
CSCI 121: Practice Final Exam

Exam: 1pm-4pm, Thursday, May 15th, Library 204

Spring 2025

The next pages give practice problems for the final exam being held next week. The exam is
comprehensive and covers these topics:

• scripting with input and print

• variables and assignment

• integer arithmetic, boolean connectives, integer comparisons

• strings and string operations

• integer division using % and //

• printing versus returning, the None type

• conditional statements and loops

• function definitions

• recursive functions

• higher-order functions and lambda

• lists and dictionaries

• object-orientation and inheritance

• linked lists and binary search trees

• sorting and searching, efficiency and running time

• file I/O and exceptions

You can use these to test your knowledge in preparation for taking the exam.

1



1. Write a Python function justEvens that takes a dictionary whose entries’ keys are asso-
ciated with integer values. It should return a list of the keys whose values are even. For
example:

>>> justEvens({’a’:1,’b’:2,’c’:3,’d’:4,’e’:5})
[’b’, ’d’]
>>> justEvens({’z’:1,’q’:2,’w’:3,’u’:2,’a’:2,’l’:3,’c’:2,’y’:1,’k’:6})
[’q’, ’u’, ’a’, ’c’, ’k’]
>>> justEvens({’a’:5,’b’:3,’e’:1})
[]

Any list ordering of the keys is acceptable (and will probably be determined by Python).

2



2. Write a Python script that takes a positive amount of dollars as input and prints a number
of five dollar bills and one dollar bills that total that amount. It should use as many five
dollar bills as possible to express that amount. It should work as shown below:

% python3 dollars.py
Enter an amount in dollars: 34
6 fives 4 ones

% python3 dollars.py
Enter an amount in dollars: 30
6 fives

% python3 dollars.py
Enter an amount in dollars: 21
4 fives 1 one

% python3 dollars.py
Enter an amount in dollars: 4
4 ones

% python3 dollars.py
Enter an amount in dollars: 6
1 five 1 one

Note that when there are no fives or no ones, those bills aren’t reported. When there is
only one five dollar bill the word five is used. When there is only single one dollar bill
the word one is used.

Note also that, since the amount input is assumed to be positive, the script should always
output some number of five dollar or one dollar bills.

3



3. Below is the definition of two classes for a linked list, similar to we wrote in lecture:

class Node:
def __init__(self, value):

self.value = value
self.next = None

class LinkedList:
def __init__(self):

self.first = None
def prepend(self, value):

newNode = Node(value)
newNode.next = self.first
self.first = newNode

def output(self):
current = self.first
while current is not None:

print(current.value)
current = current.next

Write a method appendSeveral that appends a value some specified number of times
to the end of a linked list. For example:

>>> ll = LinkedList()
>>> ll.prepend(3)
>>> ll.prepend(1)
>>> ll.prepend(8) # Places 8 at the front, with 1 then 3 following.
>>> ll.output()
8
1
3
>>> ll.appendSeveral(7,3) # Places three 7s at the end.
>>> ll.output()
8
1
3
7
7
7

4



4. Write a function pairQuery that returns a function back. It takes a two integers as
parameters. The function it gives back can be used to obtain each of the integers it was
given using the strings "first" and "second". Here is an example of its use:

>>> pq = pairQuery(89,333)
>>> pq("first")
89
>>> pq("second")
333
>>> another = pairQuery(18,2)
>>> another("first")
18
>>> another("second")
2
>>> x = another("second")
>>> x
2

Note (as suggested by the last interaction using x) that pq and another don’t print
values. Instead, they return one or the other of their pair, depending on what string
they are given.

You can assume that a query function returned by pairQuery will only be asked for
"first" or for "second", and never any other string.

5



5. Below is the code for a Animal class that could be used in a zoo simulation. (You can
imagine that the code for the larger simulation calls the update method at every time
step.)

class Animal:

def __init__(self, id, species):
self.id = id
self.species = species
self.hunger = 0
self.energy = 100
self.asleep = False

def update(self):
if self.asleep:

self.energy += 1
if self.energy >= 100:

self.asleep = False
else:

self.energy -= 1
if self.energy <= 0:

self.asleep = True

def eat(self, amount):
if self.asleep:

self.asleep = False
self.hunger = max(0,self.hinger - amount)

Define a new class Elephant to represent elephants. Its species is always ’elephant’
so its constructor doesn’t take that information. Unlike many animals, elephant don’t
wake up to eat, so its eat method should do nothing if an elephant is asleep. Otherwise,
elphants behave like any other animals.

6



6. Write a function occurs in consecutives. It takes a list of consecutive integers from
0 up to some maximum value, where some of the integers are repeated, and also some
positive integer less than the maximum value. The function should efficiently determine
how many times that value appears in the list. It should run in O(log(n)) time for a list of
length n.

For example:

>>> occurs_in_consecutives([0,0,1,2,2,2,2,3,3,4,5,6,6,6,7], 2)
4
>>> occurs_in_consecutives([0,0,1,2,2,2,2,3,3,4,5,6,6,6,7], 4)
1
>>> occurs_in_consecutives([0,0,1,2,2,2,2,3,3,4,5,6,6,6,7], 6)
3

7



7. A computer bitmap image is a table of 0s and 1s with a certain number of rows and
columns. A bitmap file starts with a line that gives the number of rows and the num-
ber of columns. The remaining lines are all the rows in the table. Each row has a number
of 0s and 1s equal to the number of columns.

Write the code for a function called reverseBitmap. It takes the name of a bitmap file
to read as input, and the name of a file to output. After running the function, it should
produce a bitmap file where all the 1s of the input file have become 0s, and all the 0s have
become 1s.

For example, suppose you ran

reverseBitMap("bitmap.txt", "reverse.txt")

and bitmap.txt had these file contents:

3 4
0 1 1 1
1 0 1 0
0 1 1 1

Then the resulting contents of reverse.txt should be the following:

3 4
1 0 0 0
0 1 0 1
1 0 0 0

8



8. Write the code for a function webPageAvailable. It takes a URL for a web page at a
site, which is a string (for example ’http://reed.edu/academic-calendar/’). It
also takes a positive number of attempts. It can use a module http. We assume that
module defines a function fetchURL that fetches and returns the contents of that page
as a (possibly long) string. This function can raise an error http.TimeoutException
if the web site for the page doesn’t respond quickly enough. It can also raise an error
http.NotFound if the site doesn’t exist or the site responds that the page isn’t available
at that site.

Your function should return True if the web page was fetched successfully in number or
fewer attempts. It should return False otherwise. It should reattempt to fetch the page
when a timeout exception occurs and the number of attempts hasn’t exceeded number.

9



9. Consider our BSTree class. Its structure contains dictionary entries, held as nodes, ar-
ranged in order by their keys, and with each key having an associated value. Write a
BSTree method sumValues that computes and returns the sum of the values associated
with the keys in the tree.

10



10. Give the asymptotic running time for each of the following functions. Write this using
Theta notation, fully simplified, e.g., Θ(n2), Θ(n log(n)), etc. For each function, the input
is a list. Use n to denote the number of items in the list. Note that some of the later
functions call the earlier ones.

(a) def sum_alternating(lst):
i = 0
total = 0
while i < len(lst):

total += lst[i]
i += 2

return total

(b) def sum_products(lst):
total = 0
for x in lst:

for y in lst:
total += x*y

return total

(c) def sum_halving(lst):
i = len(lst) - 1
total = 0
while i > 0:

total += lst[i]
i = i // 2

return total

(d) def sort_alternate(lst):
slst = mergesort(lst)
return sum_alternating(slst)

11


