WELCOME 10 CST!

e Jim Fix, lecturer and lab instructor

Also: Several 121 alums as TAs

REED COLLEGE CSCI 121 SPRING 2025

COURSE OVERVIEW

LECTURE 00

JIM FIX, REED COLLEGE CSCI 121

COURSE OVERVIEW

There is a course webpage at hitp://[imfix.github.io/csci121
It has the syllabus and a schedule of topics covered.
There I'll post lecture materials, assignments, and supplemental readings.

ASSIGNMENT SUBMISSION THRU GRADESCOPE

There is a Gradescope "course” for submitting completed assignments.
You should have received an invitation to join it.
You hand in homework and project work there.

I've already posted a Project O for you to work on today/tonight.
It will help you set up your computer.
It will give you practice submitting assignments.
Complete it before our first lab meeting tomorrow.

Tomorrow a Homeworlk 1 will be started in lab, due by the next lab.
You'll write some basic interactive Python programs.

| post homework descriptions at hitp://jimfix.github.io/csci121/assign.htm}

CS11S AN INTRODUCTION TO SEVERAL THINGS

Course topics:
An introduction to programming. We will use the Python language.
An introduction to the discipline of computer science.
An introduction to object-oriented programming.
An introduction to data structures and algorithms.

LECTURE 00: COURSE OVERVIEW

CS11S AN INTRODUCTION TO SEVERAL THINGS

» Course topics:
= An introduction to programming. We will use the Python language.
= An introduction to the discipline of computer science.
= An introduction to object-oriented programming.
= An introduction to data structures and algorithms.

LECTURE 00: COURSE OVERVIEW

CS11S AN INTRODUCTION TO SEVERAL THINGS

» Course topics:
= An introduction t

programming. We will use the Python language.
. the discipline of computer science.
¢ object-oriented programming.

- ’n introduction .;}‘ data structures and algorithms.

I

\
|
e ———

No prerequisites.
No prior programming experience expected.

WHY PYTHON?

It's a good first language.
It's easy to learn, loose, feature-rich.
Has features from several language families.

It has a large programmer base.
Used by the open source community for scripting, glue.
Used by several scientific communities:
bioinformatics, computational chemistry, SAGE math.
Programming tools and docs are freely available.

It's great fun.

LECTURE 00: COURSE OVERVIEW

A PYTHON PROGRAM

name = input("Enter your name: ")

print ("Hello, + name + ".")

course = int(input("What's the course's #? "))
print ("Ahh, yes, CSCI " + str(course) + "!")

square = 0

count = 0

while square + 2 * count + 1 <= course:
square += 2 * count + 1
count += 1

if course % square == O:
print ("Did you know
print ("equals "+ str(count) +

+ str(course))

squared? ")

LECTURE 00: COURSE OVERVIEW

ANOTHER PYTHON PROGRAM

import time

def newton(guess, target):
time.sleep(0.5)
next = guess - (guess * guess - target) / (2 * guess)
while abs(next - guess) > 0.001:
print (guess)
guess = next

next = guess - (guess * guess - target) / (2 * guess)
course = 121
name = input("Enter your name: ")
print("Okay, " + name + " let me think...")

approx = newton(course/2.0, course)
+ str(course))

print ("Did you know
print("is roughly "+ str(approx) +

squared? ")

WEEKLY PROGRAMMING TOPICS

Here are the first several weeks of programming topics:
WEEK 1: scripting; program input and output; calculating things
WEEK 2: defining functions and procedures; checking conditions
WEEK 3: loops
WEEK 4: lists and dictionaries
WEEK 5: recursion

This schedule can be found at http://jimfix.github.io/csci121/sched.html

LECTURE 00: COURSE OVERVIEW

A PYTHON PROGRAM WEEK 1: SCRIPTING

name = input("Enter your name: ")

print ("Hello, + name + ".")

WEEK 1: INPUT

course = int(input("What's the course's #? "))
print ("Ahh, yes, CSCI " + str(course) + "!")

square = 0 N

WEEK 1: OUTPUT
count = 0

while square + 2 * count + 1 <= course:

square += 2 * count + 1

count += 1 .
WEEK 1: CALCULATING

if course % square == O:
print ("Did you know
print ("equals "+ str(count) +

+ str(course))

squared? ")

LECTURE 00: COURSE OVERVIEW

A PYTHON PROGRAM

name = input("Enter your name: ")

print ("Hello, + name + ".")

course = int(input("What's the course's #? "))
print ("Ahh, yes, CSCI " + str(course) + "!")

square = 0 WEEK 2: LOOPS

count = 0 o
while square + 2 * count + 1 <= course:
square += 2 * count + 1
count += 1 ., WEEK 2: CHECKING CONDITIONS

1f course % square == O0:

print ("Did you know + str(course))

print ("equals "+ str(count) +

squared? ")

LECTURE 00: COURSE OVERVIEW

ANOTHER PYTHON PROGRAM

import time

def newton(guess, target) igu

time.sleep(0.5) ~
next = guess - (guess * gues*”~mtarget) / (2 * guess)
while abs(next - guess) > 0.00l:ﬁ”“fxn
print (guess) WEEK 3: FUNCTIONS
guess = next F
next = guess - (guess * guess - targg“) / (2 * guess)
course = 121 \ " WEEK 2: LOOPS
name = input("Enter your name: ")

print ("Okay, + name + " let me thij;;

approx = newton(course/2.0, course)
+ str(course))

print ("Did you know
print("is roughly "+ str(approx) +

squared? ")

WEEKLY PROGRAMMING TOPICS

Here are the first several weeks of programming topics:
WEEK 1: scripting; program input and output; calculating things
WEEK 2: checking conditions; looping
WEEK 3: defining functions and procedures
WEEK 4: lists
WEEK 5: dictionaries

The schedule can be found at http://jimfix.github.io/csci121/weeks.html

We move somewhat quickly, but it has worked well to do so!
Though we use Python, these concepts are universal.
You are learning the structure of algorithms; algorithmic problem solving.

WEEKLY PROGRAMMING TOPICS

The remaining weeks provide a transition to more advanced programming.
WEEK 6: recursion
WEEK 7: object-oriented programming
WEEK 8: function objects
SPRING BREAK
WEEK 9: linked lists
WEEK 10: algorithmic efficiency; sorting and searching
WEEK 11: binary search trees
WEEK 12: file I/0 and exceptions
WEEK 13: wrap-up and review

ASSIGNMENTS

There will be weekly lab homework.
Assigned in Tuesday lab, due the following Tuesday before lab.

There will be four programming projects.
We'll give you 2-4 weeks to complete each.

FOUR PROGRAMMING PROJECTS

Project 1: greed
program a strateqgy for a two-player game of chance

Project 2: ciphers
crack some codes

Project 3: hawks and doves
simulate a population of birds

Project 4: adventure / arcade
build an 80s-style game, either text-based or graphical

These will be due on occasional Thursdays.

ASSIGNMENTS

There will be weekly lab homework.
Assigned in Tuesday lab, due the following Tuesday before lab.

There will be four programming projects.
We'll give you 2-4 weeks to complete each.

There will be several in-class quizzes

Starting in a few weeks, then (roughly) every two weeks.
One or two short programming puzzles each.

There will be two in-class exams and a comprehensive final

MEETING TIMES

LECTURE: Mondays and Wednesdays, 80 minutes
1:10-2:30pm in Library 204

LAB MEETING: Tuesdays, 80 minutes
10:30-11:50am in LIB 340
1:40-3:00pm in LIB 340

EVENING TUTORING: Sunday through Thursdays, 7-9pm in LIB 340

MY OFFICE HOURS:
11:20am-12:20pm Monday and Wednesday in LIB 314 (my office)
most Tuesday and Wednesday mornings, drop by my office!
most Monday and Wednesday afternoons, drop by my office!
other times by appointment; Thursday and Friday over Zoom

RESOURCES

| will post all my slides and code examples. You can probably work mostly from these.
I'll suggest supplemental readings from three textbooks:

Principled Programming by Adam Groce, Reed College.
Closest to what I'll be teaching. Home-grown.

Think Python! How To Think Like a Computer Scientist by Allen Downey, Green Tea Press
Follows the topics of the course somewhat closely.

COMPOSING PROGRAMS by John DeNero, UC Berkeley
This is a Python rewrite of MIT's famous
Structure & Interpretation of Computer Programs (“SICP”; uses Scheme)
Interesting supplement. Only use Chapters 1 and 2.

All are freely available on-line.

LECTURE 00: COURSE OVERVIEW

CS11S AN INTRODUCTION TO SEVERAL THINGS

» Course topics:
= An introduction to programming. We will use the Python language.
= An introduction to the discipline of computer science.
= An introduction to object-oriented programming.
= An introduction to data structures and algorithms.

» Q: What is computer science as an academic discipline?

LECTURE 00: COURSE OVERVIEW

0: WHAT IS COMPUTER SCIENCE?

» A It's programming.

LECTURE 00: COURSE OVERVIEW

0: WHAT IS COMPUTER SCIENCE?

» A It's programming.

» A: It's about programming.

LECTURE 00: COURSE OVERVIEW

(: WHAT IS COMPUTER SCIENCE?

» A It's programming.
» A: It's about programming.
» A: It's about "about programming.”

» Etc.

LECTURE 00: COURSE OVERVIEW

(: WHAT IS COMPUTER SCIENCE?

» A It's programming.

» A: It's about programming.

» A: It's about "about programming.”

» Etc.

»You will learn to be reflective about programming, and also to be reflective
about the tools that run programs.

» If you continue studying CS, you will learn to make tools that help people
write programs. And make tools that help tools that run programs. Etc.

PYTHON

LECTURE 01.
THE PYTHON INTERPRETER
THE ANATOMY OF A PYTHON SCRIPT

JIM FIX, REED COLLEGE CSCI 121

PYTHON SCRIPTING

We start in lab tomorrow with some Python scripting:
A script is a text file containing lines of Python code.
Each line is a Python statement.
The Python interpreter (the python3 command) executes each statement,
line by line, from top to bottom.
A statement directs that an action be made by the interpreter, which has a
state-changing effect.

PYTHON SCRIPTING

Each Python statement directs that an action be taken that effects the system.

Some examples of effects:
some text gets output (printed) to the console
some typed console input gets read and processed
some variable gets assigned a newly computed value
a window is displayed
afile is read
some web content is fetched
a noise is made
etc., etc.

RUNNING A SCRIPT

The script text below was saved as hello_calc.py

print ("Hello there, everyone!")

print ("This is our first Python program.")

print ("Did you know that 78687 times 89798 is this?")
print (78687 * 89798)

On my Mac, within Terminal, after the prompt, | enter the command:

CO2MX1KLFHO4:examples jimfix$ python3 hello calc.py
Hello there, everyone!

This is our first Python program.

Did you know that 78687 times 89798 is this?
7065935226

CO2MX1KLFHO4 :examples jimfix$

The Python interpreter outputs those four lines of text.

ANOTHER EXAMPLE: VARIABLES

Here is that same program, slightly modified:

print ("Hello there, everyone!")

print ("This is our second Python program.")

result = 78687 * 89798

print ("Did you know that 78687 times 89798 is this?")
print (result)

The third line is an assignment statement.
It introduces a variable named result and gives it a value.
That value is saved in Python's memory.
It can be accessed by name later in the script.

LECTURE 01-1: PYTHON SCRIPTING

ANOTHER EXAMPLE: VARIABLES

» Here is that same program, slightly modified:

print ("Hello there, everyone!")
print ("This is our second Python program.")
result = 78687 * 89798

print ("Did you know that 78687 times 89798 is this?")
print (result)

»In line 5, we tell Python to output the value of result.

ANOTHER EXAMPLE: BUILT-IN FUNCTIONS

Here is a different program, but somewhat similar:

print ("Hello there, everyone!")

print ("This is our third Python program.")
larger = max(78687,89798)
smaller = (78687 ,89798)

print ("Did you know”, larger, ”is bigger than”, smaller, "is?”)

The third and fourth lines are also assignment statements.
Each of those lines uses a built-in Python function.

The first function max computes the smallest of the values it's fed.
The second function computes the smallest of the values it's fed.

INTERACTIVE SCRIPTS

This program is interacts with the program's user:

name = input("Could someone volunteer their name? ")
print ("Hello there, “ + name + "!")
print ("Thanks for volunteering like that.")

Here is one such interaction within Terminal:

CO2MX1KLFHO4 :examples jimfix$ python3 shoutout.py
Audrey Bilger

Hello there, Audrey Bilger!

Thanks for volunteering like that.

CO2MX1KLFHO4 :examples jimfix$

The program has an assignment statement followed by 2 print statements.
The assignment's right hand side uses a Python function input

That function first outputs a to the console...

And then it reads a string of input typed into the console.

A CALCULATION EXAMPLE

Consider this Python program radius.py:
pi = 3.14159

area = float(input("Circle area? "))

radius = (area / pi) ** 0.5

print ("The radius of that circle is”, radius, “units.”)

This has is 3 assignment statements and a print statement.

The first defines/assigns the variable named pi.

The second gets a floating point value (a “calculator number”) as input,
assigned to area. We compute that using an arithmetic formula.

The functions £1oat and str convert values of one type to values of
another type.

SAME CALCULATION EXAMPLE, BUT USING LIBRARY FUNCTIONS

Consider this Python program radius_import.py:

from math import pi, sqrt
area = float(input("Circle area? "))

radius = sqrt(area / pi)

print ("The radius of that circle is”, radius, “units.”)

Here we import some definitions from a Python package named math.

pi is the name of a value.
sqrt is the name of a function.
There are packages for all sorts of useful Python libraries.

SOME ISSUES I'D LIKE TO ADDRESS

different types of program data: int versus £1loat versus str
using functions, both built into Python and imported from a library
operations you can apply to each type of value

obtaining values entered by the program user with input
displaying output carefully using print

special characters (tab, end of line, quote, ...)

Let's switch modes in how we use the Python interpreter...

INTERACTING WITH THE PYTHON INTERPRETER

Python can be used to “live script":

CO2MX1KLFHO4:examples jimfix$ python3
>>> print(“hello”)

hello

>>> print(6 * 7)

42

>>> result = 6 * 7

>>> print(result)

42

>>>

We can try a Python coding by interacting directly with the interpreter.
We type in Python statements one at a time.
Each line gets executed immediately.

THE INTERPRETER AS CALCULATOR

Python can also be used to compute and display values:

CO2MX1KLFHO4 :examples jimfix$ python3
>>> 6 * 7

>>> result = 6 * 7
>>> result

>>> llhelloll + 44 ') + lltherell

>>>

We can enter Python values to be computed.

Python evaluates each expression and displays its value on the next line.
A Python statement describes an action to be performed.
These Python expressions instead describe a value to be calculated.

This evaluation is different than printing.

THE INTERPRETER AS CALCULATOR

Python can be used to evaluate expressions:

CO2MX1KLFHO4 :examples jimfix$ python3
>>> 6 * 7

>>> result = 6 * 7
>>> result

>>> llhelloll + /) ’/) + lltherell

>>>

Here, Python is acting differently. It calculates the value of the expression,
then (quietly) converts that value into some readable text characters, then
displays that text.

THE INTERPRETER AS CALCULATOR

Python can be used to evaluate expressions:

CO2MX1KLFHO4 :examples jimfix$ python3
>>> 6 * 7

>>> result = 6 * 7
>>> result

>>> llhelloll + 44 ') + lltherell

>>>

It follows three steps:
READs: it looks at the expression entered after >>>
EVALUATEs: it performs that calculation, obtaining a value, including
looking up variables' values
PRINTSs: it converts that value to some text and displays it.

THE INTERPRETER AS CALCULATOR

Python can be used to evaluate expressions:

CO2MX1KLFHO4 :examples jimfix$ python3
>>> 6 * 7

>>> result = 6 * 7
>>> result

>>> uhello" + i V7 + uthere”

>>>

This is the “READ - EVALUATE - PRINT LOOP" (or “REPL").
Having access to a REPL for a programming language is wonderful!
It's a big reason we teach programming in Python.

LECTURE 01-1: PYTHON SCRIPTING

PYTHON PROVIDES SOME USEFUL FUNCTIONS...

>>> pow(2,3)

8

>>> abs (-3)

3

>>> abs(4 + 2)

6

>>> min(3,7)

3

>>> max(4, 10.5 + 8.3, 6)
18.8

>>> from math import sqrt, pow
>>> sqrt(2.0)
1.4142135623730951

>>> pow(2.0,4.5)
22.627416997969522

LECTURE 01-1: PYTHON SCRIPTING

PYTHON PROVIDES ARITHMETIC

>>> 3 + 7

10

>>> 4 + 2 * 3
10

>>> (4 + 2) * 3
18

>>> 4 / 16

0.25

>>> 2 ** 4

16

>>> 0.1 + 0.2
0.30000000000000004

LECTURE 01-1: PYTHON SCRIPTING

PYTHON PROVIDES ARITHMETIC

>>> 3 + 7

10

>>> 4 + 2 * 3
10

>>> (4 + 2) * 3
18

>>> 4 / 16

0.25

>>> 2 ** 4

16

>>> 0.1 + 0.2

(o JmcYoToXoloToToXooToToXooTo oo X!
>>> type(4)
<class 'int'>
>>> type(0.25)
<class 'float'>

INTEGERS VERSUS FLOATING POINT NUMBERS

Python has two types of number values: int and £1oat
With integers, computation is exact.
With floating point numbers (“floats"), computation is approximate.

>>> 10 / 2
>>> 3 + 4.0

>>> 1nt (8.7)

LECTURE 01-2: PYTHON SCRIPTING

INTEGER VERSUS FLOATING POINT DIVISION

» With the normal division operation, the slash /, you get a float.

>>> 10.2 / 2.0
5.1

>>> 10 / 2

5.0

>>> 87 / 10
8.7

INTEGER VERSUS FLOATING POINT DIVISION

There is also an integer division operation, the double slash operator / /.
This gives the integer quotient.
The remainder due to the division is discarded.
>>> 10 // 2

>>> 87 // 10

LECTURE 01-2: PYTHON SCRIPTING

RECALL: LONG DIVISION

LECTURE 01-2: PYTHON SCRIPTING

RECALL: LONG DIVISION

LECTURE 01-2: PYTHON SCRIPTING

RECALL: LONG DIVISION

LECTURE 01-2: PYTHON SCRIPTING

RECALL: LONG DIVISION

LECTURE 01-2: PYTHON SCRIPTING

RECALL: LONG DIVISION

LECTURE 01-2: PYTHON SCRIPTING

RECALL: LONG DIVISION

the quotient

LECTURE 01-2: PYTHON SCRIPTING

RECALL: LONG DIVISION

the quotient

the remainder

PYTHON HAS // AND % OPERATORS

The / / operation (“div") gives the integer quotient due to the division of

two integers:
>>> 345 // 12

The % operation ("mod”) gives the integer remainder due to the division of

two integers:
>>> 345 % 12

This property always holds:

number = quotient x divisor + remainder
>>> 28 * 12 + 9

LECTURE 01-2: PYTHON SCRIPTING

EXAMPLE USES

>>> 345 % 10
222222727

>>> 345 // 10
22222227

\

>>> =26 // 2
P222222727

>>> -76 // 10
P2222227

LECTURE 01-2: PYTHON SCRIPTING

EXAMPLE USES

>>> 345 % 10

\

5

>>> 345 // 10
34

>>> 6789 % 2
1

>>> 6790 % 2
0]

>>> =26 % 2
0]

>>> =76 % 10
4

>>> -26 // 2
-13

>>> -76 // 10
-8

TEXT STRINGS

Python can store and compute with text:

>>> entry = input(“Enter something: *)
Enter something: some thing

>>> entry

>>> type(entry)

>>> “hello”

>>> type(“hello”)

>>> ‘hello’

>>> len(entry)

>>> len(“hello”)

To describe a string of characters, you put those literal characters between double quotes.
You can also use single quotes, and Python chooses to report strings that way,
These distinguish the text from a variable name.

LECTURE 01-1: PYTHON SCRIPTING

STRING ARITHMETIC

>>> “hello” + “there”

‘hellothere’

>>> x = “hello”

>>> x = x + “ there”
>>> x

‘hello there’

>>> x = x + “ 1 must”
>>> x = x + “ be going”
>>> x

‘hello there i must be going’

LECTURE 01-1: PYTHON SCRIPTING

STRING ARITHMETIC (CONT'D)

>>> “hello” * 3
‘hellohellohello’

>>> 4 * “hello”
‘hellohellohellohello’
>>> “hello” * O

>>>

LECTURE 01-1: PYTHON SCRIPTING

STRING ARITHMETIC (CONT'D)

>>> “hello” * 3
‘hellohellohello’

>>> 4 * “hello”
‘hellohellohellohello’
>>> “hello” * O

>>> “hello” + 3
Error!

>>> “76" + 3

Error!

>>> “76" + str(3)
7637

>>> int(“76") + 3

79

>>> int(“hello”) + 3
Error!

LECTURE 01-1: PYTHON SCRIPTING

SPECIAL CHARACTERS

» A backslash character \ followed by a second character expresses special characters

= atabis \t,anewlineis \n,aquoteis \ ', a backslash is \'\

>>> z = input('What\'s your name?')
What's your name?John
>>> “Hello “ + z
'Hello John'
>>> print (“I\’'ve “+str(19)+“ characters.\nSee?”)
I've 19 characters.
See?
>>> len(“I\’'ve “+str(19)+“ characters.\nSee?"”)
19
>>> print (“\thello\nthere”)
hello
there
>>> print ("/\\/\\/\\/\\"
JAVAVYAVYA

LECTURE 01-1: PYTHON SCRIPTING

AN INFORMAL QUIZ

>>> 7 7
>>> X 5 + 2z
>>> z =z + 1

>>> print(str(z) + str(z))
P27

>>> 0.2 + 0.1
P22 22727

>>> 0.2 = 0.1
222222227

>>> len(‘Jim\’s example:\t done.\n’)
222222927

>>> print (“abc\n”*4)
P2222222227

>>> “hello” - “1lo”
2222222227

LECTURE 01-1: PYTHON SCRIPTING

AN INFORMAL QUIZ (CONT'D)

>>> int(-1.375)
2222222227

>>> float (40 / 5)
P27

>>> print (input("hello"”") + input (“goodbye”))
2222222227

SS> 22222222229

* % % % * % then hlt
the 6 key,
the RETURN key,

the 7 key, and
b ox e ok s the RETURN key.

>>>

LECTURE 01-2: PYTHON SCRIPTING

BACK TO PYTHON SCRIPTING

» Consider this Python program:

pi = 3.14159

area = float(input("Circle area? "))

radius = (area / pi) ** 0.5

print ("The radius of that circle is "+str(radius)+" units.")

BACK TO PYTHON SCRIPTING

Consider this Python program:

pi = 3.14159

area = float(input("Circle area? "))

radius = (area / pi) ** 0.5

print ("The radius of that circle is "+str(radius)+" units.")

This has is 3 assignment statements and a print statement.

The first defines/assigns the variable named pi.

The second gets a floating point value (a “calculator number”) as input,
assigned to area. We compute that using an arithmetic formula.

The functions £1oat and str convert values of one type to values of
another type.

RECALL: PYTHON EXECUTION

Let's take a look at this script:

pi = 3.14159

area = float(input("Circle area? "))
radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION

» Let's take a look at this script:

+pi = 3.14159
area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

» What we know is that the Python interpreter runs the code, line by line,

from the top line to the bottom line.
)

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION

» Let's take a look at this script:

pi = 3.14159
»area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

» What we know is that the Python interpreter runs the code, line by line,

from the top line to the bottom line.
)

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION

» Let's take a look at this script:

pi = 3.14159
I area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

» What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION

» Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
»print("That circle’s radius is "+str(radius)+".")

» What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.

LECTURE 01-2: PYTHON SCRIPTING

RECALL: PYTHON EXECUTION

» Let's take a look at this script:

pi = 3.14159
area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
»print("That circle’s radius is "+str(radius)+".")

» If you ever want to "watch" a Python program, try out The Python Tutor
https://pythontutor.com/

» Using it, you'll see something like this...

RECALL: PYTHON EXECUTION globalframe veeeeeeesssseen E

Let's take a look at this script:

»pi = 3.14159
area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
It also creates named memory slots for each variable that gets introduced.
That named slot stores a calculated value.
Avariable's associated value is changed with each assignment statement.

RECALL: PYTHON EXECUTION A E

Let's take a look at this script:

pi = 3.14159
*area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
It also creates named memory slots for each variable that gets introduced.
That named slot stores a calculated value.
Avariable's associated value is changed with each assignment statement.

RECALL: PYTHON EXECUTION globalframe vveeeeeesssseen E

. area: 314.159
Let's take a look at this script: g?gﬁ?u& 100

pi = 3.14159
I area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
print ("That circle’s radius is "+str(radius)+".")

What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
It also creates named memory slots for each variable that gets introduced.
That named slot stores a calculated value.
Avariable's associated value is changed with each assignment statement.

RECALL: PYTHON EXECUTION globalframe vveeeeeesssseen E

. area: 314.159
Let's take a look at this script: E?arg?us: 100

pi = 3.14159
area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
+print("That circle’s radius is "+str(radius)+".")

What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.
It also creates named memory slots for each variable that gets introduced.
That named slot stores a calculated value.
Avariable's associated value is changed with each assignment statement.

RECALL: PYTHON EXECUTION globalframe vveeeeeesssseen E

. : = area: 314.159
Let's take a look at this script: radius: 10.0
pi = 3.14159
area = float(input("Circle area? "))

radius = (area / pi) ** 0.5
»print("That circle’s radius is "+str(radius)+".")

What we know is that the Python interpreter runs the code, line by line,
from the top line to the bottom line.

It also creates named memory slots for each variable that gets introduced.
That named slot stores a calculated value.

Avariable's associated value is changed with each assignment statement.
The collection of variable slots of a script is called the global frame

SUMMARY

So far, three kinds of statements:
print statement
assignment statement
import statement
Several built-in functions
input
conversions: str, int, float
abs, min, max, pow, and many more from the math library

len

type

LECTURE 01-2: PYTHON SCRIPTING

SUMMARY (CONT'D)

»Binary operations (so far)
forintegers: + - * // % **
oforfloats: + - * / *%

o forstrings: + *

SUMMARY (CONT'D)

The Python interpreter can be run interactively or not.

When interactive, you type in a statement or an expression.

When a statement is entered, it gets executed.

If there is any output, it appears on subsequent lines.
When an expression is entered, it gets evaluated.

The value that results is displayed on the next line.

When not interactive, Python just loads and runs a script.

Its code is executed, line by line (statement followed by statement).

TOMORROW'S LAB

Don't forget you have CSCI 121 lab tomorrow!

We'll have a lab Homework 1 assignment:
assigned tomorrow, due next Tuesday 2/4, before 9am
the description will be at https://jimfix.github.io/csci121/assign.html
you'll write several Python scripts much like the examples today

bring your laptop

TONIGHT'S PREPARATION

Don't forget you have CSCI 121 lab tomorrow!

And you just need to take a moment today to prepare for it...

There is a "Project 0" assignment:
The description is linked on https://jimfix.github.io/csci121/assign.html
You can follow its instructions to set-up your computer for lab

It has three practice exercises for you to submit onto Gradescope

READINGS

This week's lecture material can be supplemented with:
Reading: PP 1.1-1.3; TP Ch. 1 and 2; CP Ch 1.1-1.2
In the next lecture we'll look at:
more scripting, focusing on formatting output and on integer division
the conditional statement (i.e. i £)

the boolean values True and False

“Think Python" text

READINGS

This week S Iecture materlal can be suppl Afiented with:
PP 1.1-1.3 d 2;/CP Ch 1.1-1.2

lookat:

In the next

more scrlptlng_focusing on formatting output and on integer division
the conditionaltatement (i.e. 1 f)

the boolean valles True and False

Prof. Groce’s “Principled Programming” text

10 D0

We'll continue our exploration of Python next time.

Meanwhile, here are some things for you to do:
Carefully read the syllabus at the course website.
Join the Gradescope 121 course.
Complete the work of Project 0.
(This sets up your computer to write/run Python code.)
Attend lab tomorrow to start work on Homework 1.
Finish Homework 1 before the next Lab.

