEW

A PYTHON PROGRAM
name = input("Enter your name: ")
print("Hello, " + name + ".")  

course = int(input("What's the course's #? "))  
print("Ahh, yes, CSCI " + str(course) + "!")  

square = 0
count = 0
while square + 2 * count + 1 <= course:
 square += 2 * count + 1
 count += 1  

if course % square == 0:
 print("Did you know " + str(course))
 print("equals "+ str(count) + " squared?")

LECTURE 00: COURSE OVERVIEW

ANOTHER PYTHON PROGRAM
import time

def newton(guess, target):
 time.sleep(0.5)
 next = guess - (guess * guess - target) / (2 * guess)
 while abs(next - guess) > 0.001:
 print(guess)
 guess = next
 next = guess - (guess * guess - target) / (2 * guess)

course = 121
name = input("Enter your name: ")
print("Okay, " + name + " let me think...")
approx = newton(course/2.0, course)
print("Did you know " + str(course))
print("is roughly "+ str(approx) + " squared?")

LECTURE 00: COURSE OVERVIEW

WEEKLY PROGRAMMING TOPICS
▸Here are the first several weeks of programming topics:
• WEEK 1: scripting; program input and output; calculating things
• WEEK 2: defining functions and procedures; checking conditions
• WEEK 3: loops
• WEEK 4: lists and dictionaries
• WEEK 5: recursion
• ...

This schedule can be found at http://jimfix.github.io/csci121/sched.html

LECTURE 00: COURSE OVERVIEW

A PYTHON PROGRAM
name = input("Enter your name: ")
print("Hello, " + name + ".")  

course = int(input("What's the course's #? "))  
print("Ahh, yes, CSCI " + str(course) + "!") 

square = 0
count = 0
while square + 2 * count + 1 <= course:
 square += 2 * count + 1
 count += 1  

if course % square == 0:
 print("Did you know " + str(course))
 print("equals "+ str(count) + " squared?")

WEEK 1: INPUT

WEEK 1: CALCULATING

WEEK 1: OUTPUT

WEEK 1: SCRIPTING

LECTURE 00: COURSE OVERVIEW

A PYTHON PROGRAM
name = input("Enter your name: ")
print("Hello, " + name + ".")  

course = int(input("What's the course's #? "))  
print("Ahh, yes, CSCI " + str(course) + "!")  

square = 0
count = 0
while square + 2 * count + 1 <= course:
 square += 2 * count + 1
 count += 1  

if course % square == 0:
 print("Did you know " + str(course))
 print("equals "+ str(count) + " squared?")

WEEK 2: CHECKING CONDITIONS

WEEK 2: LOOPS

LECTURE 00: COURSE OVERVIEW

ANOTHER PYTHON PROGRAM
import time

def newton(guess, target):
 time.sleep(0.5)
 next = guess - (guess * guess - target) / (2 * guess)
 while abs(next - guess) > 0.001:
 print(guess)
 guess = next
 next = guess - (guess * guess - target) / (2 * guess)

course = 121
name = input("Enter your name: ")
print("Okay, " + name + " let me think...")
approx = newton(course/2.0, course)
print("Did you know " + str(course))
print("is roughly "+ str(approx) + " squared?")

WEEK 3: FUNCTIONS

WEEK 2: LOOPS

LECTURE 00: COURSE OVERVIEW

WEEKLY PROGRAMMING TOPICS
▸Here are the first several weeks of programming topics:
• WEEK 1: scripting; program input and output; calculating things
• WEEK 2: checking conditions; looping
• WEEK 3: defining functions and procedures
• WEEK 4: lists
• WEEK 5: dictionaries
• …

The schedule can be found at http://jimfix.github.io/csci121/weeks.html

▸We move somewhat quickly, but it has worked well to do so!
▸ Though we use Python, these concepts are universal.
• You are learning the structure of algorithms; algorithmic problem solving.

LECTURE 00: COURSE OVERVIEW

WEEKLY PROGRAMMING TOPICS
▸ The remaining weeks provide a transition to more advanced programming.
• WEEK 6: recursion
• WEEK 7: object-oriented programming
• WEEK 8: function objects
• SPRING BREAK
• WEEK 9: linked lists
• WEEK 10: algorithmic efficiency; sorting and searching
• WEEK 11: binary search trees
• WEEK 12: file I/O and exceptions
• WEEK 13: wrap-up and review

LECTURE 00: COURSE OVERVIEW

ASSIGNMENTS
▸ There will be weekly lab homework.

➡Assigned in Tuesday lab, due the following Tuesday before lab.

▸ There will be four programming projects.
➡We'll give you 2-4 weeks to complete each.

LECTURE 00: COURSE OVERVIEW

FOUR PROGRAMMING PROJECTS
• Project 1: greed
➡program a strategy for a two-player game of chance

• Project 2: ciphers
➡ crack some codes

• Project 3: hawks and doves
➡ simulate a population of birds

• Project 4: adventure / arcade
➡build an 80s-style game, either text-based or graphical

These will be due on occasional Thursdays.

LECTURE 00: COURSE OVERVIEW

ASSIGNMENTS
▸ There will be weekly lab homework.

➡Assigned in Tuesday lab, due the following Tuesday before lab.

▸ There will be four programming projects.
➡We'll give you 2-4 weeks to complete each.

▸ There will be several in-class quizzes
➡Starting in a few weeks, then (roughly) every two weeks.
➡One or two short programming puzzles each.
➡Write code on paper, no use of a computer.

▸ There will be two in-class exams and a comprehensive final
➡Also written on paper.

LECTURE 00: COURSE OVERVIEW

MEETING TIMES
• LECTURE: Mondays and Wednesdays, 80 minutes

➡1:10-2:30pm in Library 204

• LAB MEETING: Tuesdays, 80 minutes
➡10:30-11:50am in LIB 340
➡1:40-3:00pm in LIB 340

• EVENING TUTORING: Sunday through Thursdays, 7-9pm in LIB 340

• MY OFFICE HOURS:
➡11:20am-12:20pm Monday and Wednesday in LIB 314 (my office)
➡most Tuesday and Wednesday mornings, drop by my office!
➡most Monday and Wednesday afternoons, drop by my office!
➡other times by appointment; Thursday and Friday over Zoom

LECTURE 00: COURSE OVERVIEW

RESOURCES
• I will post all my slides and code examples. You can probably work mostly from these.

• I'll suggest supplemental readings from three textbooks:

➡Principled Programming by Adam Groce, Reed College.
✦ Closest to what I’ll be teaching. Home-grown.

➡ Think Python! How To Think Like a Computer Scientist by Allen Downey, Green Tea Press
✦ Follows the topics of the course somewhat closely.

➡CoMPoSING PRoGRAMS by John DeNero, UC Berkeley
✦ This is a Python rewrite of MIT's famous

Structure & Interpretation of Computer Programs (“SICP”; uses Scheme)
✦ Interesting supplement. Only use Chapters 1 and 2.

➡All are freely available on-line.

LECTURE 00: COURSE OVERVIEW

CS1 IS AN INTRODUCTION TO SEVERAL THINGS
▸Course topics:

➡An introduction to programming. We will use the Python language.
➡An introduction to the discipline of computer science.
➡An introduction to object-oriented programming.
➡An introduction to data structures and algorithms.

▸Q: What is computer science as an academic discipline?

LECTURE 00: COURSE OVERVIEW

Q: WHAT IS COMPUTER SCIENCE?
▸A: It's programming.

LECTURE 00: COURSE OVERVIEW

Q: WHAT IS COMPUTER SCIENCE?
▸A: It's programming.

▸A: It's about programming.

LECTURE 00: COURSE OVERVIEW

Q: WHAT IS COMPUTER SCIENCE?
▸A: It's programming.

▸A: It's about programming.

▸A: It's about "about programming."

▸Etc.

▸

LECTURE 00: COURSE OVERVIEW

Q: WHAT IS COMPUTER SCIENCE?
▸A: It's programming.

▸A: It's about programming.

▸A: It's about "about programming."

▸Etc.

▸You will learn to be reflective about programming, and also to be reflective
about the tools that run programs.
▸ If you continue studying CS, you will learn to make tools that help people

write programs. And make tools that help tools that run programs. Etc.

LECTURE 00: COURSE OVERVIEW

PYTHON

LECTURE 01:
THE PYTHON INTERPRETER
THE ANATOMY OF A PYTHON SCRIPT

JIM FIX, REED COLLEGE CSCI 121

PYTHON SCRIPTING
▸We start in lab tomorrow with some Python scripting:
• A script is a text file containing lines of Python code.
• Each line is a Python statement.
• The Python interpreter (the python3 command) executes each statement,

line by line, from top to bottom.
• A statement directs that an action be made by the interpreter, which has a

state-changing effect.

LECTURE 01-1: PYTHON SCRIPTING

PYTHON SCRIPTING
Each Python statement directs that an action be taken that effects the system.

▸Some examples of effects:
➡ some text gets output (printed) to the console
➡ some typed console input gets read and processed
➡ some variable gets assigned a newly computed value
➡ a window is displayed
➡ a file is read
➡ some web content is fetched
➡ a noise is made
➡etc., etc.

LECTURE 01-1: PYTHON SCRIPTING

RUNNING A SCRIPT
▸ The script text below was saved as hello_calc.py

print("Hello there, everyone!")
print("This is our first Python program.")
print("Did you know that 78687 times 89798 is this?")
print(78687 * 89798)
 

▸On my Mac, within Terminal, after the prompt, I enter the command:
C02MX1KLFH04:examples jimfix$ python3 hello_calc.py
Hello there, everyone!
This is our first Python program.
Did you know that 78687 times 89798 is this?
7065935226
C02MX1KLFH04:examples jimfix$  

▸ The Python interpreter outputs those four lines of text.

LECTURE 01-1: PYTHON SCRIPTING

ANOTHER EXAMPLE: VARIABLES
▸Here is that same program, slightly modified:

print("Hello there, everyone!")
print("This is our second Python program.")
result = 78687 * 89798
print("Did you know that 78687 times 89798 is this?")
print(result)
 

▸The third line is an assignment statement.
• It introduces a variable named result and gives it a value.
• That value is saved in Python’s memory.
• It can be accessed by name later in the script.

LECTURE 01-1: PYTHON SCRIPTING

ANOTHER EXAMPLE: VARIABLES
▸Here is that same program, slightly modified:

print("Hello there, everyone!")
print("This is our second Python program.")
result = 78687 * 89798
print("Did you know that 78687 times 89798 is this?")
print(result)

▸ In line 5, we tell Python to output the value of result.

LECTURE 01-1: PYTHON SCRIPTING

ANOTHER EXAMPLE: BUILT-IN FUNCTIONS
▸Here is a different program, but somewhat similar:

print("Hello there, everyone!")
print("This is our third Python program.")
larger = max(78687,89798)
smaller = min(78687,89798)
print("Did you know”, larger, ”is bigger than”, smaller, ”is?”) 

▸The third and fourth lines are also assignment statements.
• Each of those lines uses a built-in Python function.
• The first function max computes the smallest of the values it’s fed.
• The second function min computes the smallest of the values it’s fed.

LECTURE 01-1: PYTHON SCRIPTING

INTERACTIVE SCRIPTS
▸ This program is interacts with the program's user:

name = input("Could someone volunteer their name? ")
print("Hello there, “ + name + "!")
print("Thanks for volunteering like that.")

▸Here is one such interaction within Terminal:
C02MX1KLFH04:examples jimfix$ python3 shoutout.py
Could someone volunteer their name? Audrey Bilger
Hello there, Audrey Bilger!
Thanks for volunteering like that.
C02MX1KLFH04:examples jimfix$

▸ The program has an assignment statement followed by 2 print statements.
▸ The assignment's right hand side uses a Python function input
▸ That function first outputs a prompt string to the console...

➡And then it reads a string of input typed into the console.

LECTURE 01-1: PYTHON SCRIPTING

A CALCULATION EXAMPLE
▸Consider this Python program radius.py:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("The radius of that circle is”, radius, “units.”)

▸ This has is 3 assignment statements and a print statement.
▸ The first defines/assigns the variable named pi.
▸ The second gets a floating point value (a “calculator number”) as input,

assigned to area. We compute that using an arithmetic formula.
▸ The functions float and str convert values of one type to values of

another type.

LECTURE 01-1: PYTHON SCRIPTING

SAME CALCULATION EXAMPLE, BUT USING LIBRARY FUNCTIONS
▸Consider this Python program radius_import.py:

from math import pi, sqrt
area = float(input("Circle area? "))
radius = sqrt(area / pi)
print("The radius of that circle is”, radius, “units.”)

▸Here we import some definitions from a Python package named math.
▸pi is the name of a value.
▸ sqrt is the name of a function.
▸ There are packages for all sorts of useful Python libraries.

LECTURE 01-1: PYTHON SCRIPTING

SOME ISSUES I'D LIKE TO ADDRESS
▸different types of program data: int versus float versus str
▸using functions, both built into Python and imported from a library
▸operations you can apply to each type of value
▸obtaining values entered by the program user with input
▸displaying output carefully using print
▸ special characters (tab, end of line, quote, …)

Let’s switch modes in how we use the Python interpreter…

INTERACTING WITH THE PYTHON INTERPRETER
▸Python can be used to "live script":

C02MX1KLFH04:examples jimfix$ python3
>>> print(“hello”)
hello
>>> print(6 * 7)
42
>>> result = 6 * 7
>>> print(result)
42
>>>

▸We can try a Python coding by interacting directly with the interpreter.
▸We type in Python statements one at a time.
▸Each line gets executed immediately.

LECTURE 01-1: PYTHON SCRIPTING

THE INTERPRETER AS CALCULATOR
▸Python can also be used to compute and display values:

C02MX1KLFH04:examples jimfix$ python3
>>> 6 * 7
42
>>> result = 6 * 7
>>> result
42
>>> “hello” + “ “ + “there”
’hello there’
>>>

▸We can enter Python values to be computed.
➡Python evaluates each expression and displays its value on the next line.

▸A Python statement describes an action to be performed.
▸ These Python expressions instead describe a value to be calculated.

➡ This evaluation is different than printing.

LECTURE 01-1: PYTHON SCRIPTING

THE INTERPRETER AS CALCULATOR
▸Python can be used to evaluate expressions:

C02MX1KLFH04:examples jimfix$ python3
>>> 6 * 7
42
>>> result = 6 * 7
>>> result
42
>>> “hello” + “ “ + “there”
’hello there’
>>>

▸Here, Python is acting differently. It calculates the value of the expression,
then (quietly) converts that value into some readable text characters, then
displays that text.

LECTURE 01-1: PYTHON SCRIPTING

THE INTERPRETER AS CALCULATOR
▸Python can be used to evaluate expressions:

C02MX1KLFH04:examples jimfix$ python3
>>> 6 * 7
42
>>> result = 6 * 7
>>> result
42
>>> “hello” + “ “ + “there”
’hello there’
>>>

▸ It follows three steps:
• READs: it looks at the expression entered after >>>
• EVALUATEs: it performs that calculation, obtaining a value, including

looking up variables’ values
• PRINTs: it converts that value to some text and displays it.

LECTURE 01-1: PYTHON SCRIPTING

THE INTERPRETER AS CALCULATOR
▸Python can be used to evaluate expressions:

C02MX1KLFH04:examples jimfix$ python3
>>> 6 * 7
42
>>> result = 6 * 7
>>> result
42
>>> “hello” + “ “ + “there”
’hello there’
>>>

▸ This is the “READ - EVALUATE - PRINT LOOP” (or “REPL”).
▸Having access to a REPL for a programming language is wonderful!
▸ It’s a big reason we teach programming in Python.

LECTURE 01-1: PYTHON SCRIPTING

PYTHON PROVIDES SOME USEFUL FUNCTIONS...
>>> pow(2,3)
8
>>> abs(-3)
3
>>> abs(4 + 2)
6
>>> min(3,7)
3
>>> max(4, 10.5 + 8.3, 6)
18.8
>>> from math import sqrt, pow
>>> sqrt(2.0)
1.4142135623730951
>>> pow(2.0,4.5)
22.627416997969522

LECTURE 01-1: PYTHON SCRIPTING

PYTHON PROVIDES ARITHMETIC
>>> 3 + 7
10
>>> 4 + 2 * 3
10
>>> (4 + 2) * 3
18
>>> 4 / 16
0.25
>>> 2 ** 4
16
>>> 0.1 + 0.2
0.30000000000000004

LECTURE 01-1: PYTHON SCRIPTING

PYTHON PROVIDES ARITHMETIC
>>> 3 + 7
10
>>> 4 + 2 * 3
10
>>> (4 + 2) * 3
18
>>> 4 / 16
0.25
>>> 2 ** 4
16
>>> 0.1 + 0.2
0.30000000000000004
>>> type(4)
<class 'int'>
>>> type(0.25)
<class 'float'>

LECTURE 01-1: PYTHON SCRIPTING

INTEGERS VERSUS FLOATING POINT NUMBERS
▸Python has two types of number values: int and float
▸With integers, computation is exact.
▸With floating point numbers (“floats”), computation is approximate.

>>> 10 / 2
5.0
>>> 3 + 4.0
7.0
>>> int(8.7)
8

LECTURE 01-1: PYTHON SCRIPTING

INTEGER VERSUS FLOATING POINT DIVISION
▸With the normal division operation, the slash /, you get a float.

>>> 10.2 / 2.0
5.1
>>> 10 / 2
5.0
>>> 87 / 10
8.7

LECTURE 01-2: PYTHON SCRIPTING

INTEGER VERSUS FLOATING POINT DIVISION
▸ There is also an integer division operation, the double slash operator //.

➡ This gives the integer quotient.
➡ The remainder due to the division is discarded.
>>> 10 // 2
5
>>> 87 // 10
8

LECTURE 01-2: PYTHON SCRIPTING

RECALL: LONG DIVISION
LECTURE 01-2: PYTHON SCRIPTING

RECALL: LONG DIVISION
LECTURE 01-2: PYTHON SCRIPTING

RECALL: LONG DIVISION
LECTURE 01-2: PYTHON SCRIPTING

RECALL: LONG DIVISION
LECTURE 01-2: PYTHON SCRIPTING

RECALL: LONG DIVISION
LECTURE 01-2: PYTHON SCRIPTING

RECALL: LONG DIVISION
LECTURE 01-2: PYTHON SCRIPTING

the quotient

RECALL: LONG DIVISION
LECTURE 01-2: PYTHON SCRIPTING

the quotient

the remainder

PYTHON HAS // AND % OPERATORS
▸ The // operation (“div”) gives the integer quotient due to the division of

two integers:
>>> 345 // 12
28  

▸ The % operation (“mod”) gives the integer remainder due to the division of
two integers:
>>> 345 % 12
9  

▸ This property always holds:
➡number = quotient x divisor + remainder
>>> 28 * 12 + 9
345

LECTURE 01-2: PYTHON SCRIPTING

EXAMPLE USES
>>> 345 % 10  
????????  
>>> 345 // 10  
????????  
>>> 6789 % 2  
????????  
>>> 6790 % 2  
????????  
>>> -26 % 2  
????????  
>>> -76 % 10  
????????  
>>> -26 // 2  
????????  
>>> -76 // 10  
????????

LECTURE 01-2: PYTHON SCRIPTING

EXAMPLE USES
>>> 345 % 10  
5  
>>> 345 // 10  
34  
>>> 6789 % 2  
1  
>>> 6790 % 2  
0  
>>> -26 % 2  
0  
>>> -76 % 10  
4  
>>> -26 // 2  
-13  
>>> -76 // 10  
-8

LECTURE 01-2: PYTHON SCRIPTING

TEXT STRINGS
▸Python can store and compute with text:

>>> entry = input(“Enter something: “)
Enter something: some thing
>>> entry
‘some thing’
>>> type(entry)
<class ‘str'>
>>> “hello”
‘hello’
>>> type(“hello”)
<class ‘str’>
>>> ‘hello’
‘hello’
>>> len(entry)
10
>>> len(“hello”)
10  

▸ To describe a string of characters, you put those literal characters between double quotes.
▸You can also use single quotes, and Python chooses to report strings that way,

➡ These distinguish the text from a variable name.

LECTURE 01-1: PYTHON SCRIPTING

STRING ARITHMETIC
>>> “hello” + “there”
‘hellothere’
>>> x = “hello”
>>> x = x + “ there”
>>> x
‘hello there’
>>> x = x + “ i must”
>>> x = x + “ be going”
>>> x
‘hello there i must be going’

LECTURE 01-1: PYTHON SCRIPTING

STRING ARITHMETIC (CONT’D)
>>> “hello” * 3
‘hellohellohello’
>>> 4 * “hello”
‘hellohellohellohello’
>>> “hello” * 0
‘’
>>>

LECTURE 01-1: PYTHON SCRIPTING

STRING ARITHMETIC (CONT’D)
>>> “hello” * 3
‘hellohellohello’
>>> 4 * “hello”
‘hellohellohellohello’
>>> “hello” * 0
‘’
>>> “hello” + 3
Error!
>>> “76” + 3
Error!
>>> “76” + str(3)
‘763’
>>> int(“76”) + 3
79
>>> int(“hello”) + 3
Error!

LECTURE 01-1: PYTHON SCRIPTING

SPECIAL CHARACTERS
▸A backslash character \ followed by a second character expresses special characters

➡ a tab is \t, a new line is \n, a quote is \', a backslash is \\

>>> z = input('What\'s your name?')
What's your name?John
>>> “Hello “ + z
'Hello John'
>>> print(“I\’ve “+str(19)+“ characters.\nSee?”)
I've 19 characters.  
See?
>>> len(“I\’ve “+str(19)+“ characters.\nSee?”)  
19
>>> print(“\thello\nthere”)
 hello  
there
>>> print("/\\/\\/\\/\\"
/\/\/\/\

LECTURE 01-1: PYTHON SCRIPTING

AN INFORMAL QUIZ
>>> z = 7  
>>> x = 5 + z  
>>> z = z + 1  
>>> print(str(z) + str(z))  
??????????  
>>> 0.2 + 0.1  
??????????  
>>> 0.2 - 0.1  
??????????  
>>> len(‘Jim\’s example:\t done.\n’)  
??????????  
>>> print(“abc\n”*4)  
??????????  
??????????  
...?  
>>> “hello” - “llo”  
??????????  

LECTURE 01-1: PYTHON SCRIPTING

AN INFORMAL QUIZ (CONT'D)
>>> int(-1.375)  
??????????  
>>> 40 / 5  
??????????  
>>> float(40 / 5)  
??????????  
>>> print(input("hello") + input(“goodbye”))  
??????????  
>>> ???????????  
 * * * * * *
 * * * * *
 * * * * * *
 * * * * *
 * * * * * *
 * * * * *
 * * * * * *
 * * * * *
 * * * * * *  
>>>  

I then hit
the 6 key,
the RETURN key,
the 7 key, and
the RETURN key.

LECTURE 01-1: PYTHON SCRIPTING

BACK TO PYTHON SCRIPTING
▸Consider this Python program:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("The radius of that circle is "+str(radius)+" units.")

LECTURE 01-2: PYTHON SCRIPTING

BACK TO PYTHON SCRIPTING
▸Consider this Python program:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("The radius of that circle is "+str(radius)+" units.")

▸ This has is 3 assignment statements and a print statement.
▸ The first defines/assigns the variable named pi.
▸ The second gets a floating point value (a “calculator number”) as input,

assigned to area. We compute that using an arithmetic formula.
▸ The functions float and str convert values of one type to values of

another type.

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸ If you ever want to "watch" a Python program, try out The Python Tutor
https://pythontutor.com/

▸Using it, you'll see something like this...

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's associated value is changed with each assignment statement.

pi: 3.14159
global frame

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's associated value is changed with each assignment statement.

pi: 3.14159
area: 314.159

global frame

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's associated value is changed with each assignment statement.

pi: 3.14159
area: 314.159
radius: 10.0

global frame

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's associated value is changed with each assignment statement.

pi: 3.14159
area: 314.159
radius: 10.0

global frame

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION
▸ Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print("That circle’s radius is "+str(radius)+".")  

▸What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
▸ It also creates named memory slots for each variable that gets introduced.
• That named slot stores a calculated value.
• A variable's associated value is changed with each assignment statement.
➡ The collection of variable slots of a script is called the global frame

pi: 3.14159
area: 314.159
radius: 10.0

global frame

LECTURE 01-2: PYTHON SCRIPTING

SUMMARY
▸So far, three kinds of statements:

•print statement

• assignment statement

•import statement

▸Several built-in functions

•input
• conversions: str, int, float

•abs, min, max, pow, and many more from the math library

•len
•type

LECTURE 01-2: PYTHON SCRIPTING

SUMMARY (CONT'D)
▸Binary operations (so far)

• for integers: + - * // % **

• for floats: + - * / **

• for strings: + *

LECTURE 01-2: PYTHON SCRIPTING

SUMMARY (CONT'D)
▸The Python interpreter can be run interactively or not.

•When interactive, you type in a statement or an expression.

➡ When a statement is entered, it gets executed.

✦ If there is any output, it appears on subsequent lines.

➡When an expression is entered, it gets evaluated.

✦ The value that results is displayed on the next line.

•When not interactive, Python just loads and runs a script.

➡Its code is executed, line by line (statement followed by statement).

WEEK 01-A: PYTHON SCRIPTING

TOMORROW'S LAB
▸Don't forget you have CSCI 121 lab tomorrow!

▸We'll have a lab Homework 1 assignment:

• assigned tomorrow, due next Tuesday 2/4, before 9am

• the description will be at https://jimfix.github.io/csci121/assign.html

• you'll write several Python scripts much like the examples today

•bring your laptop

WEEK 01-A: PYTHON SCRIPTING

TONIGHT’S PREPARATION
▸Don't forget you have CSCI 121 lab tomorrow!

➡ And you just need to take a moment today to prepare for it…

▸There is a “Project 0” assignment:

• The description is linked on https://jimfix.github.io/csci121/assign.html

• You can follow its instructions to set-up your computer for lab

• It has three practice exercises for you to submit onto Gradescope

WEEK 01-A: PYTHON SCRIPTING

READINGS
▸This week's lecture material can be supplemented with:

•Reading: PP 1.1-1.3; TP Ch. 1 and 2; CP Ch 1.1-1.2

▸In the next lecture we'll look at:

➡ more scripting, focusing on formatting output and on integer division

➡ the conditional statement (i.e. if)

➡ the boolean values True and False

WEEK 01-A: PYTHON SCRIPTING

READINGS
▸This week's lecture material can be supplemented with:

•Reading: PP 1.1-1.3; TP Ch. 1 and 2; CP Ch 1.1-1.2

▸In the next lecture we'll look at:

➡ more scripting, focusing on formatting output and on integer division

➡ the conditional statement (i.e. if)

➡ the boolean values True and False

WEEK 01-A: PYTHON SCRIPTING
"Think Python" text

"Composing Programs" text

Prof. Groce’s ”Principled Programming” text

TO DO
▸We'll continue our exploration of Python next time.

Meanwhile, here are some things for you to do:
▸Carefully read the syllabus at the course website.
▸Join the Gradescope 121 course.
▸Complete the work of Project 0.
▸ (This sets up your computer to write/run Python code.)
▸Attend lab tomorrow to start work on Homework 1.
▸Finish Homework 1 before the next Lab.

WEEK 01-A: PYTHON SCRIPTING

