
Jim Fix Thesis Topics: Parallel Algorithms and Concurrent Languages
I’ve a wide range of interests within computer science. I usually prefer projects informed by mathematics
and enjoy taking a mathematical approach. This has often been work in algorithms or in theory, though
I’ve also done work in computer languages and graphics. I’ve found myself drawn, too, to writing code
and making things work more than just on paper. The projects below are ideas from recent work. I am
open to overseeing other topics, and you can check http://jimfix.github.io/research for what I’ve overseen.

Parallel Algorithms for Multicore and GPUs
Hardware designers have faced limits speeding up a processor’s execution of a single-threaded program,
so they’ve provided performance by placing several processors on a chip that can run several threads
simultaneously. You see this, in stock computers, with multicore CPUs (usually about 8 processors, and
perhaps 10s in the near future) and, in a different way, with graphics processors (GPUs; usually 100s of
processors). To take advantage of this hardware you write code in a way that uses several cores at once,
operating on different parts of the data simultaneously. This requires the theory and practice of parallel
algorithms. Even standard problems (sorting or data processing; graph algorithms) are a challenge here
because parallelization requires rethinking them considerably and because writing parallel code is tricky.

• parallelizing Delaunay triangulations: Isabella Jorissen [‘16] and Joewie Koh[‘17] have each investigated
approaches to computing a special triangulation (with some great properties) of data points in the plane.
We’ve written a single-processor version of Guibas & Stolfi’s [1] algorithm. It has a “divide and conquer”
structure similar to mergesort that lends itself to parallelization. I’d like to adapt that code so that runs
on multicore (using POSIX threads) or on the GPU (in NVidia’s CUDA). The key innovation to work out
is the merging of two (or several) sub-triangulations into a full triangulation. Alex Pan[‘17] investigated a
bi- or multi-merge for parallelizing mergesort, and I’d like to adapt it to triangulations.

• parallelizing graph algorithms: network data abounds that is ripe for analysis (e.g. social networks,
interactomes, roads) and there are very large data sets that essentially require a parallel approach (see
http://devblogs.nvidia.com/parallelforall/gpus-graph-predictive-analytics/). Alex Pan[‘17] investigated
schemes on the GPU for computing connectivity[2] and shortest paths[3] on sparse graphs, and I’d like
to further explore the tradeoff we saw between a Bellman-Ford-like versus a Dijkstra-like approach.

• parallelizing search structures for long strings: suffix trees and suffix arrays are the basis for a variety of
fast schemes for processing large sequences (think: genetic data), for finding similarities between
sequences, or for assembling sequences from fragments of data. Kärkkäinen & Sanders[4] have a general
scheme for parallel construction of a suffix array, and I’d like to implememt it, or a variant, on GPUs.

Verifiable Languages for Concurrent and Distributed System
This past summer I worked with several students (Meaza Abate, Laura Israel, Jalan Ziyad) to develop a
language (called “Start Now” or SNo) that is meant for writing code for small devices, or for concurrent
programs, or for simple network services. It has concurrency built in (similar to Ericsson’s Erlang and
Google’s Golang), allowing you to devise processes that communicate over “channels.” These are inspired
by Robin Milner’s π-calculus[5]. We have written two versions of the language: an interpreted version
that runs .sno files and a compiled version that produces C code from .sno files. I’d like to explore the
addition of a type system to check SNo programs. I would also like to have the compiler target small,
cheap devices (Arduino/AVR, see AdaFruit’s site; raspberry Pi) and build fun or useful libraries for them.

• a tiny operating system for small devices: SNo needs a threads system with channel synchronization
primitives, a network stack (for device communication over serial, bluetooth, wifi), and a concurrent
garbage collector. We’ve these components in Linux, but not for a system like the Arduino. Imagine
making it easy to build a Roomba in SNo! We’d want sensor, motor, controller, etc. libraries for it.

• session typing: When two processes communicate, they follow a protocol. If one is offering a service to
the other, a client, then there is a contract they fulfill during that session. SNo asks programmers to code
this way, and we use session types[6,7] to describe the activity on each end of a channel. We check them
with the channel analog of the Hindley-Milner system used by Haskell for checking functions. We verify
that the client’s use of a channel is dual to the server’s. This, along with internal/external choice provided
by “send constructors” and “receipt patterns” relates sessions to linear logic[8]. I‘ve a good sense of how
this checking should work in SNo and would like to spend a year with a student implementing it. I have
larger goals here, hoping to develop schemes for proving properties of programs beyond session typing.

References
[1] L.Guibas, J.Stolfi. “Primitives for the manipulation of general subdivisions and the computation of
Voronoi diagrams.” ACM Transactions on Graphics 4(2) 1985.
[2] D. Merrill et al. “Scalable GPU graph traversal.” In Proceedings of PPoPP ’12.
[3] A.Davidson et al. “Work-efficient parallel GPU methods for SSSP.” In Proceedings of IPDPS ’14.
[4] J.Kärkkäinen, P.Sanders. “Simple linear work suffix array construction.” In Proceedings of ICALP ’03.
[5] R.Milner et al. “A calculus of mobile processes.”. Information and Computation 100 (1) 1982.
[6] P.Wadler. “Propositions as Sessions.” In Proceedings of ICFP ’12.
[7] L.Caires, F.Pfenning. “Session types as intuitionistic linear propositions.” In Proceedings of
CONCUR ’10.
[8] J.-Y.Girard. “Linear logic: its syntax and semantics.”	Theoretical Computer Science 50(1) 1987.

