
CSCI 121: Computer Science Fundamentals I
Pratice Second Midterm Exam

The next pages give practice problems for the second midterm exam being held in lecture on
Wednesday November 30th, 2022. The exam covers these topics:

• recursive functions

• object orientation

• class inheritance

• higher-order functions and lambda

• Python code execution and environments

• linked lists

You can use these to test your knowledge in preparation for taking the exam. I will post my
solutions to these problems on Monday, November 28th.

------------------------------

1. Write a recursive function def output digits most(n) that, when given a positive
integer n, outputs the digits of n in order from most- to least-significant. You cannot use
any string operations to write this code.

>>> output_digits_most(375)
3
7
5
>>> output_digits_most(3)
3



2. Write the code for def make checker(value). It should return a function that, when
given a parameter, return True if that parameter is equal to the value originally given to
make checker. It should return False otherwise.

>>> x = make_checker(8)
>>> x(6)
False
>>> x(8)
True
>>> x(10)
False

Now write the code for def make reporter(value). It should return a procedure
that, when given a parameter, outputs (using print) whether that parameter is larger or
smaller than the value originally given to make reporter. If it is equal, it should not do
anything.

>>> r = make_reporter(8)
>>> r(6)
smaller
>>> r(8)
>>> r(10)
larger



3. Below is a Python script. Tell us what the script outputs when it is run.

def f(x,z):
def g(x):

y = x*10 + z
print(y)
return [x,y,z]

z = x + 1000
return [g,g(4)]

a = f(5,6)
b = f(7,8)
b[1] = a[1]
a[1][2] = 100
c = b[0](9)
print(a[1],b[1],c)



4. Write the code for a “zap buzz” counter. It should be a class named ZapBuzz that inherits
from the Counter class given below:

class Counter:

def __init__(self,start):
self.count = start

def increment(self):
self.count = self.count + 1
return self.count

When constructed, a zap buzz counter starts its count at the value 0. When you increment
it, the method returns the string ”zap” if the counter has just reached a value that is a mul-
tiple of seven. It returns ”buzz” if it has just reached a value that contains the digit 3 in
its decimal representation. It returns ”zap buzz” if both are true. Otherwise, increment
just returns that next integer value.

>>> zb = ZapBuzz()
>>> zb.increment()
1
>>> zb.increment()
2
>>> zb.increment()
’buzz’
>>> zb.increment(); zb.increment(); zb.increment()
4
5
6
>>> zb.increment()
’zap’

When writing the code for the class ZapBuzz you can assume you have already defined
a function multipleOf7 and a function contains3 that check an integer and return
True or False for their conditions.



5. Recall that we built a Taxi class that performs driveTo(x,y) when it has enough
gas to move to position (x,y), and can pickup() a passenger when it is at a cus-
tomer’s location. You can get the information about a taxi using the methods getGas,
getLocationX, and getLocationY. Also assume that there is a method getStatus
that returns True if a taxi currently carries a passenger, and False if it does not.

Let’s organize the taxis. Create a ‘Dispatcher‘ class whose constructor takes no informa-
tion. Instead, a dispatcher object can hire a taxi object, adding that taxi to its fleet of taxis.
This fleet is a list of taxis, but is initially empty, and gets built up with each taxi it hires.
Write a ‘hire‘ method to Dispatcher that takes a ‘Taxi‘ object and adds it to its fleet.

Let’s now allow potential customers to hail taxis through a dispatcher. Add a hail
method that takes the coordinates of the location of a passenger. When that method is
run, the dispatcher should scan through its fleet of taxis and find ones that are available,
that is, ones that are not occupied by any passenger. It should ignore taxis in its fleet that
do not have enough gas to pick up the passenger. Of those taxis in its fleet that can per-
form the pick-up, the dispatcher should choose the one that’s closest to the passenger, ask
it to driveTo that passenger’s location, and then have it perform the pickup.

If such a taxi from its fleet can be chosen, the hail method should return which taxi was
hailed. If no taxi can pick up a passenger at that location, the hail method should return
None.



6. In this problem we work with a linked list. We define two classes LLNode and LinkedList
as in lecture:

class LLNode:

def __init__(self,v):
self.value = v
self.next = None

class LinkedList:

def __init__(self):
self.first = None

def prepend(self,v):
n = LLNode(v)
n.next = self.first
self.first = n

def output(self):
n = self.first
while n is not None:

print(n.value)

Write a method for LinkedList called swap at that takes an integer position and re-
structures the list (by relinking nodes) so that two consecutive nodes swap positions. If
the position given is 1, it should swap the first and the second nodes. If the position given
is 2, it should swap the second and the third. And so on. For example:

>>> xs = LinkedList()
>>> xs.prepend(20); xs.prepend(100); xs.prepend(15); xs.prepend(87)
>>> xs.output()
87
15
100
20
>>> xs.swap_at(1); xs.output()
15
87
100
20
>>> xs.swap_at(3); xs.output()
15
87
20
100

Your code can assume that the position parameter is at least 1 and is less than the length
of the list.


